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Abstract— The energy consumption of computer systems is 

generally an important design aspect. There are several well-

known solutions for reducing the power consumption of 

processors, among others ARM big.LITTLE architecture. In 

Linux systems, CPUFreq and CPUIdle governors are traditionally 

responsible for managing CPU consumption and performance. 

Our primary goal has been to develop a user-mode CPUFreq 

governor alternative that provides a suitable framework for the 

development of governors utilizing the features of big.LITTLE 

architectures. 
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I. INTRODUCTION 

The energy consumption of computer systems is generally 
an important design aspect. When computer systems operate 
decoupled from the mains, the amount of energy used directly 
determines the operating time of the system. However, energy 
consumption is not a negligible issue even in case of mains-
operated systems due to cost and environment reasons. 

There are several well-known solutions for reducing the 
power consumption of processors, and with the development of 
the ARM big.LITTLE architecture the designers are given yet 
another tool. The Odroid-XU3 single-chip computer is an 
appropriate tool for experimenting, it is based on a Samsung 
Exynos 5422 big.LITTLE processor and is equipped with 
sensors to measure dynamic power consumption per channel 
[1]. 

In Linux systems, CPUFreq and CPUIdle governors are 
traditionally responsible for managing CPU consumption and 
performance. Our primary goal has been to create a user-mode 
CPUFreq governor alternative that provides a suitable 
framework for the development of governors that utilize the 
features of big.LITTLE architectures. Our purpose has been also 
to develop a testing framework for different load patterns while 
gaining as much data from the system as possible, and then to 
evaluate the test results. 

Our paper is organized as follows: In the introduction section  
we provide a state-of-the-art overview and explain our 
motivations. In Section II. we discuss the performance 
characteristics of recent CPUs. Section III. Details our proposed 
solution for a big.LITTLE schedulers. Section IV. describes our 

testing environment and shows first results. Finally, we 
summarize our conclusions. 

II. PERFORMANCE OF COMPUTER SYSTEMS 

A. Elements of Power Consuption 

The total power consumption of the system is the sum of the 
static and dynamic power consumption: 

𝑃𝑡𝑜𝑡𝑎𝑙 =  𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐    (1) 

For CMOS circuits, the use of dynamic energy is an essential 
part of energy consumption, which is associated with switching 
transistors [4] as expression (2) shows, where C is the parasitic 
capacity of the transistors: 

𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ∝  
1

2
× 𝐶 × 𝑈2   (2) 

Performance depends on the number of switches per unit of 
time, which is a function of the system clock frequency: 

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ∝  
1

2
× 𝐶 × 𝑈2 × 𝑓  (3) 

While dynamic performance is associated with switching 
transistors, static power consumption occurs independently of 
system activity, as a result of leakage currents on 
semiconductors. Static power consumption is a function of 
supply voltage, the manufacturing technology used and ambient 
temperature 

Dynamic power consumption is the power used during 
active device operation. it is not affected by the ambient 
temperature. 

B. Common Optimization Options 

The following optimization options are mentioned in the 
literature [4]: 

• Clock gating: Recent processors suspend clocking of the 
inactive modules (e.g., the floating point unit), thereby 
saving dynamic power. This solution however, does not 
eliminate static power consumption. Clock gating was 
introduced in the second half on the 90’s (e.g. in the FP 
module of DEC Alpha 21264 in 1996) and since then it 
became ubiquitous.  

• Power gating: With “power gating" , the affected circuit 
unit (full unit, e.g., an idle core) is disconnected from 
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the power, so both its dynamic and static consumption 
are eliminated. In the case of power gating, the status of 
the unit is lost, i.e. it has to be saved previously. The 
usage of power gating begun around 2010.. 

• Dynamic Voltage Frequency Scaling (DVFS) is a 
widely used option to reduce power. With DVFS the 
operating system determines the required performance 
per thread, selects the appropriate clock frequency and 
core voltage, communicates these requirements to the 
power control unit (PCU) that will set the requested 
clock rate and core voltage. DVFS was introduced in the 
early 2000s (AMD: 2000, Intel: 2003, IBM: 2004) but 
Samsung started its use only in 2012 (in its Exynos 4 
CPUs). 

