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This paper presents a linear-time algorithm for the special case of the disjoint set union 
problem in which the structure of the unions (defined by a “union tree”) is known in advance. 
The algorithm executes an intermixed sequence of m union and find operations on n elements 
in O(m + n) time and O(n) space. This is a slight but theoretically significant improvement 
over the fastest known algorithm for the general problem, which runs in O(ma(m + n, n) + n) 
time and O(n) space, where a is a functional inverse of Ackermann’s function. Used as a sub- 
routine, the algorithm gives similar improvements in the efficiency of algorithms for solving 
several other problems, including two-processor scheduling, matching on convex graphs, 
finding nearest common ancestors off-line, testing a flow graph for reducibility, and finding 
two disjoint directed spanning trees. The algorithm obtains its efficiency by combining the fast 
algorithm for the general problem with table look-up on small sets, and requires a random 
access machine for its implementation. The algorithm extends to the case in which single-node 
additions to the union tree are allowed. The extended algorithm is useful in finding maximum 
cardinality matchings in nonbipartite graphs. 0 1985 Academic Press, Inc. 

1. INTR~DUCTJON 

The disjoint set union problem occurs frequently in the design of combinatorial 
algorithms [l, pp. 124-145; 143. We shall formulate this problem as follows. We 
wish to carry out an intermixed sequence of three kinds of operations, which access 
and modify a collection of disjoint sets: 

make.set(x): Create a new singleton set {x} whose name is x. This operation 
is only allowed if x is in no existing set. 

find(x): Return the name of the set containing element x. 
unite(x, y): Create a new set that is the union of the sets containing x and y. 

* Research partially supported by the National Science Foundation, Grant MCS78-18909. 
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The name of the new set is the name of the old set containing x. This operation 
assumes that x and y are initially in different sets, and destroys the old sets contain- 
ing x and y. 

The operations must be carried out on-line; that is, each one must be completed 
before the next one is known. We shall use n to denote the total number of elements 
(that is, the number of makeset operations) and m to denote the total number of 
unions and finds. 

This problem has many applications and has been widely investigated. (See [4, 
17, 27, 301.) The fastest known algorithm runs in O(ma(m +n, n) + n) time and 
O(n) space, where tl is a functional inverse of Ackermann’s function [27, 31). There 
are in fact a number of such fast algorithms, all minor variants of each other [31]. 
We shall call these algorithms a-algorithms. The a-algorithms run on a pointer 
machine [30] and, as one would expect, perform quite well in practice. 

Nevertheless it is an interesting theoretical problem to determine whether there is 
a linear-time algorithm for disjoint set union. Under certain technical restrictions 
Q(ma(m +n, n) +n) is a lower bound on the worst-case running time of any set 
union algorithm on a pointer machine [30]. Thus to obtain a linear-time algorithm 
we must either confine our attention to a special case of set union or take advan- 
tage of the more powerful capabilities of random-access machines [l, pp. 12-191. 
The result of this paper combines both of these ideas. We give an algorithm that 
runs in linear-time on a random-access machine for the special case of set union in 
which the structure of the unions, as defined by a “union tree,” is known in 
advance. This case occurs in many applications, for each of which our result gives 
an improved algorithm. Although the reults may appear to be of only theoretical 
interest, experiments with an implementation of a restricted case of our algorithm 
indicate that in practice it is competitive with a-algorithms 1121. 

We solve the following problem, which we call static tree set union. We are given 
a (rooted) tree T of IZ nodes. Initially every node v of the tree is in a singleton set 
{v} named v. We denote the parent of node u in the tree by p(v); if v is the root of 
the tree, p(v) has the special value null. We wish to perform on-line an intermixed 
sequence of find and link operations on the sets, where find is defined as before and 
link (v) is equivalent to unite(p(v), v); we allow a link operation only on a node 
other than the root of the tree. No $e that each set existing during the process 
induces a subtree of T;. the name of the set is the root of the corresponding subtree. 

