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Race to Idle: New Algorithms for Speed Scaling with a Sleep State

SUSANNE ALBERS and ANTONIOS ANTONIADIS, Humboldt-Universität zu Berlin

We study an energy conservation problem where a variable-speed processor is equipped with a sleep state.
Executing jobs at high speeds and then setting the processor asleep is an approach that can lead to further
energy savings compared to standard dynamic speed scaling. We consider classical deadline-based schedul-
ing, that is, each job is specified by a release time, a deadline and a processing volume. For general convex
power functions, Irani et al. [2007] devised an offline 2-approximation algorithm. Roughly speaking, the
algorithm schedules jobs at a critical speed scrit that yields the smallest energy consumption while jobs are
processed. For power functions P(s) = sα + γ , where s is the processor speed, Han et al. [2010] gave an
(αα + 2)-competitive online algorithm.

We investigate the offline setting of speed scaling with a sleep state. First, we prove NP-hardness of the op-
timization problem. Additionally, we develop lower bounds, for general convex power functions: No algorithm
that constructs scrit-schedules, which execute jobs at speeds of at least scrit, can achieve an approximation
factor smaller than 2. Furthermore, no algorithm that minimizes the energy expended for processing jobs
can attain an approximation ratio smaller than 2.

We then present an algorithmic framework for designing good approximation algorithms. For general
convex power functions, we derive an approximation factor of 4/3. For power functions P(s) = βsα + γ ,
we obtain an approximation of 137/117 < 1.171. We finally show that our framework yields the best
approximation guarantees for the class of scrit-schedules. For general convex power functions, we give another
2-approximation algorithm. For functions P(s) = βsα + γ , we present tight upper and lower bounds on the
best possible approximation factor. The ratio is exactly eW−1(−e−1−1/e)/(eW−1(−e−1−1/e) + 1) < 1.211, where
W−1 is the lower branch of the Lambert W function.
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1. INTRODUCTION

Modern microprocessors have various capabilities for energy savings. Dynamic
speed scaling refers to a processor’s ability to dynamically set the speed/frequency
depending on the current workload. The lower the speed, the lower the dynamic energy
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consumption is. However, even at low speed levels a processor consumes a significant
amount of static energy, caused, for example, by leakage current. Additionally,
processors are typically equipped with stand-by or sleep states. In a deep sleep
state, a processor uses negligible or no energy. The combination of speed scaling and
low-power states suggests the technique race-to-idle: Execute tasks at high speed
levels, then transition the processor to a sleep state. This can reduce the overall energy
consumption. The time periods in which a processor resides in dormant states may be
on the order of milliseconds. The race-to-idle concept has been studied in a variety of
settings and usually leads to energy-efficient solutions (see, e.g., Lesswatts.org, Bailis
et al. [2011], Gandhi et al. [2009], Garrett [2007], and Kluge et al. [2010]).

We adopt a model introduced by Irani et al. [2007] to combine speed scaling and
power-down mechanisms. The problem is called speed scaling with sleep state. Consider
a variable-speed processor that, at any time, resides in an active state or a sleep state.
In the active state the processor can execute jobs, where the energy consumption is
specified by a general convex, nondecreasing power function P. If the processor runs
at speed s, with s ≥ 0, then the required power is P(s). We assume P(0) > 0, that
is, even at speed 0, when no job is processed, a strictly positive power is required.
In the active state, energy consumption is power integrated over time. In the sleep
state, the processor consumes no energy but cannot execute jobs. A wake-up operation,
transitioning the processor from the sleep state to the active state, requires a fixed
amount of C > 0 energy units. A power-down operation, transitioning from the active
to the sleep state, does not incur any energy.

We consider classical deadline-based scheduling. We are given n jobs J1, . . . , Jn. Each
job Ji is specified by a release time ri, a deadline di and a processing volume vi, 1 ≤ i ≤ n.
Job Ji can be feasibly scheduled in the interval [ri, di). The processing volume is the
amount of work that must be completed on the job. If Ji is processed at constant speed s,
then it takes vi/s time units to finish the job. We may assume that each job is processed
at a fixed speed. By convexity of the power function P, it is not beneficial to process a
job at varying speed. Preemption of jobs is allowed, that is, at any time the processing of
a job may be suspended and resumed later. The goal is to construct a feasible schedule
minimizing energy consumption.

Given a schedule S, let E(S) denote the energy incurred. This energy consists of two
components, the processing energy and the idle energy. The processing energy Ep(S) is
incurred while the processor executes jobs. It holds that Ep(S) = ∑n

i=1 vi P(si)/si, where
si is the speed at which Ji is processed. The idle energy Ei(S) is expended while the
processor resides in the active state but does not process jobs and whenever a wake-up
operation is performed. We assume that initially, prior to the execution of the first job,
the processor is in the sleep state. Suppose that S contains T time units in which the
processor is active but not executing jobs. Let k be the number of wake-up operations.
Then, Ei(S) = TP(0) + kC.

Irani et al. [2007] observed that in speed scaling with sleep state there exists a
critical speedscrit, which is the most efficient speed to process jobs. Again, if a job Ji is
executed at speed s, then the consumed energy is vi P(s)/s. Speed scrit is the smallest
value minimizing P(s)/s, and will be important in various algorithms.

Previous work: Speed scaling and power-down mechanisms have been studied ex-
tensively over the past years and we review the most important results relevant to our
work. We concentrate on deadline-based scheduling on a single processor. There exists
a considerable body of literature addressing dynamic speed scaling if the processor is
not equipped with a sleep state. In a seminal paper, Yao et al. [1995] showed that the
offline problem is polynomially solvable. They gave an efficient algorithm, called YDS
according to the initials of the authors, for constructing minimum energy schedules.
Refinements of the algorithm were given in Li et al. [2006] and Li and Yao [2005].
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YDS was originally presented for power functions P(s) = sα, where α > 1, but can be
extended to arbitrary convex functions P, see Irani et al. [2007]. For power functions
P(s) = sα, various online algorithms were presented in Bansal et al. [2007, 2011, 2012]
and Yao et al. [1995].

Baptiste [2006] studied a problem setting where a fixed-speed processor has a sleep
state. All jobs must be processed at this fixed speed level, and whenever the processor is
in the active state 1 energy unit is consumed per time unit. Using a dynamic program-
ming approach, Baptiste showed that the offline problem is polynomially solvable if all
jobs have unit processing time. In a subsequent paper, Baptiste et al. [2012] proved
that the approach can be extended to arbitrary job processing times. We will refer to
the corresponding polynomial time algorithm as BCD.

Irani et al. [2007] initiated the study of speed scaling with sleep state. They consider
arbitrary convex power functions. For the offline problem, they devised a polynomial
time 2-approximation algorithm. The algorithm first executes YDS and identifies job
sets that must be scheduled at speeds higher than scrit according to this policy. All
remaining jobs are scheduled at speed scrit. The complexity of the offline problem was
unresolved. Irani and Pruhs [2005] stated that determining the complexity of speed
scaling with sleep state is an intellectually intriguing problem. For the online problem,
Irani et al. [2007] presented a strategy that transforms a competitive algorithm for
speed scaling without sleep state into a competitive algorithm for speed scaling with
sleep state. For functions P(s) = sα + γ , where α > 1 and γ > 0, Han et al. [2010]
showed an (αα + 2)-competitive algorithm.

We remark that speed scaling has also been investigated in a model where there
is an upper bound on the processor speed (see, e.g., Bansal et al. [2008], Chan et al.
[2009], and Han et al. [2010]). Furthermore, rather than deadline-based scheduling, a
problem scenario with the objective function of minimizing energy plus the total job
flow time has been studied. In this setting, again, general power functions have been
considered (cf., Andrew et al. [2009], Bansal et al. [2013], and Chan et al. [2013]).

Our contribution: In this article, we investigate the offline setting of speed scaling
with sleep state. We consider general convex power functions, which are motivated
by current processor architectures and applications (see also Bansal et al. [2013]).
Moreover, we consider the family of functions P(s) = βsα +γ , where α > 1 and β, γ > 0.
Speed scaling without sleep state, considering the deadline-based scheduling model,
has mostly addressed power functions P(s) = sα. The family P(s) = βsα + γ is the
natural generalization.

First, in Section 2, we develop a complexity result as well as lower bounds. We prove
that speed scaling with sleep state is NP-hard and thereby settle the complexity of
the offline problem. This hardness result holds even for very simple problem instances
consisting of so-called tree-structured jobs. Hence, interestingly, while the setting with
a fixed-speed processor, studied by Baptiste et al. [2012], admits polynomial time algo-
rithms, the optimization problem turns NP-hard for a variable-speed processor. As for
lower bounds, we refer to a schedule S as an scrit-schedule if every job is processed at a
speed of at least scrit. We prove that for general convex power functions, no algorithm
constructing scrit-schedules can achieve an approximation factor smaller than 2. This
statement holds true even for piecewise linear power functions. The intuition of this
result is that in executing jobs at speeds of at least scrit, a processor might be idle for
extended time periods and hence might incur a considerable amount of idle energy.
The lower bound implies that the offline algorithm by Irani et al. [2007] attains the
best possible approximation ratio among scrit-based algorithms. Furthermore, to ob-
tain smaller approximation factors, one has to use speeds smaller than scrit. Our lower
bound construction can be used to show a second result: For general convex power
functions, no algorithm minimizing the processing energy of schedules can achieve
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Fig. 1. The execution intervals of the jobs of an IS instance, with n = 5.

an approximation factor smaller than 2. Both lower bound statements hold for any
algorithm, whose running time might even be exponential.

In Section 3, we present a general, generic polynomial time algorithm for speed
scaling with sleep state. All the three algorithms we devise in this article are instances
of the same algorithmic framework. Our general algorithm combines YDS and BCD.
The main ingredient is a new, specific speed s0 that determines when to switch from YDS
to BCD. Job sets that must be processed at speeds higher than s0 are scheduled using
YDS. All other jobs are processed at speed s0. While the approach is very natural and
simple, it allows us to derive significantly improved approximation factors. For general
convex power functions, we present a 4/3-approximation algorithm by choosing s0 such
that P(s0)/s0 = 4

3 P(scrit)/scrit. The main technical contribution is to properly analyze
the algorithmic scheme. The difficult part is to prove that in using speed s0, but no
lower speed levels, we do not generate too much extra idle energy, compared to that of
an optimal schedule (cf. Lemmas 3.4 and 3.7 for the 4/3-approximation). In Section 4,
we study power functions P(s) = βsα + γ and develop an approximation factor of
137/117 < 1.171 by setting s0 = 117

137 scrit.
In Section 5, we reconsider scrit-schedules and demonstrate that our algorithmic

framework yields the best possible approximation guarantees. For general convex
power functions, we give another 2-approximation algorithm, matching our lower
bound and the upper bound by Irani et al. [2007]. More importantly, we prove tight
upper and lower bounds on the best possible approximation ratio achievable for power
functions P(s) = βsα +γ . The ratio is exactly equal to eW−1(−e−1−1/e)/(eW−1(−e−1−1/e)+
1), where W−1 is the lower branch of the Lambert W function. The ratio is upper
bounded by 1.211.

In summary, in addition to providing a hardness result and small constant-factor
approximation guarantees, this article settles the performance of the class of scrit-
schedules.

2. COMPLEXITY AND LOWER BOUNDS

In this section, we first prove NP-hardness of speed scaling with sleep state. Then, we
present two lower bounds on the performance of scrit-schedules.

A problem instance of speed scaling with sleep state is tree-structured if, for any two
jobs Ji and Jj and associated execution intervals Ii = [ri, di) and Ij = [rj, dj), it holds
that Ii ⊆ Ij , Ij ⊆ Ii or Ii ∩ Ij = ∅.

THEOREM 2.1. Speed scaling with sleep state is NP-hard, even on tree-structured
problem instances.

PROOF. Obviously, the decision variant of speed scaling with sleep state is in the
class NP. We proceed to describe a reduction from the NP-complete Partition problem.
In the Partition problem, we are given a finite set A of n positive integers a1, a2, . . . an,
and the problem is to decide whether there exists a subset A′ ⊂ A such that

∑
ai∈A′ ai =∑

ai∈A\A′ ai. Let amax be the maximal element of A, that is, amax = maxi∈{1,...n} ai. We
assume amax ≥ 2, since otherwise the Partition problem is trivial to decide.