• Adaptive Voltage and Frequency Scaling (AVFS): It is 
an improvement of DVFS, which dynamically 
determines the suitable voltage and frequency values in 
real time (based on a closed loop control) [5]. 

C. ARM big.LITTLE Architectrue 

ARM's big.LITTLE solution is a power-consumption 
optimization technology for mobile processors that incorporate 
both high-performance and high-efficiency CPU core clusters. 
For low system load the high-efficiency core cluster whereas for 
high system load the high-performance core cluster is operated, 
thereby delivering good average consumption and high 
performance [6].  

The figure below is based on measurements made on a 
Samsung Exynos 5422 processor and shows that at low 
performance requirements the power consumption of the 
"LITTLE" cores is much more favorable than that of the high-
performance cores. 

 

Fig. 1. Big.LITTLE CPU Performance vs Power Consumption 

The Samsung Exynos 5422 CPU is built up of the ARM 
Cortex-A7 (LITTLE) and Cortex-A15 (big) cores. While the 
Cortex-A7 is an in-order, non-symmetric dual-issue processor 
with a pipeline length of between 8-stages and 10-stages, 
Cortex-A15 is an out-of-order triple-issue processor with a 
pipeline length of between 15-stages and 24-stages [7]. 

The key point of the solution is an algorithm that, based on 
the load of the cores, ensures that the tasks (processes, threads) 
are moved between the cores of different characteristics (but 
each core is built on the same ISA). 

In the ARM's big.LITTLE solution, the high processing 
power and the low power cores are connected via a cache 
coherent switching network, so each core accesses the same 
shared memory. At application level, processor cores appear as 
a classical symmetric multiprocessor system, so there is no need 
to modify the application code running on them. Of course, 
optimization tasks already appear at the operating system level. 

The processor used in our work consists of ARM Cortex A15 
and Cortex A7 cores [8]. Both core types are ARM-v7A ISA 
compliant. 

D. Scheduling Schemes for Big.LITTLE Systems 

There are two aspects that determine the scheduling scheme, 
as follows: 

• the task granularity of migration and 

• the exclusive or inclusive use of big.LITTLE resources. 

Granularity determines whether the task is distributed at 
cluster or individual core level. Exclusivity shows whether the 
combined use of big and LITTLE resources is allowed, or not). 
Based on the above, there are four possible models: 

 

Fig. 2. Task Scheduling Possibilities in a big.LITTLE System [9] 

The solution we are dealt with belongs to the Global Task 
Scheduling (GTS model). Currently, several companies have 
developed a scheduling solution for this purpose, such as Linaro 
or Qualcomm, but this has not yet been done for the Samsung 
Exynos 5422 processor. 
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E. Big.LITTLE Scheduling Implementations 

ARM published their GTS solution in 2013. MediaTek 
introduced CorePilot 1.0 in 07/2013, Samsung its HMP in 
09/2013, Qualcomm its EAS in 02/2014. The first production 
version of ARM/Linaro EAS solution was revealed in 10/2016 
(on the Google Pixel Phone).   

F. The Energy-Aware Scheduling Project 

ARM and Linaro has started their Energy-Aware Scheduling 
(EAS) Project in 2013 [2]. 

The goal of the Energy-Aware Scheduling Project, is to 
overcome the duality found in Linux-based performance 
management subsystems (CPUFreq, CPUIdle subsystems), and 
to coordinate the scheduling and performance management.. In 
Linux, the CPUFreq and CPUIdle subsystems work 
independently of each other, and at times even against each 
other. Also, the scheduler does not consider any performance 
cost considerations when placing the tasks. 

 

Fig. 3. Linux subsystems responsible for CPU management [3] 

Although the consolidation of the scheduler and 
performance management subsystems seems to be a promising 
solution, there are several problems to be solved during its 
implementation. The key element of the problem is that the 
scheduler does not have any information about the processor 
architecture. 

The purpose of the Linaro EAS project is to transform 
subsystems in such a way that - for energy use –   subsystems 
provide a more efficient processor use [3]. 