This version of set union differs from the general problem in that the “union tree” 
T is known in advance. We can use our knowledge of T to precompute the answers 
to find operations on small sets. The resulting algorithm combines table look-up on 
small sets with an a-algorithm run on a universe of size o(n). The algorithm needs 
O(m + n) time and O(n) space on a random-access machine with unit cost measure 
and O(log n)’ word length [l, pp. 12-191. 

1 Throughout this paper we use base-two logarithms. 
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We develop our algorithm in Section 2 of the paper. In Section 3 we extend the 
algorithm to the case in which the union tree can grow by single-node additions 
(incremental tree set union). The extended algorithm also runs in O(m + n) time and 
O(n) space. In Section 4 we list ten applications. A preliminary version of this paper 
appeared as [ 91. 

2. STATIC TREE SET UNION 

To solve the static tree set union problem, we partition the nodes of T into 
microsets. This partition has nothing to do with the sets defined by the link 
operations; it is computed in a preprocessing step and remains fixed as the links 
and finds are executed. The microsets have three properties: 

(a) Every microset contains fewer than b nodes, where b is a parameter to be 
chosen later; 

(b) There are O(n/b) microsets; 
(c) If S is a microset, there is a node r # S such that p(u) E Su (r} for every 

node u E S. Node r is called the root of microset S. The set S u {r} induces a subree 
of T with root r; thus S induces a collection of subtrees of T, all with a common 
parent. As a special case we allow r to be null; in this case S induces a subtree of T 
whose root is the same as the root of T. 

We shall describe the set union algorithm in a top-down fashion, concurrently 
describing the data structures it uses. We number the microsets consecutively from 
one. Within each microset, we number the vertices consecutively from one. With 
each vertex u, we store micro(u), the number of the microset containing u, and num- 
ber(u), the number of u within its microset. Thus the pair micro(u), number(u) uni- 
quely identifies u. For each microset i we build a table node(i, *) such that node(i,j) 
is the node in microset i with number j. (Note that node is not a 2-dimensional 
array, since the range of values of j depends on the value of i; rather, it is a collec- 
tion of l-dimensional arrays.) All the node tables together require a total of n words 
of memory since there is one entry per node. 

To represent the collection of sets.defined by the link operations, we mark the 
nodes that are set names. To store the marks, we use a table mark(i, *) for each 
microset i, such that mark(i, j) = 0 if node(i, j) is marked, (i.e., it is a set name) and 
mark(i, j) = 1 otherwise. We allow the index j to have the range 1 <j < b for every 
value of i; if j is not the number of a node in microset i, mark(i, j) = 0. For any 
value of i, mark(i, *) is a vector of b - 1 bits. By choosing b < W, where w is the 
word length of the random-access machine, we can lit each mark table into a single 
computer word. We can also treat each mark table as an integer (whose binary 
representation is the sequence of bits in the table) and perform arithmetic on this 
integer in 0( 1) time. 

Our implementation of the link operation is such that its only effect is to alter the 
mark tables. Initially mark(i, j) = 0 for all microsets i and all values of j in the range 
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1 <j < b. (Initializing the mark table for a given microset i requires 0( 1) time: we 
set mark(i, *) = 0.) We define fink as follows: 

1. procedure link(o); 
2. mark(micro(u), number(u)) : = 1 
3. end link; 

Executing link takes 0( 1) time. 
The operation find(u) must return the nearest marked ancestor of u; that is, the 

nearest ancestor node( i, j) of u such that mark(i, j) = 0. (We regard a node as an 
ancestor of itself.) To carry out find(u) we use a combination of two methods. To 
give access within microsets, we use the following procedure (whose implemen- 
tation we describe later): 

microfind( Return the nearest marked ancestor of u that is in the same 
microset as u. If there is no such node (the nearest marked ancestor of u is in 
another microset), return the root of the microset containing u. 
To give access across microset boundaries, we maintain a collection of disjoint sets, 
called macrosets, whose elements are the roots of the microsets (excluding null). We 
manipulate the macrosets by means of the operations makemacroset, macrofind, and 
macrounite, implemented using any a-algorithm. We initialize the macrosets by 
executing makemacroset(u) for every microset root u, thus making each such root 
into a singleton macroset. This takes 0( 1) time per root [31] for a total of @n/b) 
time. 