Let IP be any instance of Partition with associated set A. We construct a correspond-
ing instance IS of speed scaling with sleep state. Figure 1 depicts a small example of
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Fig. 2. Energy consumption in gap gi as a function of the load executed in gi .

the following construction. For 1 ≤ i ≤ n, set Li = 2 − amax−1
a2

max
ai. The job set J of IS can

be partitioned into three levels. We first create n + 1 jobs of Level 2, comprising set
J2 ⊂ J . The i-th job of J2, with 1 ≤ i ≤ n+1, has a release time of (i−1)ε+∑i−1

j=1 Lj and
a deadline of iε + ∑i−1

j=1 Lj , where ε is an arbitrary positive constant. The processing
volume of each job of J2 is equal to εscrit. For Level 1, we construct n jobs forming the
set J1 ⊂ J . The i-th job of Level 1, with 1 ≤ i ≤ n, has a release time of iε + ∑i−1

j=1 Lj ,
a deadline of iε + ∑i

j=1 Lj , and a processing volume of li = Liamax − ai. From now on,
we will also use the term gap to refer to the intervals where jobs of J1 can be executed.
More specifically, gap gi is the interval defined by the release time and the deadline of
the i-th job of J1. Finally, there is only one job J0 of Level 0. It has a release time of 0,
a deadline of (n + 1)ε + ∑n

i=1 Li and a processing volume of B = ∑n
i=1 ai/2.

Note that IS is tree-structured. We set the cost of a wake-up operation equal to
C = amax. The power function is defined as follows:

P(s) =

⎧⎪⎨
⎪⎩

amax, 0 ≤ s ≤ amax,

4
9 s + 5

9amax, amax < s ≤ 10amax,

2s − 15amax, 10amax < s.

It is easy to verify that P is convex and continuous, that scrit = 10amax, and that
P(scrit)/scrit = 1/2. For the sake of simplicity, we assume that the processor is in the
active state just before the first job gets executed. This is no loss of generality because
we can just add the cost of one extra wake-up operation to all the energy consumptions.

Here, in the main body of the article, we present the intuition and main idea of
our reduction. Formally, Theorem 2.1 follows from Lemma 2.2, whose proof is given
in the appendix. For every gap gi, 1 ≤ i ≤ n, we consider functions of the energy
consumed in gi depending on the load x executed in the gap (see Figure 2). Function
f (x) = C + (P(scrit)/scrit)x represents the optimal energy consumption in gi assuming
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that the processor transitions to the sleep state in the gap. This consumption does not
depend on the gap length, and thus the function is the same for all the gaps. Next
consider the energy consumption hi(x) in gi assuming that the processor remains in
the active state throughout the gap. This consumption depends on the required speed
s, that is, it is P(s)Li. By the definition of P(s), hi(x) is given by an arrangement of
three lines. More specifically, hi(x) = amax Li for x ∈ [0, amax Li] (cf. q1 in Figure 2),
hi(x) = ((4/9) · (x/Li) + (5/9)amax) · Li for x ∈ (amax Li, 10amax Li] (shown as q2), and
hi(x) = (2(x/Li) − 15amax) · Li for x in (10amax Li,+∞) (not depicted). Function hi(x)
depends on the gap length Li. Hence, in general, the functions hi(x), with 1 ≤ i ≤ n, are
different for the various gaps. For any gap gi, the optimal energy consumption, with
respect to the load executed in it, is given by the lower envelope of f and hi, represented
by the solid line segements in Figure 2. Let LEi(x) = min{ f (x), hi(x)} denote this lower
envelope function.

Assume now that each job in J2 is being executed throughout the interval defined by
its release time and deadline, and assume that bi units of J0’s load are executed in gap
gi. In the formal proof, we show that w.l.o.g. J0 is not executed between gaps. In gi an
energy of at least LEi(li + bi) is consumed. We can rewrite this as LEi(li) + Eb

i (bi), by
simply setting Eb

i (bi) = LEi(li +bi)− LEi(li). With this rewriting, we charge an energy of
LEi(li) to the load li and an energy of Eb

i (bi) to the load bi. Observe that LEi(li) is the least
possible energy expended for gap gi and that it is attained for bi = 0 when Eb

i (bi) = 0.
Since the LEi(li) energy units charged to the li ’s depend only on the li ’s themselves, the
goal of any algorithm is to minimize

∑n
i=1 Eb

i (bi) subject to the constraint
∑n

i=1 bi = B.
In other words, the goal is to distribute the B load units to the gaps gi, 1 ≤ i ≤ n, in a
way minimizing the energy charged to them.

The average energy consumption per load unit for any bi corresponds to the slope
of the line passing through (li, LEi(li)) and (li + bi, LEi(li + bi)). The key idea of the
transformation is that this slope gets minimized when li + bi = amax Li or, equivalently,
when bi = ai. This minimum possible attainable slope is 1/(2amax), which is independent
of the respective gap gi. The thick dashed line denoted by q3 in Figure 2 is exactly this
line passing through (li, LEi(li)) and (li + bi, LEi(li + bi)), when bi = ai.

It follows that the total energy charged to the B load units of J0 is minimized when
each bi is either 0 or ai. Calculations show that, in this case, the average energy
consumption per load unit is minimized to 1/(2amax) and hence the total energy charged
to the load of J0, is B/(2amax). If there exists at least one gap gi with 0 < bi < ai or
bi > ai, then by our construction the slope of the line passing through (li, LEi(li)) and
(li + bi, LEi(li + bi)) is greater than 1/(2amax), which implies that the average energy
charged to the load of J0 is strictly greater than 1/(2amax), and in turn the total energy
consumption is strictly greater than B/(2amax).

Formally, our reduction satisfies the following lemma, establishing Theorem 2.1.

LEMMA 2.2. There exists a feasible schedule for IS that consumes energy of at most
5(n + 1)εamax + nC + 1

2

∑n
i=1 li + B

2amax
if and only if A of IP admits a partition.

The proof is given in the appendix.

We next present two lower bounds that hold true for all algorithms, independently
of their running times. We exploit properties of schedules but do not take into account
their construction time. Again, formally a schedule S for a job set J is an scrit-schedule
if every job is processed at a speed of at least scrit.

THEOREM 2.3. Let Abe an algorithm that computes scrit-schedules for any job instance.
Then A does not achieve an approximation factor smaller than 2, for general convex
power functions.
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Fig. 3. The power function P(s).

PROOF. Let ε, where 0 < ε < 1, be an arbitrary constant. We show that A cannot
achieve an approximation factor smaller than 2 − ε. Set ε′ = ε/7. Fix an arbitrary
critical speed scrit > 0 and associated power P(scrit) > 0. Let P(0) = ε′ P(scrit). We
define a power function P(s) for which scrit is indeed the critical speed. Function P(s)
is piecewise linear, see also Figure 3. In the interval [0, ε′scrit] it is given by the line
passing through the points (0, P(0)) and (ε′scrit, (1+ε′)P(0)). In the interval (ε′scrit, scrit),
it is defined by the line through (ε′scrit, (1 + ε′)P(0)) and (scrit, P(scrit)). This line has a
slope of (P(scrit) − (1 + ε′)P(0))/((1 − ε′)scrit). For s ≥ scrit, P(s) is given by the line
P(scrit)s/scrit. In summary,

P(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P(0)( s
scrit

+ 1), s ≤ ε′scrit,

P(scrit)−(1+ε′)P(0)
1−ε′ ( s

scrit
− 1)

+P(scrit), ε′scrit < s < scrit,

P(scrit) s
scrit

, scrit ≤ s.

This power function is increasing and convex because the three slopes form a strictly
increasing sequence, by our choice of ε′. Furthermore, scrit is the smallest value that
minimizes P(s)/s.

We specify a job sequence. We first define three jobs J1, J2 and J3 with the following
characteristics. Let L > 0 be an arbitrary constant. Job J1 has a processing volume of
v1 = δLscrit, where δ = (ε′)2/2, and can be executed in the interval I1 = [0, δL), that
is, r1 = 0 and d1 = δL. The second job J2 has a processing volume of v2 = ε′Lscrit
and can be processed in I2 = [δL, (1 + δ)L) so that r2 = δL and d2 = (1 + δ)L. The
third job J3 is similar to the first one with v3 = δLscrit. The job can be executed in
I3 = [(1 + δ)L, (1 + 2δ)L), that is, r3 = (1 + δ)L and d3 = (1 + 2δ)L. The three intervals
I1, I2, and I3 are disjoint, and each of the three jobs can be feasibly scheduled using a
speed of scrit. Let C = LP(0) be the energy of a wake-up operation.

We analyze the energy consumption of A and an optimal solution, assuming for the
moment that the processor is in the active state at time 0. First consider the energy
consumption of A. Suppose that A processes some job at a speed higher than scrit. By
the definition of scrit, we can reduce any speed s ≥ scrit to scrit without increasing the
processing energy needed for the job. The speed reduction only reduces the time while
the processor does not execute jobs and thus does not increase the idle energy of the
schedule. In other words, any schdule that processes some job at a speed higher than
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scrit can be transformed into one that uses a speed of scrit only; the transformation does
not increase the schedule’s idle energy.

Hence, we may analyze A, assuming that all the three jobs are processed at speed
scrit. Jobs J1 and J3 each consume an energy of δLP(scrit). In I2, job J2 is processed for
v2/scrit = ε′L time units. During the remaining time, L − ε′L = (1 − ε′)L time units the
processor is idle. Since C > (1 − ε′)LP(0), it is not worthwhile to power down and the
processor should remain in the active state. Hence, A’s energy consumption is at least
2δLP(scrit) + ε′LP(scrit) + (1 − ε′)LP(0) > L(ε′ P(scrit) + (1 − ε′)P(0)) = (2 − ε′)LP(0). The
last equation holds because ε′ = P(0)/P(scrit).

In an optimal solution, jobs J1 and J3 must also be executed at speed scrit. However,
J2 can be processed using speed v2/L = ε′scrit in I2 so that the energy consumption for
the job is LP(ε′scrit) = (1 + ε′)LP(0). Hence, the optimum power consumption is upper
bounded by 2δLP(scrit) + (1 + ε′)LP(0) = (ε′)2LP(scrit) + (1 + ε′)LP(0) = (1 + 2ε′)LP(0).
The last equation holds because ε′ = P(0)/P(scrit).

Now assume that the processor is in the sleep state initially and a wake-up operation
must be performed at time 0. In order to deal with this extra cost of C, we repeat the
previous job sequence k = �1/ε′� times. In the i-th repetition, 1 ≤ i ≤ k, there exist three
jobs—Ji1, Ji2, and Ji3—with processing volumes vi j = v j , 1 ≤ j ≤ 3. The i-th repetition
starts at time ti = (i−1)(1+2δ)L. For this job sequence, the ratio of the energy consumed
by A to that of an optimal solution is greater than k(2−ε′)LP(0)

C+k(1+2ε′)LP(0) ≥ 2−ε′
1+3ε′ > 2 − ε. The

first inequality holds because C/k ≤ ε′LP(0), and the second one follows because
ε′ = ε/7.

For the problem instance defined in the aforementioned proof, scrit-schedules are exactly
the ones that minimize the processing energy. This follows by the definition of scrit, and
by the fact that for the given power function, scrit is the only speed that minimizes
P(s)/s. We obtain:

COROLLARY 2.4. Let A be an algorithm that, for any job instance, computes a schedule
minimizing the processing energy. Then, A does not achieve an approximation factor
smaller than 2, for general convex power functions.

3. A 4/3-APPROXIMATION ALGORITHM

We develop a polynomial time 4/3-approximation algorithm for general convex power
functions. The algorithm is an instance of a more general algorithmic framework.