G. Linux Governors 

In Linux, Task Scheduling and Energy Management have 
been implemented in three different, loosely related subsystems: 

• Scheduler 

• Cpuidle that manages the inactive state of the CPUs 

• Cpufreq that controls processor frequency. 

The Scheduler is a Unix-like short-time scheduler. There are 
different algorithms for different task types, the most commonly 
used algorithm is the CFS. 

The CPUIdle subsystem is responsible for managing 
inactive states. The governors belonging to this subsystem will 
become initialized by the idle cycle of the CPUs. The scheduler 
selects the idle cycle if the run queue for that processor is empty, 
i.e., when the processor is idle. 

The CPUFreq subsystem implements the DVFS 
functionality. The subsystem consists of a combination of 
architecture-independent and architecture-dependent parts [10]. 

III. THE PROPOSED SOLUTION 

A. Description of the CPUFreq Governor Solution 

Since the development of the kernel code is difficult, we 
have decided to implement the solution in "mixed" mode: The 
execution part of the code is running in kernel mode, but the 
decisions are taken by the code running in user mode. Our 
findings show that the code of the execution part is relatively 
stable; the essential part of the algorithm is transferred to the user 
mode code. This kind of approach is not a novelty in operating 
systems, since the so-called microkernels have been based on 
this concept [11]. 

B. Kernel Mode Functions 

In Kernel mode, codes are running that directly access kernel 
data and internal kernel functions. These are: 

• Processor Frequency Query and Adjustment (per 
cluster) 

• Processor Mode (Active / Passive) Query and Setup (per 
core) 

• Processor Load value Query (per core) 

Those kernel functions are accessible via the “sysfs” 
interface, which is a standardized interface on Linux systems 
between the kernel and the applications running in user mode. 

C. Application in User Mode 

The application running in user mode obtains the current 
load parameters at specified intervals through the sysfs interface 
and determines the target status that is set by kernel services 
calling via the sysfs interface. 

The essence of this solution is that the program with help of 
a translation table determines the current computing power 
(relative to the computing power of a LITTLE core running at 
200 MHz) for each run cycle based on the clock speed and load 
value of the processors, and then it determines the optimal 
setting of the CPU cores. The calculations are made by using 
tables prepared based on preliminary measurements. 
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Fig. 4. The proposed governor algorithm 

 

IV. THE PROPOSED TESTING ENVIRONMENT 

Testing is currently based on running a simple prime search 
routine: the test procedure must look for the first "n" prime 
numbers and calculate their sum. The test runs with 32-bit fixed-
point numbers. A framework designed to run a wide range of 
testing tasks is set up to run the prime search. 

A. Test Environment 

The test environment is modular. Parts of the test solution 
are the following: 

• Test Generator: generates tasks according to a 
predefined scenario (test script). 

• Worker Threads: the prime search code in a 
configurable number of instances. 

• Message queues (Test tasks and Test responses): 
provides a connection between the "tester" and 
"worker" components, which also serves as a load 
balancer function. 

• Monitor: during testing, the processor's performance 
characteristics (load values, CPU frequencies, core 
temperature, consumption) are collected by this 
component. 

• Logger: a component that records the running 
characteristics of testing per task (task characteristics, 
timestamps, etc.). 

 

 

 

Fig. 5. The Testing Environment  

B. Time Stamps 

During the execution of the test task one packet travels 
through (a packet is a task), which contains the task 
characteristics and the related timestamps (in µs resolution): 

• T1 indicates when a task has been added to the task 
queue, 

• T2 indicates when the task processing has begun with a 
"worker" component, 

• T3 indicates when the "worker" component has 
processed the task and placed it back in the response 
queue, 

• T4 indicates when the Logger has removed the task from 
the response queue. 

The tester configuration script consists of rows to be 
executed in succession, one line describing a test section. 
Features of a script are: 

• The task to be performed (how many primes to search) 

• Repetition time of the task (how often should the tester 
generate a new task) 

• Burst: how many tasks the tester should give at a given 
time 

• Cycle number: how many times the job is to be repeated 

There is also a “wait” command as a special test line which 
specifies the time spent in inactivity. 