We define find as follows. (Our program notation is essentially Dijkstra’s guarded 
command language [3] augmented with procedures; we use a vertical bar “I” in 
place of Dijkstra’s box “ll”.) (Roughly speaking, “if . . . + . . . I...” corresponds to 
if . . . then .., else . ..“. “do . . . -+ . ..” corresponds to while . . . do ,.. .“) 

1. function find( u); 
2. local x; 
3. x = u; 
4. if micro(x) # micro(microfind(x)) -+ 
5. x : = macrofind(microfind(x)); 
6. do micro(x) # micro(microfind(x)) + 
7. macrounite(macrofind(x), x); 
8. x : = macrofind 
9. od 

10. fi; 
11. return microfind 
12. end find; 

LEMMA 1. The find algorithm is correct. 

Proof. For any node x, if micro(x) # micro(microfind(x)), then microJind(x) is 
the root of the microset containing x. It follows by induction that after step 5, the 
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node denoted by variable x in the program is always a microset root, and the 
macroset operations are executed only on microset roots. For any value of x, 
microfnd(x) is an ancestor of x, and the only possible marked node on the tree 
path joining x and microfind is microfind( Another induction shows that after 
any step, for any microset root y, macrofind (y) is the nearest ancestor y’ of y such 
that y’ is a microset root and the operation macrounite(microfind(y’), y’) has not 
been perfomed. Furthermore the only possible marked node on the tree path join- 
ing y and macrofnd(y) is macrofind( A third induction shows that, for the nodes 
denoted by variables x and u in the program, x is always an ancestor of v, and the 
only possible marked node on the tree path joining v and x is x. The correctness of 
the algorithm is immediate; termination is guaranteed by the fact that each suc- 
cessive value of x is a proper ancestor of the previous value. 1 

LEMMA 2. Zf b is sZ(log log n) and each execution ofmicrofind requires 0( 1) time, 
then the total time for m intermixed link and find operations is O(m + n). 

Proof: The link operations require a total of O(n) time. The proof of Lemma 1 
implies that just before step 7 in find, x, and microfind are in different macrosets. 
Thus the total number of executions of step 7, summed over all the finds, is O(n/b). 
It follows that the total time for all the finds is O(m + n/b) plus the time for O(n/b) 
macrounite and m + O(n/b) intermixed macrofind operations. The time for the 
macroset instructions is O((m + O(n/b)) cr(m + O(n/b), O(n/b)) + O(n/b)), which is 
O(m + n) if b is Q(log log n) [27]. 1 

Remark. The proof of Lemma 2 does not require that b be sZ(log log n); much 
smaller values of b suffice [27]. 

As we have mentioned, initialization of the macrosets requires O(n/b) time. We 
must still describe how to initialize the microsets and their data structures and how 
to carry out microfind. Let us first consider the latter problem. We need a compact 
way to represent the forest (in 7’) induced by a microset. With each microset i we 
store its root, denoted by root(i), and its parent table purent(i, *), defined by 
purent( i, j) = k > 0 if the parent of node( i, j) is node( i, k), purent( i, j) = 0 if the parent 
of node(i, j) is not in microset i or if node( i, j) has no ‘parent (i.e., node(i, j) is the 
root of the tree T). For each i we allow all values of j in the range 1 <:j < b; if j is 
not the number of a node in microset i, purent(i, j) = 0. 