3.1. Description of the Algorithm

Our general algorithm combines YDS and BCD while making crucial use of a new,
specific speed level s0 that determines when to switch from YDS to BCD. For varying
s0, 0 ≤ s0 ≤ scrit, we obtain a family of algorithms ALG(s0). The best choice of s0 depends
on the power function. In order to achieve a 4/3-approximation, we choose s0 such that
P(s0)/s0 = 4

3 P(scrit)/scrit.
We first argue that our speed level s0, satisfying P(s0)/s0 = 4

3 P(scrit)/scrit, is well
defined. Speed scrit is the smallest value minimizing P(s)/s (see Irani et al. [2007]).
Speed scrit is well defined if P(s)/s does not always decrease, for s > 0. If P(s)/s always
decreases, then by scheduling each job at infinite speed, or the maximum allowed speed,
one obtains trivial optimal schedules. We always assume that there exists a finite speed
scrit.

Consider the line f (s) = P(scrit)s/scrit with slope P(scrit)/scrit passing through (0, 0).
This line meets the power function P(s) at point (scrit, P(scrit)) (see Figure 4). In fact,
f (s) is the tangent to P(s) at scrit (assuming that P(s) is differentiable at scrit), since
otherwise P(scrit + ε)/(scrit + ε) < P(scrit)/scrit, for some ε > 0, and scrit would not be
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Fig. 4. The functions P(s), f (s), and g(s).

the true critical speed. Moreover, P(s) is strictly above f (s) in the interval (0, scrit), i.e.
P(s) > f (s) for all s ∈ (0, scrit), because scrit is the smallest value minimizing P(s)/s.
Next, consider the line g(s) = 4

3 f (s) = 4
3 P(scrit)s/scrit. We have g(s) > f (s), for all s > 0,

and hence g(s) intersects P(s), for some speed in the range (0, scrit). Our speed s0 is
chosen as this value satisfying g(s0) = P(s0), and therefore P(s0)/s0 = 4

3 P(scrit)/scrit.
We remark that g(s) intersects P(s) only once in (0, scrit) because P(s) is convex and
g(scrit) > f (scrit) = P(scrit).

In the following, we present ALG(s0), for 0 ≤ s0 ≤ scrit. Let J1, . . . , Jn be the jobs to be
processed. The scheduling horizon is [rmin, dmax), where rmin = min1≤i≤n ri is the earliest
release time and dmax = max1≤i≤n di is the latest deadline of any job. ALG(s0) operates
in two phases.

Description of Phase 1: In Phase 1, the algorithm executes YDS and identifies
job sets to be processed at speeds higher than s0 according to this strategy. For com-
pleteness, we describe YDS, which works in rounds. At the beginning of a round R, let
J be the set of unscheduled jobs and H be the available scheduling horizon. Initially,
prior to the first round, J = {J1, . . . , Jn} and H = [rmin, dmax). During the round R,
YDS identifies an interval Imax of maximum density. The density �(I) of an interval
I = [t, t′) is defined as �(I) = ∑

Ji∈S(I) vi/(t′ − t), where S(I) = {Ji ∈ J | [ri, di) ⊆ I} is
the set of jobs to be processed in I. Given a maximum density interval Imax = [t, t′),
YDS schedules the jobs of S(Imax) at speed �(Imax) in that interval according to the
Earliest-Deadline-First (EDF) discipline. Then, S(Imax) is deleted from J , and Imax is
removed from H. More specifically, for any unscheduled job Ji ∈ J with either ri ∈ Imax
or di ∈ Imax, we set the new release time to r′

i = t′ or the new deadline to d′
i = t,

respectively. Finally, considering the jobs of J , all release times and deadlines of value
at least t′ are reduced by t′ − t.

Algorithm ALG(s0) executes scheduling rounds of YDS while J = ∅, and �(Imax) > s0,
that is, jobs are scheduled at speeds higher than s0. At the end of Phase 1, let JY DS ⊆
{J1, . . . , Jn} be the set of jobs scheduled according to YDS. Considering the original time
horizon [rmin, dmax), let I1, . . . , Il be the sequence of disjoint, nonoverlapping intervals
in which the jobs of JYDS are scheduled. These intervals are the portions of [rmin, dmax)
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Fig. 5. Five intervals I j
max, j = 1, . . . , 5, that form I1 and I2.

used by the YDS schedules for JYDS. Figure 5 depicts an example consisting of five
maximum density intervals I j

max, j = 1, . . . , 5, forming an interval sequence I1, I2.
The height of an interval I j

max corresponds to the density �(I j
max). Given I1, . . . , Il, let

Ij = [tj, t′
j), where 1 ≤ j ≤ l. We have t′

j ≤ tj+1, for j = 1, . . . , l − 1. We remark that
every job of JYDS is completely scheduled in exactly one interval Ij .

Description of Phase 2: In Phase 2, ALG(s0) constructs a schedule for the set
J0 = {J1, . . . , Jn} \JYDS of unscheduled jobs, extending the partial schedule of Phase 1.
The schedule for J0 uses a uniform speed of s0 and is computed by properly invoking
BCD. Algorithm BCD takes as input a set of jobs, each specified by a release time, a
deadline and a processing time. The given processor has an active state and a sleep
state. In the active state, it consumes 1 energy unit per time unit, even if no job is
currently executed. A wake-up operation requires L energy units. BCD computes an
optimal schedule for the given job set, minimizing energy consumption.

We construct a job set JBCD to which BCD is applied. Initially, we set JBCD := ∅. For
each Ji ∈ J0, we introduce a job J′

i of processing time v′
i = vi/s0 because in a speed-s0

schedule, Ji has to be processed for vi/s0 time units. The execution interval of J′
i is the

same as that of Ji, that is, r′
i = ri and d′

i = di. We add J′
i to JBCD. In order to ensure

that the jobs J′
i are not processed in the intervals I1, . . . , Il, we introduce a job J(Ij) for

each such interval Ij = [tj, t′
j), 1 ≤ j ≤ l. Job J(Ij) has a processing time of t′

j − tj , which
is the length of Ij , a release time of tj and a deadline of t′

j . These jobs J(Ij), 1 ≤ j ≤ l,
are also added to JBCD. Using algorithm BCD, we compute an optimal schedule for
JBCD, assuming that a wake-up operation of the processor incurs L = C/P(0) energy
units. Loosely speaking, we normalize energy by P(0) so that, whenever the processor
is active and even executes jobs, 1 energy unit per time unit is consumed. Let SBCD
be the schedule obtained. In a final step, we modify SBCD: Whenever a job of JBCD is
processed, the speed is set to s0. Whenever the processor is active but idle, the speed
is s = 0. The wake-up operations are as specified in SBCD but incur a cost of C. In the
intervals I1, . . . , Il, we replace the jobs J(Ij), 1 ≤ l ≤ l, by YDS schedules for the jobs
of JYDS. This schedule is output by our algorithm. A pseudocode description is given in
Figure 6. Obviously, ALG(s0) has polynomial running time.

THEOREM 3.1. Setting s0 such that P(s0)/s0 = 4
3 P(scrit)/scrit, ALG(s0) achieves an

approximation factor of 4/3, for general convex power functions.

One remark is in order here: Algorithm BCD assumes that time is slotted and all
processing times, release times and deadlines are integers. This is no loss of generality if
problem instances, in a computer, are encoded using rational numbers. If one insists on
working with real numbers, in Phase 2 of ALG(s0), BCD can compute optimal solutions
to an arbitrary precision. In this case, our algorithm achieves an approximation factor
of 4/3 + ε, for any ε > 0. In the following, we assume that the input is encoded using
rational numbers.
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Fig. 6. The algorithm ALG(s0), where 0 ≤ s0 ≤ scrit.

3.2. Analysis of the Algorithm

We analyze ALG(s0) and prove Theorem 3.1. Let J = {J1, . . . , Jn} denote the set of
all jobs to be scheduled. Furthermore, let SA be the schedule constructed by ALG(s0).
Let S be any feasible schedule for J and J ′ ⊆ J be any subset of the jobs. We say
that S schedules J ′ according to YDS if, considering the time intervals in which the
jobs of J ′ are processed, the corresponding partial schedule is identical to the schedule
constructed by YDS for J ′, assuming that YDS starts from an initially empty schedule.
In Phase 1, ALG(s0) schedules job set JYDS ⊆ J according to YDS. Let J ′

YDS ⊆ JYDS
be the set of jobs that are processed at speeds higher than scrit. Irani et al. [2007]
showed that there exists an optimal schedule for the entire job set J that schedules
J ′

YDS according to YDS. In the following, let SOPT be such an optimal schedule.
For the further analysis, we transform SOPT into a schedule S0 that will allow us to

compare SA to SOPT. Schedule S0 schedules JYDS according to YDS and all other jobs
at speed s0. The schedule has the specific feature that its idle energy does not increase
too much, compared to that of SOPT. We will prove

E(SA) ≤ E(S0) ≤ 4
3

E(SOPT), (1)

which establishes Theorem 3.1. The first part of (1) holds for any s0 with 0 ≤ s0 ≤ scrit.
The second part holds for our choice of s0, as specified in Theorem 3.1.

Transforming the optimal schedule: We describe the algorithm Trans that per-
forms the transformation, for any 0 ≤ s0 ≤ scrit. The transformation consists of four
steps. As an overview, in a first step, the processor speeds of jobs of J0 that are origi-
nally executed at speeds lower than s0 are raised to s0. Then, in a second step, JYDS is
scheduled in I1, . . . , Il using YDS. In the third and fourth steps, all jobs of J0 are sched-
uled at speed exactly s0. In the original schedule, some jobs of J0 might be processed at
speeds higher than s0. In order to obtain a feasible schedule, in which all jobs of J0 are
processed using speed s0, we may have to resort to times where the processor is idle or
in the sleep state in SOPT.

Step 1: Given SOPT, Trans first raises processor speeds to s0. For any job Ji ∈ J0 =
J \ JYDS that is processed at a speed smaller than s0, the speed is raised to s0. The
processing of Ji can be done at any time in the intervals reserved for Ji in SOPT. This
speed increase generates processor idle times. At those times, the processor remains in
the active state. The state transitions of the schedule are not affected. Let S0,1 be the
schedule obtained after this step. We will use this schedule later when analyzing idle
energy.
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Step 2: Next, Trans schedules JYDS according to YDS in the intervals I1, . . . , Il. At
the beginning of an interval Ij = [tj, t′

j), a wake-up operation has to be performed if the
processor is originally in the sleep state at time tj . Similarly, a power-down operation
is performed at the end of the interval if the processor is in the sleep state at time t′

j .
The major part of the transformation consists in scheduling the jobs of J0 at the re-

maining times. In the scheduling horizon [rmin, dmax), let I′
1, . . . , I′

l′ be the time intervals
not covered by I1, . . . , Il, that is, the sequences I1, . . . , Il and I′

1, . . . , I′
l′ form a partition

of [rmin, dmax). Within I′
1, . . . , I′

l′ , let T1, . . . , Tm be the sequence of intervals in which the
processor resides in the active state in SOPT and hence in S0,1. The processor may or
may not execute jobs at those times. Each Tk is a subinterval of some I′

j , for 1 ≤ k ≤ m
and 1 ≤ j ≤ l′. An interval I′

j may contain several Tk if the processor transitions to the
sleep state in between. An interval I′

j does not contain any Tk if the processor resides
in the sleep state throughout I′

j . In order to schedule J0 in I′
1, . . . , I′

l′ , Trans performs
two passes over the schedule. The speed used for any job of J0 is equal to s0. In the first
pass (Step 3), Trans assigns as much work as possible to the intervals T1, . . . , Tm. In a
second pass (Step 4), Trans constructs a feasible schedule for J0, resorting to times at
which the processor is in the sleep state. Jobs are always scheduled according to the
Earliest Deadline First (EDF) discipline.

Step 3: In the first pass, Trans sweeps over the intervals T1, . . . , Tm and constructs
an EDF schedule for J0, that is, at any time it schedules a job having the earliest
deadline among the available unfinished jobs in J0. A job Ji is available at any time t
if t ∈ [ri, di).

The schedule obtained after the first pass might not be feasible in that some jobs
are not processed completely. The intervals T1, . . . , Tm might be too short to execute all
jobs of J0 at speed s0, considering in particular the times when the jobs are available
for processing. In the second pass Trans schedules the remaining work. After the first
pass, let pi be the total time for which Ji ∈ J0 is processed in the current schedule. Let
δi = vi/s0 − pi be the remaining time for which Ji has to be executed.