C. Usage of Message Queues 

POSIX Message Queues play a key role in the solution: 

• They make operation asynchronous, e.g. the Logger 
cannot block Worker threads. 

• They function as Load balancer between worker threads 
(if a thread is free, prompts next job from the line) 

• They include an addressing mechanism to allow 
multiple test algorithms to run simultaneously (beyond 
prime search). 

Test tasks

Test responses

Worker
Threads

Test
Generator

Logger

Test 
config.

Test log

MonitorMonitor log

T1

T2

T3

T4
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D. Delay Caused by Message Queues 

The delay of the message queue-based solution has been 
investigated by a "NULL" test where the Worker thread 
immediately responds to the caller. The request has been 
repeated 10,000 times. Having performed the test with 
"Powersave" for minimum consumption and "Performance" 
governors with maximum computing power, the following 
turnaround times (TTR, calculated as T4-T1) have been added: 

  

  

Fig. 6. Turnaround times 

Based on the tests, it appears that the delay in handling 
message queues does not represent a significant amount of 
turnaround times in real tests. 

E. Processing Test Data 

Each run of the “Test Generator” program must be given a 
name (a string) that is also displayed in the “Logger” output.  We 
have also generated a unique numerical project identifier with 
two elements: 

• the timestamp of the start of the Test Generator with a 
second resolution, 

• the number of the line in the Test Configuration file 

In our work, we have count test cases in a counter type field. 
This counter restarts for each configuration file line. 

The "Logger" and "Monitor" components write the 
measurement results into an easy-to-use "CSV" file. Between 
the rows of the two files, a µs resolution timestamp creates a 
connection. The output files are further processed by using R 
language functions. 

The following diagrams show the primary processing of the 
execution results of a test run using the Interactive governor. 
(Fig. 7.) shows the characteristics of the test task: 

 

Fig. 7. Charasteristics of the Test task 

(Fig. 8.) shows the size of the test queue (Red), the average 
waiting time for queues (Black), and the average execution time 
(T3-T2) for the tasks (Blue). 

 

Fig. 8. Queue Load and execution time of tasks 

Fig. 9 shows the frequency and the power consumption of the 

big and LITTLE cores: 

 

Fig. 9. CPU cluster frequencies and power consumption 

F. Measuring Experience 

For initial measurements, we have iterated over the free 
parameters of the prepared governor and compared their results 
with the Linux standard governors: 
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Fig. 10. Energy consumption during the initial tests 

 

 

Fig. 11. Tesk task execution times during the initial tests 

G. Further experience 

The XU3 card's chiller cooling capacity does not allow long-
term operation of the "big" cores at maximum frequency. The 
CPU temperature rises rapidly, and the system limits itself (the 
built-in protection mechanism begins to reduce the clock speed). 
This constraint, however,  makes correct comparisons of test 
results impossible, so as a bypass solution, we have limited the 
maximum frequency of "big" cores at 2 GHz. At this frequency, 
the processor’s temperature remains within the normal range. 

Operation at a lower frequency results in energy savings, if: 

∫ 𝑝𝑖𝑡𝑖 > ∫ 𝑝𝑗𝑡𝑗   (4) 

Where "i" refers to the original settings and "j" to the 
operation after the frequency reduction. Based on the 
measurements, the XU3 card has a range where the above 
inequality is not met (see Fig. 1). The reason behind this is that 
the system has reduced the frequency but not the voltage. In the 
constant table used in the application, therefore, these work 
points have not been included. 

V. CONCLUSIONS AND DEVELOPMENT OPPORTUNITIES 

Based on the first results, it can be stated that the custom-
developed governor is worth of further refinement. The testing 
environment can efficiently be utilized for further testing as 
well. 

 

The presented solution can be further developed in the 

following areas: 

• Governor algorithms: developing new customization 
points in the algorithm 

• Testing: The current test procedure makes use of a 
single algorithm that is based on fixed point 
calculations. It would also be useful to run other 
algorithms as well which represent a different load class 
(e.g. floating point calculations). 
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