Given the table purent(i, *) and the size of microset i, the structure of microset i 
is uniquely determined. (A given parent table can correspond to several microsets of 
different sizes but this is not important for our purposes.) A parent table requires 
(b - l)rlog bl bits of storage; thus if we choose b such that (b - l)rlog bl< w 
(recall that w is the word length of the random-access machine), we can fit each 
parent table into a single computer word. We can also treat a parent table as an 
integer, on which we can do arithmetic in 0( 1) time. Note that not every integer in 
the range [0 . ..2u-lm3bi-112 corresponds to a possible parent table. Such an 

2 We use the notation [j.. k] to denote the set of integers i such that j< i<k. 
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integer q corresponds to a possible parent table if and only if it has two properties 
when interpreted as a function from [ 1 * . . b - l] to [0 . *. 2r’ogb1 - 11: q(j) < b - 1 
for all j (i.e., q defines a directed graph on at most b - 1 vertices), and q”‘(j) #j for 
all j and all i > 1 (i.e., the graph is acyclic), where q”‘(j) = j and qCi)(j) = 
4(4 (i- l’(j)) for i> 1. (That is, q@) is the function defined by applying q, i times.) 
Note that if q”‘(j) = 0 for some j, q”‘(j) is undefined for i’ > i; we regard an 
undefined value as different from any integer. We interpret q as such a function by 
padding its binary representation on the left with zeros if necessary to obtain 
(b - l)rlog bl bits and interpreting each group of [log bl consecutive bits as a 
function value. 

To facilitate microfind operations we construct a 3-dimensional table answer 
(q,s,j). The indices q, S, and j range over [0...2(b-1)r’ogb1-1], [0.*.2bP1-1], 
and [l *. * b - 11, respectively. (We intend q to be a parent table, s to be a mark 
table, and j to be a node number.) We define answer(q, S, j) as follows. We interpret 
q to be a function from [l...b-1] to [O**~2r’“gb1-1] and s to be a function 
from [l . *+ b - l] to (0, 1 }. Then answer(q, s, j) = k > 0 if q corresponds to a 
possible parent table (that is, q has the two properties given above) and there is an 
integer i > 0 such that q”‘(j) = k, s(k) = 0, and s(q”“( j)) = 1 for 0 < i’ < i; unzwer 
(q, s, j) = 0 if q does not correspond to a possible parent table or if it does but 
s(q(‘)( j)) = 1 for all i > 0 such that q”‘(j) > 0. 

Given the answer table, we can define microfind as follows: 

function microfind( u); 
local i, j, k; 
i :=micro(u); j :=number(u); k :=answer(purent(i, *), murk(i, *), j); 
return if k = 0 -+ root(i) 1 k > 0 --t node( i, k) 

end microfind; 

Executing microfind takes O(1) time, as required in the hypothesis of Lemma 2. 
To construct the answer table, we iterate over the possible values of q and s. For 

each pair q, s, we can compute unswer(q, S, j) for all j in the range [ 1. * * b - l] in 
O(b) time, as follows. We interpret q as a function, check its range, construct the 
graph whose vertices are the integers in Cl .* . b - 1 ] and whose edges are the pairs 
(i, q(i)) such that i, q(i)E [l . . . b - 11, and check the graph for cycles. If the range 
of q is contained in [0 . . . b - 1 ] and the graph is acyclic, the graph must be a forest 
(with edges directed toward the tree roots), and we can compute unswer(q, s, j) for 
all j by interpreting s as a function and traversing the forest in preorder. If not, we 
set unswer(q, s, j) = 0 for all j. 

If we choose b so that b2’bp l)(rlogbl + ‘) = O(n), we can construct the entire 
answer table in O(n) time. Note that this construction is part of the initialization 
and only occurs once. 

The last part of the algorithm to be filled in is the initialization of the microsets 
and their associated data structures. We divide the tree T into microsets by travers- 
ing it in postorder. For each node v, we maintain a count d(v) of its remaining 
descendants (including itself) not yet placed in a microset. When placing a node in 
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a microset, we delete it from the tree. To decide when to form microsets, we apply 
the following steps to each node u in postorder (we assume that the children of each 
node are ordered arbitrarily). 