Step 4: In the second pass, Trans considers the jobs of J0 in nondecreasing order of
deadlines; ties may be broken arbitrarily. For each Ji ∈ J0 with δi > 0, the following
steps are executed. In the current schedule, let τi, where τi < di, be the last point of
time such that [τi, di) contains exactly δi time units at which the processor does not
execute jobs. In a correctness proof given in Lemma 3.2, we will show that τi is well
defined. We distinguish two cases.

Case (a): If the processor resides in the sleep state throughout [τi, di), then we
can easily modify the schedule. Let τ ′

i , where τ ′
i < τi, be the most recent time when

the processor transitions to the sleep state. We will prove τ ′
i ≥ ri. Trans modifies the

schedule by processing Ji in the interval [τ ′
i , τ

′
i + δi); then the processor is transitioned

to the sleep state.
Case (b): If the processor resides in the active state at any time in [τi, di), then

Trans constructs an EDF schedule for the remaining work of Ji and the work of J0
currently processed in [τi, di). Formally, Trans constructs a small problem instance W,
representing the work of J0 to be done in [τi, di). For each job Jk ∈ J0 that is currently
processed for p′

k time units in [τi, di), Trans adds a job J′
k of processing volume v′

k = p′
ks0

to W. The job’s release time and deadline are the same as those of Jk, that is, r′
k = rk

and d′
k = dk. If W already contains a job J′

i associated with Ji, we increase v′
i by δis0.

Otherwise, a new job J′
i of processing volume v′

i = δis0, release time r′
i = ri, and deadline

d′
i = di is added to W. Trans then generates an EDF schedule for W in [τi, di), ignoring

the intervals I1, . . . , Il that may be contained in [τi, di). Again, in Lemma 3.2, we will
show that this is always possible. In the modified schedule, the processor executes
jobs throughout [τi, di) and any wake-up operations performed within the interval are
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Fig. 7. The algorithm Trans.

canceled. However, a wake-up operation must be performed at time τi if the processor
is in the sleep state immediately before time τi. Similarly, the processor powers down
at the end of [τi, di) if the processor is in the sleep state at time di.

A summary of Trans is given in Figure 7. The following lemma shows correctness of
Trans.

LEMMA 3.2. Trans constructs a feasible schedule S0 in which all jobs of J are com-
pletely scheduled.

PROOF. All jobs of JYDS are feasibly and completely scheduled in I1, . . . , Il. Therefore,
it suffices to show that Trans constructs a feasible and complete schedule for J0. For
ease of exposition, we now black out I1, . . . , Il in the scheduling horizon because these
intervals are not used in Steps 3 and 4 of Trans. Similarly, we ignore JYDS. In the
condensed time horizon, consisting of I′

1, . . . , I′
l′ , let ri and di denote the release time

and deadline of any Ji ∈ J0. By the definition of Phase 1 of ALG(s0), in the condensed
time horizon, any interval [t, t′) has a density of at most s0.

We number the jobs of J0 in nondecreasing order of deadlines; ties are broken arbi-
trarily. In this sequence, let Ji be the i-th job, 1 ≤ i ≤ |J0|. In the following, a schedule
S is referred to as an EDF schedule for J0, if at any time when the processor executes
a job, it processes one having the earliest deadline among the available unfinished jobs
of J0. Schedule S might not process each job Ji ∈ J0 completely. We will prove that the
following statement holds, for any i = 1, . . . , |J0|.

(S) Let S be an EDF schedule for J0 in which the first i − 1 jobs of J0 are processed
completely. Then the execution of Step 4 of Trans for Ji yields an EDF schedule
for J0 in which the first i jobs of J0 are processed completely.

Lemma 3.2 then follows because the schedule constructed in Step 3 of Trans is an EDF
schedule for J0.

Let S be an EDF schedule for J0 in which the first i−1 jobs are processed completely.
Consider job Ji with its deadline di. If Ji is processed for pi = vi/s0 time units, we are
done. So suppose pi < vi/s0, and let δi = vi/s0 − pi be the additional time for which Ji
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has to be executed. We first prove the following fact: Let I = [τ, di) be any time interval
in S containing strictly less than δi time units at which the processor does not execute
jobs. Then, in this interval I, the processor does not execute any jobs having a deadline
after di.

We prove the fact by contradiction. Suppose that in I the processor executes a job
whose deadline is after di. The processing of such a job cannot end at time di because S
is an EDF schedule and Ji is not completely processed at time di. Let τ ′, with τ < τ ′ < di,
be the earliest time such that in [τ ′, di) the processor does not execute jobs having a
deadline after di. All the jobs Jk, with k = i, executed in [τ ′, di) have a release time of at
least τ ′ because immediately before time τ ′ a job with a deadline after di is processed.
By the same argument, Ji has a release time of at least τ ′. The total processing volume
of Ji and the jobs Jk, with k = i, executed in [τ ′, di) is at least (p + δi)s0, where p is the
total time for which jobs are executed in [τ ′, di). This is the case because (i) since the
jobs Ji and Jk with k = i executed in [τ ′, di) are executed for p time units at speed s0,
they must have a volume of p · s0, and (ii) Ji has an additional volume of at least δi · s0
that is not processed. However, the latter interval has a length strictly smaller than
p+δi because I contains less than δi time units at which the processor does not execute
any jobs. Hence, the density of [τ ′, di) is strictly higher than s0, which contradicts the
fact that in the scheduling horizon all intervals have a density of at most s0.

Using the this fact, we can easily show that the value τi in Step 4 of Trans is well
defined. Let r0 be the earliest release time among the jobs of J0. If in the schedule
S interval [r0, di) contained less than δi time units at which the processor does not
execute any jobs, then by the previous fact, only jobs with a deadline of at most di can
be processed in [r0, di). The total processing volume of Ji and the jobs Jk, with k = i,
executed in [r0, di) is at least (p + δi)s0, where p is the total time for which jobs are
executed in [r0, di). We obtain again a contradiction to the fact that the density of [r0, di)
is at most s0. Hence, [r0, di) contains at least δi time units at which the processor does
not execute jobs and a value τi, with τi ≥ r0, as specified in Step 4 of Trans can be
feasibly chosen.

Next, we analyze the schedule modifications of Step 4. First, suppose that the pro-
cessor is in the sleep state throughout [τi, di), considering the full time horizon given
by I1, . . . , Il and I′

1, . . . , I′
l′ . Then, let τ ′

i , with τ ′
i < τi be the most recent time when the

processor transitions to the sleep state. The processor is in the active state immedi-
ately before τ ′

i . Time τ ′
i satisfies τ ′

i ≥ ri because in the original schedule SOPT job Ji
was completely scheduled and the processor must be in the active state at some time
while Ji is available for processing. We note that τ ′

i might coincide with the end of an
interval Ij , 1 ≤ j ≤ l. Job Ji is now scheduled for the missing δi time units in [τ ′

i , τ
′
i +δi).

The modified schedule is an EDF schedule for J0 because no further job is processed
in [τ ′

i + δi, di).
Next, suppose that the processor is in the active state at some time in [τi, di), taking

again into account the full time horizon. We show that when Step 4 of Trans is executed
for Ji, all the work of W is completely scheduled in [τi, di). Recall that S is the schedule
prior to the modification. By the choice of τi, the processor does not execute any jobs at
time τi in S. Choose an ε > 0 such that the processor does not execute jobs in [τi, τi + ε).
Interval [τi + ε, di) contains less than δi time units at which the processor does not
execute jobs. By the aforementioned fact, in [τi + ε, di) and hence in [τi, di), only jobs
with a deadline of at most di are executed.

Suppose that the execution of Step 4 yielded a schedule S ′ in which [τi, di) does not
allocate all the work of W. Then there must exist a time in that interval at which no job
is executed. Let τ , with τ > τi, be the earliest time such that the processor executes jobs
throughout [τ, di) in S ′. We argue that τ < di, that is, some job is scheduled until time
di: Trans schedules the work W in [τi, di) according to EDF. Hence, at any time when
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jobs with a deadline smaller than di can be processed, they have preference over the
jobs with a deadline equal to di. Thus, if some work of W is not allocated to [τi, di), the
work corresponds to jobs having a deadline of di. These jobs can be feasibly scheduled
immediately before time di. Hence, τ < di. Consider the jobs J′

k of W that are executed
in [τ, di) in S ′ or are not completely allocated to [τi, di). All these jobs have a release
time of at least τ because the processor does not execute any job immediately before
time τ . Moreover, these jobs have a deadline of at most di. It follows that the total
processing volume of these jobs J′

k and hence of the original jobs Jk is greater than
(di − τ )s0, contradicting the fact that [τ, di) has a density of at most s0.

It remains to show that S ′ is an EDF schedule for J0. In the interval [r0, τi), schedule
S and hence S ′ are EDF schedules for J0. In [τi, di), both schedules execute jobs having
a deadline of at most di. In [di, d0), where d0 denotes the maximum deadline of any job
of J0, jobs with a deadline greater than di are scheduled. Schedule S ′ represents an
EDF schedule for J0 because (a) Trans schedules W according to EDF and (b) in [di, d0)
schedule S and hence S ′ process the respective workload according to EDF.

Analyzing energy: We first analyze idle energy. In Step 1 of Trans, when speeds are
raised to s0, the idle energy increases. We will analyze this increase later. Lemmas 3.3
and 3.4 imply that Steps 2–4 of Trans do not cause a further increase. Recall that S0,1
denotes the schedule obtained after Step 1 of Trans. Lemmas 3.3, 3.4, and 3.5 hold for
any speed s0, with 0 ≤ s0 ≤ scrit.

Consider the schedule obtained after Step 3 of Trans, which we denote by S0,3.

LEMMA 3.3. It holds that Ei(S0,3) ≤ Ei(S0,1).

PROOF. In order to prove Ei(S0,3) ≤ Ei(S0,1), we transform S0,1 into S0,3 without
increasing the idle energy. Considering the scheduling horizon [rmin, dmax), we sweep
over the schedule S0,1 from left to right. At any time t, rmin ≤ t ≤ dmax, we maintain
a schedule St. To the left of t, that is, in [rmin, t), St is identical to S0,3. To the right of
t, in [t, dmax), the schedule still has to be transformed. During the transformation, we
maintain a buffer B that contains, for each job Ji ∈ J0, an entry (Ji, wi) representing
the amount of work that is not finished for Ji in St. We maintain the invariant that,
for any Ji ∈ J0, the processing volume finished for Ji in St plus wi is equal to vi. Jobs
of JYDS are always completely processed in the current schedule and hence need not
be represented in the buffer. Initially, at time t = rmin, B contains an entry (Ji, 0), for
all Ji ∈ J0. While sweeping over S0,1, we consider the full intervals I1, . . . , Il. In the
sequence I′

1, . . . , I′
l′ we only consider the intervals T1, . . . , Tm in which the processor

is active; times at which the processor is in the sleep state can be ignored. Time t is
always equal to the beginning of some interval Ij , 1 ≤ j ≤ l, or equal to some time in
an interval Tj , 1 ≤ j ≤ m. Initially, t is set to the beginning of I1 or T1, depending on
which of the two intervals occurs earlier in the scheduling horizon. The initial St is S0,1.

Suppose that we have already constructed a schedule St up to time t, rmin ≤ t ≤ dmax.
If t is equal to the starting point of an interval Ij = [tj, t′

j), then we modify the schedule
as follows: For any job Ji ∈ J0 that is processed for δ time units using speed s in Ij ,
we increase wi by δs in the buffer B and remove the respective parts of Ji from the
schedule. Then we schedule the jobs of JYDS to be processed in Ij according to YDS.
Recall that every job in JYDS is completely scheduled in exactly one interval Ij and
cannot be scheduled outside that interval. Next, we determine the smallest time t′,
where t′ ≥ t′

j , such that t′ is the beginning of an interval Ik, where 1 ≤ k ≤ l, or of an
interval Tk, where 1 ≤ k ≤ m. Time t is set to t′ and the modified schedule is the new
St. If no such time t′ exists, the transformation is complete.

Next, assume that t is a time in some interval Tj , 1 ≤ j ≤ m. Determine the largest
δ, δ > 0, such that [t, t + δ) ⊆ Tj and the following two properties hold: (1) In S0,3
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throughout [t, t + δ) the processor executes the same job Ji or does not execute any job
at all. (2) In St throughout [t, t + δ), the processor executes the same job Jk or does not
execute any job at all. Hence, in [t, t + δ), each of the two schedules executes either
no job or exactly one job. As we consider an interval Tj , the jobs Ji and Jk possibly
executed in [t, t + δ) belong to J0. We have to consider various cases.

Suppose that in S0,3 a job Ji is executed while in St no job is executed, considering the
interval [t, t + δ). Determine the largest ε, where 0 ≤ ε ≤ δ, such that εs0 ≤ wi. In the
buffer B, we reduce Ji ’s residual processing volume by εs0. Moreover, in St, determine
the next ε′ ≥ 0 time units in which a processing volume of (δ − ε)s0 is finished for Ji.
We have ε′ ≤ δ because in St at any time t′ > t, jobs of J0 are processed at a speed of
at least s0. In these ε′ time units, we cancel the processing of Ji and set the processor
speed to 0. Finally, in [t, t + δ), we process δs0 units of Ji using speed s0. These schedule
modifications do not increase the idle energy because ε′ ≤ δ. We obtain a feasible
schedule that is equal to S0,3 in [rmin, t + δ).

Next, suppose that in St a job Jk is executed throughout [t, t+δ). If the used speed s is
higher than s0, then we reduce the speed to s0 and increase wk by (s − s0)δ in the buffer
entry (Jk, wk). If Jk = Ji, we are done. If Jk = Ji, further modifications are required.
Again, we determine the largest ε, where 0 ≤ ε ≤ δ, such that εs0 ≤ wi and the next ε′
time units in St in which a work volume of (δ − ε)s0 is finished for Ji. Again, 0 ≤ ε′ ≤ δ.
We modify St by processing Jk using speed s0 at these ε′ time units. This can be feasibly
done because S0,3 is an EDF schedule and hence di ≤ dk. The remaining work of Jk is
assigned to B by increasing wk by (δ − ε′)s0. In [t, t + δ), we schedule Ji at speed s0. To
this end, we take εs0 processing units from the buffer B and hence reduce wi ’s value
by the corresponding amount. Again, the idle energy of the modified schedule has not
increased.

Finally, suppose that in S0,3 no job is executed in the interval [t, t + δ). This implies
that among the available jobs, which can be feasibly scheduled in this interval, all jobs
are finished. As St is identical to S0,3 in [rmin, t), St cannot process any job in [t, t + δ)
either.

In all the previous cases, we obtain a (modified) schedule St that is identical to S0,3 in
[rmin, t+ δ). The idle energy has not increased. If t+ δ is still within the current interval
Tj , we set t′ = t + δ. Otherwise we determine the smallest t′ with t′ > t + δ such that t′
is the beginning of some Ij , where 1 ≤ j ≤ l, or of some Tj , where 1 ≤ j ≤ m. We set
t = t′ and the current, modified schedule is the new St. Again, if no such t′ exits, the
transformation is complete.

The aforementioned schedule modifications are repeated until the transformation is
finally finished.

LEMMA 3.4. It holds that Ei(S0) ≤ Ei(S0,1).

PROOF. In Lemma 3.3, we have already shown that Ei(S0,3) ≤ Ei(S0,1). It, therefore,
remains to prove that the scheduling operations of Step 4 do not increase the idle
energy: Consider a job Ji for which Step 4 is executed. If the processor is in the sleep
state throughout [τi, di), then Trans determines the most recent time τ ′

i at which the
processor transitions to the sleep state. Job Ji is scheduled in the interval [τ ′

i , τ
′
i + δi),

then the processor powers down. Neither the number of wake-up operations nor the
total time for which the processor is in the active state but does not process jobs increase.
If the processor is in the active state at some time in [τi, di), then the EDF schedule
generated for this interval does not increase the idle energy, either. The processor might
have to transition to the active state at time τi. However, this cancels the subsequent
wake-up operation needed to transition the processor to the active state in [τi, di).
Throughout [τi, di), the processor executes jobs and no idle energy is incurred.
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The next lemma establishes the first part of inequality (1).

LEMMA 3.5. It holds that E(SA) ≤ E(S0).

PROOF. Given our job instance J = {J1, . . . Jn}, let C be the class of schedules that
process JYDS according to YDS and all jobs of J0 = J \ JYDS using speed s0. Both
SA and S0 belong to C. We prove that among the schedules of C, SA minimizes energy
consumption. The lemma then follows.

Consider any S ∈ C. Let E(JYDS) be the energy incurred in processing JYDS in the
intervals I1, . . . , Il. In these intervals, no idle energy is incurred. Any job Ji ∈ J0 is
processed for vi/s0 time units using speed s0. Let T be the total time for which the
processor is in the active state but does not process any jobs in S. Furthermore, let k
be the number of wake-up operations performed in S. We have

E(S) = E(JYDS) +
∑
Ji∈J0

vi

s0
P(s0) + TP(0) + kC (2)

= E(JYDS) −
l∑

j=1

|Ij |P(0) +
∑
Ji∈J0

vi

s0
(P(s0) − P(0)) (3)

+ P(0)

⎛
⎝ l∑

j=1

|Ij | +
∑
Ji∈J0

vi

s0
+ T + kC

P(0)

⎞
⎠ . (4)

Let E1 be the sum given in (3). Furthermore, let E2 be the expression given in the
brackets of (4). Then E1 is a fixed overhead incurred by any schedule of C, and E2 is
the cost of a schedule SBCD that can be obtained from S for a job instance JBCD defined
as follows: For any Ji ∈ J0, we add a job J′

i of processing time v′
i = vi/s0, release time

r′
i = ri and deadline d′

i = di to JBCD. For each interval Ij = [tj, t′
j), where 1 ≤ j ≤ l, we

add a job J(Ij) of processing time t′
j − tj , release time tj, and deadline t′

j to JBCD. In
order to process JBCD, we are given a uniform speed processor. Whenever the processor
is in the active state, one cost unit is consumed per time unit. A transition from the
sleep state to the active state costs C/P(0).

Given S, we can easily derive a feasible schedule SBCD for JBCD that incurs a cost of
E2. In the intervals I1, . . . , Il, the YDS schedules are replaced by J(I1), . . . , J(Il). The
processor speed is set to a uniform speed of 1. A wake-up operation incurs a cost of
C/P(0). Conversely, a feasible schedule SBCD forJBCD incurring cost E2 can be converted
into a schedule S for J consuming an energy of E(S) as specified in (2). In SBCD, we
replace the jobs J(I1), . . . , J(Il) by YDS schedules for JYDS. At all other times where
the processor executes jobs, the speed is set to s0. A wake-up operation incurs C energy
units.

Therefore, the problem of finding a minimum energy schedule in C is equivalent to
computing a minimum cost schedule for JBCD. In Phase 2, algorithm ALG(s0) solves
exactly this problem. We conclude that SA is a minimum energy schedule in C.

We proceed to prove the second part of inequality (1). Given a schedule S and a job
Ji ∈ J , let Ep(S, Ji) denote the processing energy incurred in executing Ji in S. Let J0,1
be the subset of the jobs of J0 processed at a speed smaller than s0 in SOPT. Moreover, let
J0,2 = J0 \ J0,1 be the set of remaining jobs of J0. We present two Lemmas 3.6 and 3.7
that hold for speeds s0 satisfying P(s0)/s0 = cP(scrit)/scrit, where c is a constant specified
in the lemmas. As we shall see in Lemma 3.7, c = 4/3 gives the best approximation
ratio.
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LEMMA 3.6. Let s0 be a speed such that P(s0)/s0 = cP(scrit)/scrit, where c ≥ 1. Then for
any Ji ∈ JYDS ∪ J0,2, it holds that Ep(S0, Ji) ≤ c · Ep(SOPT, Ji).

PROOF. Recall that J ′
YDS, with J ′

YDS ⊆ JYDS, is the set of jobs that, using algorithm
YDS, are processed at a speed higher than scrit. We chose SOPT such that J ′

YDS is
scheduled according to YDS. Moreover, S0 schedules J ′

YDS according to YDS. Hence,
any job Ji ∈ J ′

YDS is processed at the same speed in S0 and SOPT. We obtain Ep(S0, Ji) =
Ep(SOPT, Ji), for any Ji ∈ J ′

YDS.
Next, consider any Ji ∈ JYDS \ J ′

YDS ∪ J0,2. In general, if Ji is processed at
speed s, then the incurred processing energy is vi

s P(s). Speed scrit minimizes P(s)/s.
Hence Ep(SOPT, Ji) ≥ vi

scrit
P(scrit). In S0, job Ji is processed at a speed si that is at

least s0. Moreover, since Ji /∈ J ′
YDS, we have si ≤ scrit. Since scrit is the smallest

speed minimizing P(s)/s, we have P(s0)/s0 ≥ P(si)/si ≥ P(scrit)/scrit. By the choice
of s0, it holds that P(s0)/s0 = c · P(scrit)/scrit. Hence, P(si)/si ≤ c · P(scrit)/scrit and
Ep(S0, Ji) ≤ c · Ep(SOPT, Ji).

We next turn to the set J0,1. For any Ji ∈ J0,1, algorithm Trans raises the speed to
s0. This speed increase causes idle energy in S0,1 and hence in S0 because the processor
remains in the active state at all the times at which Ji was originally scheduled. For
any Ji ∈ J0,1, let Ei(Ji) be the idle energy incurred. The next lemma implies that,
loosely speaking, we can charge Ei(Ji) to Ep(S0, Ji).

LEMMA 3.7. Let s0 be a speed such that P(s0)/s0 = c · P(scrit)/scrit, where c ≥ 4/3. Then
for any Ji ∈ J0,1, it holds that Ep(S0, Ji) + Ei(Ji) ≤ c · Ep(SOPT, Ji).

PROOF. Consider an arbitrary job Ji ∈ J0,1. Let T be the total time for which Ji
is processed at a speed si, where si < s0, in SOPT. Moreover, let T ′ be the total time
for which Ji is executed at speed s0 in S0,1 and S0. We have T ′ < T . Choose λ, where
0 ≤ λ ≤ 1, such that T ′ = λT . By raising the processor speed to s0, an idle energy of
(T − T ′)P(0) = (1 −λ)TP(0) is incurred. In S0, the processing energy for Ji is T ′ P(s0) =
λTP(s0). Hence, Ep(S0, Ji) + Ei(Ji) = λTP(s0) + (1 −λ)TP(0) = T (P(0) +λ(P(s0) − P(0))).
The processing volume of Ji is T ′s0 = λT s0, and hence Ji is executed at speed λs0 in
SOPT. We obtain Ep(SOPT, Ji) = TP(λs0). We substitute λs0 by s, which implies λ = s/s0.
Let

R(s) = Ep(S0, Ji) + Ei(Ji)
Ep(SOPT, Ji)

=
P(0) + s

s0
(P(s0) − P(0))

P(s)
. (5)

In order to establish the lemma, we have to show that the ratio R(s) is upper bounded
by c, for all s with 0 ≤ s ≤ s0. Consider the ratio in (5). The numerator is a line, which
we denote by f (s), passing through (0, P(0)) and (s0, P(s0)). We have to compare f (s) to
P(s) in the interval [0, s0] (see Figure 8).

Let g(s) be the line passing through (s0, P(s0)) and (scrit, P(scrit)). We will use this line
to lower bound P(s). Line g(s) has a slope of (P(scrit)− P(s0))/(scrit −s0), which is smaller
than P(scrit)/scrit. This holds true because (P(scrit) − P(s0))/(scrit − s0) < P(scrit)/scrit is
equivalent to P(scrit)/scrit < P(s0)/s0. The latter inequality is satisfied as scrit is the
smallest value minimizing P(s)/s. The line connecting (0, 0) and (scrit, P(scrit)) has a
slope of P(scrit)/scrit. Since g has a smaller slope, we have g(0) ≥ 0.

Moreover, we have f (s0) = P(s0) = g(s0). The power function P is convex, and hence
the slope of f cannot be greater than the slope of g. Since f (0) = P(0), it follows
g(0) ≤ P(0). We conclude 0 ≤ g(0) ≤ P(0). Choose a constant a, where 0 ≤ a ≤ 1, such
that g(0) = aP(0). Then g(s), which passes through (scrit, P(scrit)), is defined as follows.

g(s) = aP(0) + P(scrit) − aP(0)
scrit

s.