Step 1. Let d(u) = 1 and let w be the first child of u (or null if there is no such 
child). 

Step 2. While d(v) < (b + 1)/2 and w # null, replace d(u) by d(u) + A(w) and w 
by the next child of u after w (or null if there is no such child). 

Step 3. If d(u) < (b + 1)/2, process the next vertex after u in postorder. 
Otherwise form a new microset consisting of all descendants of the remaining 
children of v up to but not including w. Assign this microset the next available num- 
ber, say i. Define the root of the microset to be v. Number the vertices in the 
microset consecutively from one, defining micro(u) and number(u) for each such 
node U. Build node(i, *), mark(i, * ), and parent(i, * ). Delete all vertices in the 
microset from the tree. Let d(v) = 1. Go to Step 2. 

After the tree root is processed, we form one last microset consisting of all the 
remaining vertices (including at least the tree root); the root of this microset is null. 

For the procedure to be correct, we must have b 2 2. Then in Step 2 it is always 
the case that d(w) < (b + 1)/2, which means that in Step 3 d(u) <b + 1, and every 
microset formed contains fewer than b nodes. (The last microset contains fewer 
than (b + 1)/2 nodes.) Thus the microsets have property (a). (See the beginning of 
this section for a definition of properties (a), (b), and (c)). Every microset except 
the last contains at least (b - 1)/2 nodes; thus the total number of microsets is at 
most 2n/(b - 1) + 1, and the microsets have property (b). Property (c) is obvious by 
construction. Constructing a microset takes time proportional to the number of 
nodes it contains; thus the total time to construct the microsets is O(n). 

This completes our description of the algorithm. Let us summarize the con- 
straints on b. We need b > 2 for the microset construction, b = B(log log n) for the 
time bound of Lemma 2 to apply, b2(b- l)rlogbl + ’ = O(n) to construct the answer 
table in O(n) time, and (b - l)rlog bl < w, where w is the word length, to lit each 
parent table and mark table into a single word of storage. Assuming w = O(log n), 
any choice of b such that b = sZ(log log n) and b = O(log n/log log n) will do. (As 
noted after the proof of Lemma 2, even much smaller values of b suffice.) Thus we 
obtain the following theorem: 

THEOREM 1. With an appropriate choice of b, the algorithm for static tree set 
union runs in O(m + n) time with O(n) preprocessing and uses O(n) space. 

We have chosen the encoding scheme for the structure of a microset (its parent 
table) so that the method of this section will extend directly to incremental tree set 
union. If, however, static tree set union is the problem of interest, the encoding 
scheme can be improved somewhat. A parent table needs O(b log b) bits to 
represent a forest of b - 1 nodes, but we can reduce the space to O(b) with the 
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following representation: We number the vertices in a microset in preorder (with 
respect to the underlying forest) and use a table forest(i, *), whereforest(i,j) is the 
number of children of node(i,j). The forest is uniquely determined by this table. We 
encode forest(i, *) by a bit vector formed by writing forest(i, l), forest(i, 2),... in 
unary, separated by zeros; this vector contains at most 2b - 3 bits. The details of 
using this representation can be found in the preliminary version of this paper [9]; 
with it, we are able to choose a larger value of b; namely, b = Lf log(n/log n) J. 

A special case that deserves mention is when the union tree T is a path. This case 
has many applications (see Sect. 4) and allows the microset representation to be 
considerably simplified. We choose each microset to be a path of b - 1 nodes 
(padding out one of the microsets with dummy nodes). This eliminates the need for 
either a parent or forest table, and makes the answer table 2-dimensional rather 
than 3-dimensional. Microset initialization is also simplified since there is no need 
for a depth-first search of T. 

In practice in this case some computers allow the answer table to be eliminated 
entirely. When a microset is a path the answer table serves to locate the first zero 
bit beyond a given bit position in the mark table. On some computers this can be 
done in a few machine instructions, such as by a floating point normalize or a 
variable-length shift (if we exchange the roles of zero and one in the mark table). 