ACM Transactions on Algorithms, Vol. 10, No. 2, Article 9, Publication date: February 2014.



Race to Idle: New Algorithms for Speed Scaling with a Sleep State 9:19

Fig. 8. Lines f (s) and g(s).

It holds that g(s0) = P(s0). By the choice of s0, we have that P(s0) = cP(scrit)s0/scrit. We
solve the equation g(s0) = cP(scrit)s0/scrit for s0. Moreover, let s1 be the value satisfying
g(s1) = P(0). Then

s0 = aP(0)scrit

(c − 1)P(scrit) + aP(0)
, and s1 = (1 − a)P(0)scrit

P(scrit) − aP(0)
.

Line g passes through (s0, P(s0)) and (scrit, P(scrit)). Hence, by convexity of P, we have
g(s) ≤ P(s), for all s with 0 ≤ s ≤ s0. Moreover, P(s) ≥ P(0), for all s ≥ 0. Let P ′(s) be
the following function:

P ′(s) =
{

P(0), 0 ≤ s < s1,
g(s), s1 ≤ s ≤ s0.

Then P ′(s) ≤ P(s) for all 0 ≤ s ≤ s0, and instead of upper bounding R(s) by c we will
show that R′(s) = (P(0)+ s

s0
(P(s0)− P(0)))/P ′(s) is upper bounded by c, for all 0 ≤ s ≤ s0.

Line f (s) is again the numerator of R′(s). The function f is increasing and f (s) ≥ P(0),
for all s ≥ 0. In the interval [0, s1), we have P ′(s) = P(0). Hence, for any s ∈ [0, s1),
it holds that R′(s) ≤ f (s1)/P(0) = f (s1)/g(s1). In the interval [s1, s0], we have R′(s) =
f (s)/g(s). Both functions f and g are increasing. It holds that f (s1) ≥ P(0) = g(s1) and
f (s0) = P(s0) = g(s0). It follows R′(s) ≥ R′(s′), for all s1 ≤ s < s′ ≤ s0. Hence, R′(s) is
maximized for s = s1, and it suffices to show that R′(s1) = f (s1)/g(s1) = f (s1)/P(0) is
upper bounded by c. We have

f (s1) = P(0) + s1

s0
(P(s0) − P(0))

= P(0) +
(

c · P(scrit)
scrit

− P(0)
s0

)
s1

= P(0) +
(

c · P(scrit)
scrit

− (c − 1)P(scrit) + aP(0)
ascrit

)
· (1 − a)P(0)scrit

P(scrit) − aP(0)

= P(0) +
(

(ca − c + 1)P(scrit) − aP(0)
P(scrit) − aP(0)

)
· 1 − a

a
· P(0).
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The second equation holds because P(s0)/s0 = cP(scrit)/scrit. The third equation is
obtained by plugging in the values of s0 and s1. Hence,

R′(s1) = 1 +
(

(ca − c + 1)P(scrit) − aP(0)
P(scrit) − aP(0)

)
1 − a

a
,

and it remains to show that the aforementioned term of R′(s1) is upper bounded by
c. This is equivalent to proving −(c(a − 1/2)2 + 3c/4 − 1)P(scrit) + (ca2 − a)P(0) ≤ 0.
We have −(c(a − 1/2)2 + 3c/4 − 1) ≤ 0, for any 0 ≤ a ≤ 1 and c ≥ 4/3. Furthermore,
P(scrit) ≥ P(0) > 0. We conclude, as desired, −(c(a − 1/2)2 + 3c/4 − 1)P(scrit) + (ca2 −
a)P(0) ≤ (ca − c + 1 − a)P(0) = (c − 1)(a − 1)P(0) ≤ 0.

Finally, we need the next lemma in order to show the second part of inequality (1).

LEMMA 3.8. Assume that there exists some c so that (i) for any Ji ∈ J0,1, Ep(S0, Ji) +
Ei(Ji) ≤ c · Ep(SOPT, Ji), and (ii) for any Ji ∈ JYDS ∪J0,2, Ep(S0, Ji) ≤ c · Ep(S0, Ji). Then,
it holds that E(S0) ≤ c · E(SOPT).

PROOF. Consider again the schedule S0,1 obtained after Step 1 of Trans. Com-
pared to SOPT, the idle energy increases by

∑
Ji∈J0,1

Ei(Ji). Hence, Ei(S0,1) = Ei(SOPT) +∑
Ji∈J0,1

Ei(Ji) and by Lemma 3.4 Ei(S0) ≤ Ei(SOPT) + ∑
Ji∈J0,1

Ei(Ji).
We have

E(S0) = Ep(S0) + Ei(S0)

=
∑

Ji∈JYDS∪J0,2

Ep(S0, Ji) +
∑

Ji∈J0,1

Ep(S0, Ji) + Ei(S0)

≤
∑

Ji∈JYDS∪J0,2

c · Ep(SOPT, Ji) +
∑

Ji∈J0,1

(Ep(S0, Ji) + Ei(Ji)) + Ei(SOPT)

≤
∑

Ji∈JYDS∪J0,2

c · Ep(SOPT, Ji) +
∑

Ji∈J0,1

c · Ep(SOPT, Ji) + Ei(SOPT)

= c · Ep(SOPT) + Ei(SOPT) ≤ c · E(SOPT).

Recall that we chose s0 such that P(s0)/s0 = 4
3 P(scrit)/scrit. Combining Lemmas 3.6,

3.7, and 3.8 for c = 4
3 proves the second part of inequality (1).

4. POWER FUNCTIONS P(s) = βsα + γ

We develop an improved approximation guarantee for the family of power functions
P(s) = βsα + γ , where α > 1 and β, γ > 0 are constants. The critical speed is scrit =
α
√

γ /(β(α − 1)). Let sα = c
c+1 scrit, where c = 117/20 = 5.85, and ALG(sα) be the algorithm

obtained from ALG(s0) be setting s0 to sα.

THEOREM 4.1. ALG(sα) achieves an approximation factor of (c + 1)/c = 137/117 <
1.171.

The proof of Theorem 4.1 proceeds along the same lines as the proof of Theorem 3.1,
and we have to replace Lemmas 3.6 and 3.7.

LEMMA 4.2. Let sα = c
c+1 scrit. Then for any Ji ∈ JYDS ∪ J0,2, it holds that Ep(S0, Ji) ≤

c+1
c Ep(SOPT, Ji).

PROOF. For any Ji ∈ J ′
YDS, it holds that Ep(S0, Ji) = Ep(SOPT, Ji). Recall that sα =

c/(c + 1)scrit. This implies P(sα)/sα = c+1
c P( c

c+1 scrit)/scrit ≤ c+1
c P(scrit)/scrit. Hence, for
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any Ji ∈ JYDS \ J ′
YDS ∪ J0,2, we have Ep(S0, Ji) ≤ vi P(sα)/sα ≤ c+1

c vi P(scrit)/scrit ≤
c+1

c Ep(SOPT, Ji).

We need the following technical lemma. The proof requires the Lambert W function
whose defining equation, for any number x, is x = W(x)eW (x). The function is double-
valued in the interval (−1/e, 0), and W−1(x) and W0(x) denote the lower and upper
branches, respectively.

LEMMA 4.3. The inequality

λ
( c

c+1

)α + α − 1

λα
( c

c+1

)α + α − 1
≤ c + 1

c
,

holds for c = 117/20, all α > 1 and all 0 ≤ λ ≤ 1.

PROOF. For simplicity, set x = c+1
c . We then have to show λ( 1

x )α+α−1

λα( 1
x )α+α−1

≤ x, which is

equivalent to

λ(1/x)α + (α − 1) ≤ xλα(1/x)α + x(α − 1)
⇔ (xλα − λ)(1/x)α + (x − 1)(α − 1) ≥ 0.

Set f (λ) = (xλα −λ)(1/x)α +(x−1)(α−1). It follows that f ′(λ) = αλα−1(1/x)α−1 −(1/x)α

and f ′′(λ) = α(α − 1)λα−2(1/x)α−1, which is nonnegative. This implies that f is convex
and gets minimized for λ satisfying αλα−1 = 1

x . Hence,

λ =
(

1
xα

) 1
α−1

.

Thus, it is sufficient to show that[
x

(
1

xα

)α/(α−1)

−
(

1
xα

)1/(α−1)
] (

1
x

)α

+ (x − 1)(α − 1) ≥ 0,

which is equivalent to (
1

xα

) 1
α−1

(
1
α

− 1
) (

1
x

)α

+ (x − 1)(α − 1) ≥ 0

⇔
(

1
xα

) 1
α−1 1

α

(
1
x

)α

≤ x − 1.

By setting x back to c+1
c , we obtain(

c
(c + 1)α

) 1
α−1

(
c

c + 1

)α

≤ 1
c

· α

⇔ cα+1+ 1
α−1 ≤ α1+ 1

α−1 · (c + 1)α+ 1
α−1

⇔ cα2 ≤ αα · (c + 1)α
2−α+1

⇔ ln(c + 1) − ln(c) + 1 − α

α2 ln(c + 1) + 1
α

ln(α) ≥ 0.

Let g(α) = ln(c + 1) − ln(c) + 1−α

α2 ln(c + 1) + 1
α

ln(α). We wish to show that g(α) ≥ 0. It
suffices to show that g(α) ≥ 0 for the extrema of g in (1,+∞). These are attained when
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α → 1+, α → +∞, and at the points where g′(α) = 0. For the first two, we have

lim
α→1+

g(a) = lim
α→+∞ g(a) = ln(c + 1) − ln(c),

which is strictly positive for any c > 0. We next determine the roots of g′(α) = 0. It
holds that

g′(α) = α − 2
α3 ln(c + 1) − ln(α)

α2 + 1
α2 .

Thus,

g′(α) = 0
⇔ (α − 2) ln(c + 1) − α ln(α) + α = 0

⇔ ln
(

(c + 1)α−2

αα

)
= −α

⇔ (c + 1)αeα = αα(c + 1)2

⇔ 1
α

(c + 1)e = (c + 1)
2
α .

By setting t = − 2
α
, we obtain

−c + 1
2

et = (c + 1)−t ⇔ t(c + 1)t = − 2
(c + 1)e

and t =
W

(
− 2 ln(c+1)

(c+1)e

)
ln(c + 1)

,

giving the following roots for g′(α) = 0:

α1 = − 2 ln(c + 1)

W0

(
− 2 ln(c+1)

(c+1)e

) , and α2 = − 2 ln(c + 1)

W−1

(
− 2 ln(c+1)

(c+1)e

) .

By evaluating g at α1 and α2, with c = 117/20, we get 0.2186875389 and 0.0000352487,
respectively. Since both values are nonnegative, the proof is complete.

LEMMA 4.4. Let sα = c
c+1 scrit. Then for any Ji ∈ J0,1, it holds that Ep(S0, Ji) + Ei(Ji) ≤

c+1
c Ep(SOPT, Ji).

PROOF. Let Ji be any job in J0,1. Let T be the total time for which Ji is executed
using a speed of si < sα in SOPT. Let T ′ < T be the total time for which the job is
processed at speed sα in S0,1 and S0. Choose λ, with 0 ≤ λ ≤ 1, such that T ′ = λT . We
have sα = c

c+1 scrit and scrit = α
√

γ /(β(α − 1)). Therefore, P(sα) = ( c
c+1 )αγ /(α − 1) + γ and

Ep(S0, Ji) + Ei(Ji) ≤ λTP(sα) + (1 − λ)TP(0) = T (λ( c
c+1 )αγ /(α − 1) + γ ). In SOPT job Ji is

processed at speed λsα, and thus Ep(SOPT, Ji) = TP(λsα) = T (λα( c
c+1 )αγ /(α − 1) + γ ). By

Lemma 4.3, the ratio

Ep(S0, Ji) + Ei(Ji)
Ep(SOPT, Ji)

≤ λ( c
c+1 )αγ /(α − 1) + γ

λα( c
c+1 )αγ /(α − 1) + γ

= λ( c
c+1 )α + α − 1

λα( c
c+1 )α + α − 1

is upper bounded by (c + 1)/c.