3. INCREMENTAL TREE SET UNION 

We can extend the algorithm of Section 2 to the case in which the tree T is 
allowed to grow a node at a time. We define the incremental tree set union problem 
as follows. Initially T consists of a single node, the root. In addition to find and link 
operations, we allow operations of the following kind: 

grow(o, w): Add w to T by making u its parent. This operation is only 
allowed if v is a node in T and w is a new node not in T. -- 

Note that the number of grow operations is n - 1. 
Our algorithm for incremental tree set union is identical to the algorithm of Sec- 

tion 2 except in the construction of the microsets, which change over time. In 
addition to the data structures listed in Section 2, we maintain for each microset i 
the number of nodes’ it contains, denoted by size(i), and a list of its nodes. Initially 
there is only one microset, consisting of the root of T. We perform grow(v, w) as 
follows: 

Step 1. Make w a child of u in T. 

Step 2. Let i = micro(u). Add w to microset i. Add 1 to size(i). If size(i) = b, go 
to Step 3. Otherwise, define micro(w) to be i, number(w) to be size(i), node(i, size(i)) 
to be w, and parent(i, size(i)) to be number(o). Stop. 

Step 3. Split microset i into new microsets by constructing the tree induced by 
the root(i) and the nodes in microset i and using a postorder traversal like that 
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described in Section 2, with the following changes: Replace the test 
“d(U) < (b + 1)/2” in Steps 2 and 3 by the test “d(u) < (b + 2)/4”. Let the last con- 
structed microset have number i instead of giving it a new number. Omit root(i) 
from this last microset; this node remains the root of microset i. Initialize the mark 
table for every new microset by copying the appropriate part of the mark table for 
the old microset. Execute makemacroset(u) for every new microset root. (This does 
not include root(i).) 

To verify the correctness of the method, note that every microset constructed by 
grow in Step 3 contains at most b/2 nodes. Step 3 only can occur after at least b/2 
additions to an old microset. Thus Step 3 only occurs O(n/b) times. Each new 
microset constructed in Step 3 except the last contains more than (b - 2)/4 or at 
least (b - 1)/4 nodes; thus at most 4b/(b - 1) + 1 = 0( 1) new microsets are con- 
structed by one execution of Step 3. It follows that the total number of microsets 
ever constructed is O(n/b), and the microsets have properties (a)--(c) of Section 2. 
The correctness of the entire method follows. (Note that the creation of new 
singleton macrosets does not affect the correctness of the find algorithm.) Each 
execution of grow requires 0( 1) time if Step 3 is not executed and O(b) time if it is 
executed, so the total time of all the grow operations is O(n). We conclude: 

THEOREM 2. With an appropriate choice of b, the algorithm for incremental tree 
set union runs in O(m + n) time with O(n) preprocessing (to construct the answer 
table) and uses O(n) space. 

Remark. Choosing b requires knowing n in advance. We can get around not 
knowing n in advance by choosing a new value of b and reinitializing the answer 
table and the macrosets each time n doubles. The total time for reinitializing is 
0(1+2+4+ . . . n) = O(n) and Theorem 2 still holds. 

4. APPLICATIONS 

We conclude by listing ten applications of the algorithms in Sections 2 and 3. 
(Our list is intended to be illustrative, not inclusive.) For each problem in the list 
except one, we obtain a linear-time algorithm (improving the previously best 
almost-linear-time algorithm). 

The first five examples use the algorithm of Section 2 applied to the special case 
in which the elements of the universe are the numbers from 1 to n and the unite 
operations implied by the links are of the form unite(i - 1, i) where i> 2. (Thus the 
union tree T is a path of n nodes.) 

(1) Two-processor scheduling. The input consists of a collection of unit-time 
tasks with a partial order. the object is to schedule the tasks on two processors to 
minimize the last completion time. The algorithm of Gabow [S] runs in O(m + n) 
time, improved from O(m + na(n, n)), when implemented using static tree set union. 
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Here n is the number of tasks and m is the number of explicit constraints defining 
the partial order. 