Using Lemmas 4.2 and 4.4 as well as Lemma 3.8 of Section 3.2, we can show E(S0) ≤
c+1

c E(SOPT).
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5. REVISITING SCRIT-SCHEDULES

Let ALG(scrit) be the algorithm ALG(s0), where s0 is set to scrit.

THEOREM 5.1. ALG(scrit) achieves an approximation factor of 2, for general convex
power functions.

THEOREM 5.2. ALG(scrit) achieves an approximation factor of eW−1(−e−1− 1
e )/

(eW−1(−e−1− 1
e ) + 1), for power functions P(s) = βsα + γ , where α > 1 and β, γ > 0.

The ratio given in Theorem 5.2 is smaller than 1.211. In order to prove Theorems 5.1
and 5.2, we have to replace Lemmas 3.6 and 3.7. For s0 = scrit, the set JYDS \J ′

YDS of jobs
scheduled according to YDS but at speeds of at most scrit is empty. Hence, JYDS = J ′

YDS.
Let SOPT denote again an optimal schedule in which the jobs of JYDS are scheduled
according to YDS. Schedule S0 is obtained from SOPT by applying Trans and satisfies
the additional property that all jobs of J0 are executed at speed scrit. Any job Ji ∈ JYDS
is processed at the same speed in S0 and SOPT. Hence, Ep(S0, Ji) = Ep(SOPT, Ji), for any
Ji ∈ JYDS, and this fact replaces Lemma 3.6. For the proof of Theorem 5.1, we show the
following lemma.

LEMMA 5.3. For any Ji ∈ J0, it holds that Ep(S0, Ji) + Ei(Ji) ≤ 2Ep(SOPT, Ji).

PROOF. Let Ji ∈ J0 be an arbitrary job. As for the processing energy, Ep(S0, Ji) =
vi P(scrit)/scrit ≤ Ep(SOPT, Ji) because scrit is the speed minimizing P(s)/s. Suppose that
Ji is processed for T time units in SOPT. If Ji ’s speed is raised to scrit in Step 1 of Trans,
the extra idle energy incurred cannot be higher than TP(0), which in turn is a lower
bound on the processing energy incurred for Ji in SOPT. Hence, Ei(Ji) ≤ Ep(SOPT, Ji),
and the lemma follows.

Using Lemmas 5.3 and 3.8, we can prove the desired inequality E(S0) ≤ 2E(SOPT). This
concludes the proof of Theorem 5.1. For the proof of Theorem 5.2, we need another
technical lemma.

LEMMA 5.4. The inequality

λ + α − 1
λα + α − 1

≤ eW−1(−e−1−1/e)
eW−1(−e−1−1/e) + 1

holds for all α > 1 and 0 ≤ λ ≤ 1. Furthermore, there exist α = α′ > 1 and λ = λ′ ∈ [0, 1]
such that equality holds.

PROOF. Assume that (λ + α − 1)/(λα + α − 1) ≤ x. We will show that the smallest
possible x satisfying this inequality is eW(−e−1−1/e)/(eW(−e−1−1/e)+1). Inequality (λ+
α − 1)/(λα + α − 1) ≤ x is equivalent to

xλα + x(α − 1) − λ − (α − 1) ≥ 0.

Setting f (λ) = xλα − λ + (x − 1)(α − 1), we have f ′(λ) = xαλα−1 − 1 and f ′′(λ) ≥ 0. It
follows that f (λ) is minimized for λ = ( 1

xα
)

1
α−1 , and it suffices to find the minimal x so

that

x
(

1
xα

) α
α−1

−
(

1
xα

) 1
α−1

+ (x − 1)(α − 1) ≥ 0
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holds for every α > 1. The latter inequality is equivalent to(
1
α

− 1
) (

1
xα

) 1
α−1

+ (x − 1)(α − 1) ≥ 0

⇔ (α − 1)

⎛
⎝x − 1 −

( 1
xα

) 1
α−1

α

⎞
⎠ ≥ 0

⇔ x − 1 −
( 1

xα

) 1
α−1

α
≥ 0

⇔ xαα(x − 1)α−1 ≥ 1.

Substituting x by c+1
c , the last inequality becomes (c + 1)αα ≥ cα, and we seek the

largest possible c so that it is satisfied. We have

(c + 1)αα ≥ cα ⇔ ln(c + 1) + α(ln α − ln c) ≥ 0.

Let g(α) = ln(c + 1) + α(ln α − ln c). By derivating, we obtain g′(α) = ln α − ln c + 1 and
g′′(α) = 1/α ≥ 0, which implies that g is minimized for α = c/e. We, therefore, seek the
largest possible c such that ln(c + 1) ≥ c/e holds.

For the largest possible c, equality holds, i.e., ln(c + 1) = c/e. By setting c = −et − 1
the equality becomes tet = −e−1−1/e. It follows that t = W(−e−1−1/e), and c = −et − 1 =
−eW−1(−e−1−1/e) − 1, which leads to

x = c + 1
c

= eW−1(−e−1−1/e)
eW−1(−e−1−1/e) + 1

,

concluding the proof for the first statement of the lemma. Note that we are only in-
terested in the lower branch of the W function, since W0(−e−1− 1

e ) = W0(− 1
e e− 1

e ) = − 1
e

resulting in c = 0.
For the second statement, it is sufficient to show that the extrema α′ and λ′, by which

we substituted α and λ in the earlier analysis, are greater than 1 and in the range
[0, 1], respectively. For α, we have

α′ = c
e

= −eW−1(−e−1−1/e) − 1
e

> 1.

The last step holds because W−1 is a monotonically decreasing function, which implies
that W−1(−e−1− 1

e ) < W−1(−e−1− 1
e − e−2− 1

e ) = W−1((−1 − 1
e )e−1− 1

e ) = −1 − 1
e . As for λ, we

first prove that λ′ ≤ 1. It suffices to show that xα ≥ 1 and hence that x ≥ 1. We thus
have to show

eW−1(−e−1−1/e)
eW−1(−e−1−1/e) + 1

≥ 1. (6)

The last inequality is satisfied: We already observed that W−1(−e−1− 1
e ) < −1− 1

e , which
is less than −1/e, and (6) becomes eW−1(−e−1−1/e) ≤ eW−1(−e−1−1/e) + 1. It remains to
prove that λ′ ≥ 0, which is again equivalent to showing that W−1(−e−1− 1

e ) ≤ − 1
e .

LEMMA 5.5. For any Ji ∈ J0, it holds that Ep(S0, Ji) + Ei(Ji) ≤ cEp(SOPT, Ji), where
c = eW−1(−e−1−1/e)/(eW−1(−e−1−1/e) + 1).

PROOF. Let Ji ∈ J0 be an arbitrary job. If Ji is processed at speed scrit in SOPT, there is
nothing to show, so assume that Ji is processed at a speed smaller than scrit. Let T and
T ′ be the total times for which Ji is executed in SOPT and S0, respectively. Choose λ, with
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0 ≤ λ ≤ 1, such that T ′ = λT . We have scrit = α
√

γ /(β(α − 1)) and P(scrit) = γ /(α−1)+γ .
Hence, Ep(S0, Ji) + Ei(Ji) ≤ λTP(scrit) + (1 − λ)TP(0) = T (λγ/(α − 1) + γ ). In SOPT, job
Ji is processed at speed λscrit, and thus Ep(SOPT, Ji) = TP(λscrit) = T (λαγ /(α − 1) + γ ).
By Lemma 5.4, as desired,

Ep(S0, Ji) + Ei(Ji)
Ep(SOPT, Ji)

≤ λγ/(α − 1) + γ

λαγ /(α − 1) + γ
= λ + α − 1

λα + α − 1
≤ eW−1(−e−1−1/e)

eW−1(−e−1−1/e) + 1
.

Using Lemmas 5.5 and 3.8, we can show E(S0) ≤ cE(SOPT), where c =
eW−1(−e−1−1/e)/(eW−1(−e−1−1/e) + 1). Note that, here, J0,2 = ∅ and that Ep(S0, Ji) =
Ep(SOPT, Ji) ≤ c · Ep(SOPT, Ji), for Ji ∈ JYDS. This establishes Theorem 5.2. For power
functions P(s) = βsα + γ , we prove a matching lower bound on the performance of
scrit-schedules.

THEOREM 5.6. Let A be an algorithm that computes scrit-schedules for any
job instance. Then A does not achieve an approximation factor smaller than
eW−1(−e−1− 1

e )/(eW−1(−e−1− 1
e ) + 1), for power functions P(s) = βsα + γ , where α > 1

and β, γ > 0.

PROOF. Let ε, 0 < ε < 1, be a constant. We show that A cannot achieve an approxi-
mation factor smaller than

eW−1(−e−1− 1
e )

eW−1(−e−1− 1
e ) + 1

− ε.

Fix a power function P(s) = βsα′ + γ , where α′ is defined as in Lemma 5.4. Then
scrit = α′√

γ /(β(α′ − 1)). We specify a job sequence that is similar to the one in the proof
of Theorem 2.3. Let again L > 0 be an arbitrary constant. We define three jobs J1, J2,
and J3: Jobs J1 and J3 both have a processing volume of v1 = v3 = δLscrit and can
be executed in intervals I1 = [0, δL) and I3 = [(1 + δ)L, (1 + 2δ)L), respectively. Job
J2 has a processing volume of v2 = λ′Lscrit, where λ′ is as defined in Lemma 5.4, and
can be executed in I2 = [δL, (1 + δ)L). The energy consumed by a wake-up operation is
C = LP(0) = γ L.

As in the proof of Theorem 2.3, we first assume that the processor is in the active state
at time 0. We analyze the energy of algorithm A and an optimal solution. We assume
that A processes all the three jobs at speed scrit. If a job is processed at a higher speed,
we can reduce its speed to scrit. This speed reduction reduces the processing energy of
the job and does not increase the idle energy of the schedule. Hence, jobs J1 and J3
consume an energy of δLP(scrit) each. Job J2 is processed for v2/scrit = λ′L time units
in I2, resulting in an energy consumption of λ′LP(scrit) = λ′L(γ /(α′ − 1) + γ ). During
the (1 − λ′)L time units remaining in I2 the processor is idle. Since C > (1 − λ′)LP(0),
the processor should stay in the active state for this amount of time. It follows that the
energy consumption of A is at least

2δLP(scrit) + λ′LP(scrit) + (1 − λ′)LP(0) > L
(

λ′γ
α′ − 1

+ γ

)
.

An optimal solution will also process J1 and J3 at speed scrit. However, J2 can be
executed during the whole interval I2 at speed λ′scrit, yielding an energy consumption
of LP(λ′scrit). It follows that the energy consumption of an optimal solution is upper
bounded by

2δLP(scrit) + LP(λ′scrit) = L
(

2δP(scrit) + (λ′)α
′ γ

α′ − 1
+ γ

)
.
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Now assume that the processor is in the sleep state at time 0. We repeat the previous
job sequence k times, where the value of k will be determined later. For each repetition i,
1 ≤ i ≤ k, three jobs are introduced. The job Ji1, Ji2, and Ji3 have processing volumes of
vi j = v j , for 1 ≤ j ≤ 3, and respective execution intervals [ti, ti +δL),[ti +δL, ti + (1+δ)L)
and [ti + (1 + δ)L, ti + (1 + 2δ)L), where ti = (i − 1)(1 + 2δ)L. For this job sequence, the
ratio of the energy consumed by A to that of an optimal solution is at least

kL
(
λ′ γ

α′−1 + γ
)

C + kL
(
2δP(scrit) + (λ′)α′ γ

α′−1 + γ
) .

Set X = λ′
α′−1 + 1 and Y = (λ′)α′

α′−1 + 1. Moreover, set ε′ = εY 2/X. With these settings, let
δ = ε′γ /(4P(scrit)) and k = �2/ε′�. Then 2δP(scrit) ≤ ε′γ /2 and C = kC/k ≤ kCε′/2 =
kLγ ε′/2. Hence, the aforementioned ratio is at least

λ′
α′−1 + 1

(λ′)α′

α′−1 + 1 + ε′
≥

λ′
α′−1 + 1
(λ′)α′

α′−1 + 1
− ε = λ′ + α′ − 1

(λ′)α′ + α′ − 1
− ε.