(2) Multiprocessor scheduling algorithms. There are two related applications. 
The first is to computing a processing schedule from a priority list. The input is a 
collection of n unit-time tasks with a partial order of m constraints, a priority list 
giving a total order of the tasks, and a number of processors p Gn. The object is to 
schedule the tasks so that the next task to begin is the first available task in the 
priority list. The algorithm of Sethi [25] runs in O(m +n) time, improved from 
O(m + na(n, n)), using static tree set union. 

The second application is optimum scheduling on an interval dag. The input is a 
collection of n unit-time tasks, an m-constraint partial order that is an interval dag, 
and a number of processors p <n. The object is to schedule the tasks to minimize 
the last completion time. Papadimitriou and Yannakakis give an O(m +n)-time 
algorithm to find a priority list defining an optimum schedule [7, 231. Combining 
this with the above algorithm for priority list scheduling gives an O(m +n)-time 
scheduling algorithm, improved from O(m + na(n, n)). 

(3) The offiline min problem [l, pp. 139-1411. The object is to maintain a set 
of integers in the range [ 1 +. . n] under two operations: insert(i), which adds element 
i to the set, and extract min, which deletes and returns the minimum element. If 
each integer is inserted only once and the entire sequence of operations is given off- 
line, static tree set union applies to solve this problem in O(n) time, improved from 
Wah n)). 

(4) Matching on convex graphs and scheduling with release times and 
deadlines. These two problems are closely related. In the first, the object is to find 
a maximum matching on a convex, n-vertex bipartite graph. The algorithm of 
Lipski and Preparata [19] runs in O(n) time, improved from O(na(n, n)), using 
static tree set union. 

In the second problem, the input is a collection of unit-time tasks, each with an 
integer release time and deadline, and a number of processors p < n. The object is to 
schedule each task between its release time and deadline. Frederickson [S] gives an 
algorithm that involves the off-line min problem (3). Using our algorithm for off- 
line min, the running time of Frederickson’s method is improved from O(na(n, n)) 
to O(n). (The space needed is O(d+n), where d is the largest deadline.) 

(5) VLSI channel routing. The input to this problem is a set of 2-terminal 
nets; the desired output is a wire layout on a channel of least possible width. The 
algorithm of Preparata and Lipski [24] runs in O(n) time, improved from 
Oh44 n)). 

The next three applications use the general case of static tree set union. 

(6) Nearest common ancestors. Aho, Hopcroft, and Ullman [2,29] give an 
O(n + ma(m + n, n))-time, O(n)-space algorithm to compute the nearest common 
ancestors of m pairs of nodes in an n-node tree off-line. The algorithm of Section 2 
improves this method to O(n + m) time. Hare1 and Tarjan [ 10, 1 l] have also given 
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a linear-time algorithm for this problem. Their algorithm is more complicated than 
the one given here but extends to solve the “half-line” problem, in which the tree is 
fixed but the nearest common ancestor requests arrive on-line, in O(m + n) time. 
(Our concept of microsets can be used to simplify their algorithm.) 

(7) Flow graph reducibility. Static tree set union improves the method of Tar- 
jan [26] for testing flow graph reducibility of an n-vertex, m-edge graph from 
O((ma(m, n)) to O(m) time. (In flow graphs n = O(m).) 

(8) Two directed spanning trees. Given a flow graph the object is to find two 
directed spanning trees with as few common edges as possible. Static tree set union 
improves the algorithm of Tarjan [28] for this problem from O(ma(m, n)) to O(m) 
time. 