The first inequality holds because X/(Y + ε′) ≥ X/Y − ε by our choices of X, Y, and ε′.
The theorem now follows from Lemma 5.4.

6. CONCLUSIONS

Speed scaling with sleep state is a timely energy conservation problem as the static
energy consumed by modern microprocessors in the active state is comparable to the
dynamic energy needed for processing. In this article, we have developed offline al-
gorithms achieving small approximation guarantees. All the algorithms use only one
speed level, in addition to those of YDS. This is a positive feature because speed ad-
justments incur overhead in practice. On the other hand, the use of several, that is,
a constant number of, speeds below scrit will most likely lead to a PTAS. The develop-
ment of such an approximation scheme is the major open problem for speed scaling
with sleep state. At this point, it is not clear how to construct good schedules using
several low speeds.

APPENDIX

PROOF OF LEMMA 2.2 (⇐) Assume that A of IP admits a partition. We show how
to construct a feasible schedule for IS with an energy consumption of exactly 5(n +
1)εamax + nC + 1

2

∑n
i=1 li + B

2amax
. Let A′ be the respective subset in the solution of IP ,

and assume that |A′| = m. Schedule each job of J2 at a speed of scrit. This fills the
respective execution interval of the job. The total energy consumed by all the jobs of
J2 is (n + 1)εP(scrit) = 5(n + 1)εamax. Next, in the gaps gi such that ai ∈ A′, execute J0
and the respective jobs of J1. We will show that this can be done in a balanced way so
that all the total processing volume gets executed at a constant speed of amax. We first
observe that any job of J1 alone has a density less than amax in its execution interval.
It therefore remains to show that the total density of the jobs Ji ∈ J1, with ai ∈ A′, and
J0, restricted to the gaps gi with ai ∈ A′, is amax. This density is∑

i:ai∈A′
li + B

∑
i:ai∈A′

Li
=

amax
∑

i:ai∈A′
Li − B+ B

∑
i:ai∈A′

Li
= amax,

as claimed. Finally, we run the jobs Ji ∈ J1, with ai /∈ A′, at a speed of scrit = 10amax
starting directly at their release time. We then transition the processor to the sleep state
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for the rest of the respective gap. This is feasible because (Liamax − ai)/(10amax) < Li.
Therefore, the energy expended for J0, the jobs in J1 and the wake-up operations is
equal to

P(amax) ·
∑

i:ai∈A′
Li + P(scrit) ·

∑
i:ai ∈A′

li
scrit

+ (n − m)C

= amax

∑
i:ai∈A′

Li + 1
2

∑
i:ai ∈A′

li + (n − m)C.

It, therefore, suffices to show that

mC + 1
2

∑
i:ai∈A′

li + B
2amax

= amax

∑
i:ai∈A′

Li,

which is equivalent to

mamax + B
2amax

− B
2

= 1
2

amax

∑
i:ai∈A′

Li.

The latter equation holds true because amax
∑

i:ai∈A′ Li = 2amaxm− B+ B/amax.
(⇒) Assume now that no solution to IP exists. That is, for all subsets A′ ⊆ A, it holds

that
∑

ai∈A′ ai = ∑
ai∈A\A′ ai. We will show that an optimal schedule for IS consumes

energy strictly greater than 5(n+1)εamax+nC+ 1
2

∑n
i=1 li+ B

2amax
. We first argue that there

exists an optimal schedule that executes the jobs of J2 during their whole execution
intervals at a speed of scrit. So let S be any optimal schedule. If no portion of J0 is
processed during the execution intervals of jobs of J2, there is nothing to show. If a
portion of J0 is executed in such an interval I, then we can modify S without increasing
the total energy consumption: In I, an average speed higher than scrit must be used.
In the schedule there must exist a gap gi in which (a) the processor transitions to the
sleep state or (b) an average speed less than scrit is used. The latter property (b) holds
because the average speed required to execute the jobs of J2 and J0 in the gaps gi,
1 ≤ i ≤ n, is smaller than amax < scrit.

In case (a), we execute a portion of J0 originally scheduled in I at speed scrit in gi.
This can be done immediately before the processor transitions to the sleep state. By the
convexity of P(s), the total energy does not increase. In case (b), we process a portion of
J0 in gi by slightly raising the processor speed of s < scrit up to a value of at most scrit.
Again, the energy consumption of the schedule does not increase, due to the convexity
of the power function. These schedule modifications can be repeated until the jobs of
J2 are processed exclusively in their execution intervals.

In the following, let S be an optimal schedule in which the jobs of J2 are executed at
speed scrit in their execution intervals, incurring an energy of 5(n+ 1)εamax. It remains
to show that the energy consumed by the wake-up operations, the processing of J0 and
of the jobs in J1 is strictly greater than nC + 1

2

∑n
i=1 li + B

2amax
.

Assume that S executes bi units of J0’s processing volume in gap gi, 1 ≤ i ≤ n. It
holds that

∑n
i=1 bi = B. For each gap, there is a lower bound threshold on the processing

volume required so that it is worthwhile not to transition the processor to the sleep
state in between. We next argue that, for gap gi, this threshold is li + ai/amax. First,
consider a load of exactly li + ai/amax. The energy consumed in gi if jobs are processed
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at speed scrit and a transition to the sleep state is made equals

C + 1
2

(
li + ai

amax

)
= 1

2
2amax + 1

2
amax Li − 1

2
ai + 1

2
ai

amax
= amax Li.

If no transition to the sleep state is made, by the convexity of P(s), it is optimal to exe-
cute the respective processing volume at uniform speed. Hence, the energy consumption
is

Li · P
(

li + ai/amax

Li

)
= Li · P

(
amax − ai − ai/amax

Li

)
= amax Li,

which is the same value. Next, consider a processing volume of li + ai/amax − δ, for any
δ > 0. If a transition to the sleep state is made, the consumed energy is amax Li − δ/2. If
the processor does not transition to the sleep state, the incurred energy is amax Li, which
is greater than the former expression. In other words, for processing volume strictly
less than li + ai/amax, it is preferable to transition to the sleep state. Finally, consider
a processing volume of li + ai/amax + δ, for any δ > 0. If the processor transitions to
the sleep state, the expended energy is amax Li + δ/2. If a transition to the sleep state
is made, it remains to distinguish two cases. If ai − ai/amax − δ ≥ 0, then the incurred
energy is amax Li. Otherwise, the energy is amax Li + (4/9)(δ − ai + ai/amax). In both cases,
the incurred energy is smaller than amax Li +δ/2. This implies that when the processing
volume is strictly greater than li + ai/amax, then it is advantageous to remain in the
active state.

Let A′ ⊆ A contain the ai ’s such that bi ≥ ai/amax, and let again |A′| = m. We assume
that the processing volume handled in the gi ’s, with ai ∈ A′, is executed at a uniform
speed equal to ∑

i:ai∈A′(li + bi)∑
i:ai∈A′ Li

.

This might not be feasible, but again, due to the convexity of the power function, the
resulting energy consumption is in no case higher than the energy consumption of the
original schedule S. Hence, in the gaps gi with ai ∈ A′, the energy consumption is at
least

∑
i:ai∈A′

Li · P

(∑
i:ai∈A′(li + bi)∑

i:ai∈A′ Li

)
=

∑
i:ai∈A′

Li · P

(
amax +

∑
i:ai∈A′ bi − ∑

ai∈A′ ai∑
i:ai∈A′ Li

)
. (7)

In the gaps gi with ai /∈ A′, the processor executes jobs at speed scrit and transitions to
the sleep state. In these gaps, the total energy consumption is

(n − m)C + 1
2

∑
i:ai ∈A′

(li + bi). (8)

We have to prove that the total energy consumption of (7) and (8) is strictly greater
than nC + 1

2

∑n
i=1 li + B

2amax
. Thus, we have to show that

1
2

n∑
i=1

li + B
2amax

< −mC + 1
2

∑
i:ai ∈A′

li + 1
2

∑
i:ai ∈A′

bi +
∑

i:ai∈A′
Li · P

(
amax +

∑
i:ai∈A′ bi − ∑

ai∈A′ ai∑
i:ai∈A′ Li

)
,
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which is equivalent to

mC + 1
2

∑
i:ai∈A′

li + B
2amax

<
1
2

∑
i:ai ∈A′

bi +
∑

i:ai∈A′
Li · P

(
amax +

∑
i:ai∈A′ bi − ∑

ai∈A′ ai∑
i:ai∈A′ Li

)
.

We consider two distinct cases.
Case (1): Suppose that

∑
i:ai∈A′ bi ≤ ∑

ai∈A′ ai.
Since in this case the argument of P in the aforementioned inequality is at most amax,
we have to show

mamax + 1
2

∑
i:ai∈A′

li + B
2amax

<
1
2

∑
i:ai ∈A′

bi + amax

∑
i:ai∈A′

Li.

Substituting li, we get

mamax − 1
2

∑
ai∈A′

ai + B
2amax

<
1
2

∑
i:ai ∈A′

bi + 1
2

amax

∑
i:ai∈A′

Li.

We then substitute Li and have

−1
2

∑
ai∈A′

ai + B
2amax

<
1
2

∑
i:ai ∈A′

bi − 1
2

amax − 1
amax

∑
ai∈A′

ai,

which is equivalent to
B

2amax
<

1
2

∑
i:ai ∈A′

bi + 1
2amax

∑
ai∈A′

ai.

If
∑

i:ai ∈A′ bi = 0, then
∑

i:ai∈A′ bi = B. Since by our assumption
∑

ai∈A′ ai = B, it must be
the case that B = ∑

i:ai∈A′ bi <
∑

ai∈A′ ai and the inequality follows.
If, on the other hand,

∑
i:ai ∈A′ bi = X > 0, we have

∑
i:ai∈A′ bi = B− X ≤ ∑

ai∈A′ ai, and
we wish to show

B
2amax

<
1
2

X + B
2amax

− X
2amax

.

This holds for any X > 0 and amax ≥ 2.
Case (2): Suppose that

∑
i:ai∈A′ bi >

∑
ai∈A′ ai.

Let
∑

i:ai ∈A′ bi = X ≥ 0. It follows that
∑

i:ai∈A′ bi = B− X >
∑

ai∈A′ ai. We wish to show
that

mC + 1
2

amax

∑
i:ai∈A′

Li − 1
2

∑
ai∈A′

ai + B
2amax

<
1
2

X +
∑

i:ai∈A′
Li · P

⎛
⎜⎝amax +

B− ∑
ai∈A′

ai∑
i:ai∈A′

Li
− X∑

i:ai∈A′
Li

⎞
⎟⎠ .

Since (4/9)s + (5/9)amax ≤ 2s − 15amax for any s ≥ 10amax, and the argument of P in the
aforementioned inequality is strictly greater than amax, we may use the middle branch
of the power function. The inequality then becomes

mC + 1
2

amax

∑
i:ai∈A′

Li − 1
2

∑
ai∈A′

ai + B
2amax

<
1
2

X + amax

∑
i:ai∈A′

Li + 4
9

⎛
⎝B−

∑
ai∈A′

ai

⎞
⎠ − 4

9
X,
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which is equivalent to

mC − 1
2

∑
ai∈A′

ai + B
2amax

<
1
18

X + 1
2

amax

∑
i:ai∈A′

Li + 4
9

⎛
⎝B−

∑
ai∈A′

ai

⎞
⎠ .

By substituting Li, we get

−1
2

∑
ai∈A′

ai + B
2amax

<
1

18
X − 1

2

∑
ai∈A′

ai +
∑

ai∈A′ ai

2amax
+ 4

9

⎛
⎝B−

∑
ai∈A′

ai

⎞
⎠ ,

or equivalently,

B
2amax

<
1

18
X +

∑
ai∈A′ ai

2amax
+ 4

9

⎛
⎝B−

∑
ai∈A′

ai

⎞
⎠ .

It suffices to show that B/(2amax) < (
∑

ai∈A′ ai)/(2amax) + (4/9)(B − ∑
ai∈A′ ai). This is

equivalent to (B − ∑
ai∈A′ ai)/(2amax) < (4/9)(B − ∑

ai∈A′ ai), and the latter inequality
holds for amax ≥ 2. The proof is complete.
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