Our next-to-last application uses incremental tree set union. 
(9) Maximum cardinah’ty matching on nonbipartite graphs. The algorithm of 

Gabow [6] runs in O(nm) time, improved from O(nma(m, n)), using incremental 
tree set union. Here n is the number of vertices and m the number of edges in the 
graph; we assume n = O(m . 
Vazirani [22] runs in 0( JI 

A more efficient algorithm discovered by Micali and 
nm) time. Their algorithm uses disjoint set union; Micali 

and Vazirani state without proof that the “special structure of blossoms” implies a 
linear time bound if an appropriate a-algorithm is used [22, p. 211. However the 
proof is complicated (over fifty pages long [21]). Using incremental tree set union 
gives the 0(&m) t’ ime bound directly. Both matching algorithms use O(n + m) 
space. 

Our final example is a data manipulation problem that is a time-reversed version 
of disjoint set union. 

(10) The set-splitting problem. Given an initial set consisting of the integers 
(1, L.., n}, we wish to carry out an intermixed sequence of operations of the 
following two types: 

find(i): Return the name of the set containing integer i. 
split(i): Split the set containing integer i into two sets, one containing all 

integers less than i, the other all integers greater than or equal to i. 

In their paper on disjoint set union [13] Hopcroft and Ullman describe an 
O((m + n) log* n)-time algorithm for this problem, where m is the number of 
operations and log* n is the “iterated logarithm,” the number of times the 
logarithm must be taken to obtain a number less than one. Using a variant of the 
static tree set union algorithm, we can solve this problem in O(m + n) time. We 
shall sketch the idea. 

We combine two methods: the table lookup scheme used for microsets in Sec- 
tions 2 and 3, and a “relabel the smaller half’ method. We can solve the set-splitting 
problem in 0( 1) time per find plus O(n log n) time for all the splits by storing with 
each integer the name of the set containing it and, when splitting a set, renaming 
the half containing fewer elements. (See, e.g., [l, pp. 1241291.) To obtain an 
O(m + n) time bound for set splitting, we use three levels of sets: microsets, mez- 
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zosefs, and macrosets. Initially we partition the set { 1,2,..., n} into intervals called 
mezzosets, of size Llog n J. We partition each mezzoset into intervals called 
microsets, of size Llog log n_l. 

The current partition of the integers into sets induces a partition of the unsplit 
mezzosets, another partition of the unsplit microsets, and a third partition of the 
split microsets. We use the table lookup method on the split microsets and the 
“relabel the smaller half’ method on the unsplit microsets and also on the unsplit 
mezzosets. To find integer i, we check whether its microset or mezzoset has split 
and find it using the appropriate method. To split a set at i, we split at most two 
microsets and two mezzosets, and update the three levels of the data structure 
appropriately. When the details of this method are worked out, the running time is 
seen to be O(m + n). (For a detailed description and analysis of a similar method 
for a different problem, see [ 111.) Using the representation of microsets via forest 
tables outlined at the end of Section 2, we can avoid using mezzosets, thus obtain- 
ing an O(m + n) time bound using only a 2-level data structure (see [9].) 

In conclusion we note that there are important applications of disjoint set union 
that our algorithm does not handle, such as checking the equivalence of two deter- 
ministic finite automata [ 1, pp. 143-1451. The path compression technique has 
additional applications [29] to which our table look-up approach does not seem to 
apply. Nevertheless the special case of disjoint set union that we have been able to 
handle is significant both in theory and in practice. 

Since the appearance of the preliminary version of this paper [9], further 
applications and extensions have been discovered by other authors. Imai and Asano 
[ 151 have used our set union method to quickly carry out breadth-first and depth- 
first searches of intersection graphs of vertical and horizontal line segments in the 
plane. Their methods extend to the solution of various problems for this class of 
graphs. A similar algorithm for breadth-first search was independently discovered 
by Lipski [20]. Imai and Asano [ 161 also extended our set-splitting algorithm 
(application (10)) to allow incremental insertion of new items. They use this 
algorithm as a subroutine in dynamic segment intersection search. Hare1 [32] has 
extended our ideas to give an O(m) time bound for computing dominators in an 
n-vertex, m-edge graph, improved from O(mcc(m, n)) [lS]. (Here we assume 
n = O(m).) 
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