
Power consumption aware big.LITTLE scheduler for

Linux operating system

Zsolt Bringye

John von Neumann Faculty of

Informatics

Obudai Egyetem

Budapest, Hungary

bringye.zsolt@nik.uni-obuda.hu

Dezső Sima

John von Neumann Faculty of

Informatics

Obudai Egyetem

Budapest, Hungary

sima@uni-obuda.hu

Miklós Kozlovszky

BioTech Research Center, EKIK

Obudai Egyetem

Budapest, Hungary

kozlovszky.miklos@nik.uni-obuda.hu

Abstract— The energy consumption of computer systems is

generally an important design aspect. There are several well-

known solutions for reducing the power consumption of

processors, among others ARM big.LITTLE architecture. In

Linux systems, CPUFreq and CPUIdle governors are traditionally

responsible for managing CPU consumption and performance.

Our primary goal has been to develop a user-mode CPUFreq

governor alternative that provides a suitable framework for the

development of governors utilizing the features of big.LITTLE

architectures.

Keywords— Linux, big.LITTLE, energy efficiency

I. INTRODUCTION

The energy consumption of computer systems is generally
an important design aspect. When computer systems operate
decoupled from the mains, the amount of energy used directly
determines the operating time of the system. However, energy
consumption is not a negligible issue even in case of mains-
operated systems due to cost and environment reasons.

There are several well-known solutions for reducing the
power consumption of processors, and with the development of
the ARM big.LITTLE architecture the designers are given yet
another tool. The Odroid-XU3 single-chip computer is an
appropriate tool for experimenting, it is based on a Samsung
Exynos 5422 big.LITTLE processor and is equipped with
sensors to measure dynamic power consumption per channel
[1].

In Linux systems, CPUFreq and CPUIdle governors are
traditionally responsible for managing CPU consumption and
performance. Our primary goal has been to create a user-mode
CPUFreq governor alternative that provides a suitable
framework for the development of governors that utilize the
features of big.LITTLE architectures. Our purpose has been also
to develop a testing framework for different load patterns while
gaining as much data from the system as possible, and then to
evaluate the test results.

Our paper is organized as follows: In the introduction section
we provide a state-of-the-art overview and explain our
motivations. In Section II. we discuss the performance
characteristics of recent CPUs. Section III. Details our proposed
solution for a big.LITTLE schedulers. Section IV. describes our

testing environment and shows first results. Finally, we
summarize our conclusions.

II. PERFORMANCE OF COMPUTER SYSTEMS

A. Elements of Power Consuption

The total power consumption of the system is the sum of the
static and dynamic power consumption:

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (1)

For CMOS circuits, the use of dynamic energy is an essential
part of energy consumption, which is associated with switching
transistors [4] as expression (2) shows, where C is the parasitic
capacity of the transistors:

𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ∝
1

2
× 𝐶 × 𝑈2 (2)

Performance depends on the number of switches per unit of
time, which is a function of the system clock frequency:

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ∝
1

2
× 𝐶 × 𝑈2 × 𝑓 (3)

While dynamic performance is associated with switching
transistors, static power consumption occurs independently of
system activity, as a result of leakage currents on
semiconductors. Static power consumption is a function of
supply voltage, the manufacturing technology used and ambient
temperature

Dynamic power consumption is the power used during
active device operation. it is not affected by the ambient
temperature.

B. Common Optimization Options

The following optimization options are mentioned in the
literature [4]:

• Clock gating: Recent processors suspend clocking of the
inactive modules (e.g., the floating point unit), thereby
saving dynamic power. This solution however, does not
eliminate static power consumption. Clock gating was
introduced in the second half on the 90’s (e.g. in the FP
module of DEC Alpha 21264 in 1996) and since then it
became ubiquitous.

• Power gating: With “power gating" , the affected circuit
unit (full unit, e.g., an idle core) is disconnected from

IWOBI 2019 • IEEE International Work Conference on Bioinspired Intelligence • July 3-5, 2019 • Budapest, Hungary

978-1-7281-0968-8/19/$31.00 ©2019 IEEE 000139

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 21:57:51 UTC from IEEE Xplore. Restrictions apply.

the power, so both its dynamic and static consumption
are eliminated. In the case of power gating, the status of
the unit is lost, i.e. it has to be saved previously. The
usage of power gating begun around 2010..

• Dynamic Voltage Frequency Scaling (DVFS) is a
widely used option to reduce power. With DVFS the
operating system determines the required performance
per thread, selects the appropriate clock frequency and
core voltage, communicates these requirements to the
power control unit (PCU) that will set the requested
clock rate and core voltage. DVFS was introduced in the
early 2000s (AMD: 2000, Intel: 2003, IBM: 2004) but
Samsung started its use only in 2012 (in its Exynos 4
CPUs).

• Adaptive Voltage and Frequency Scaling (AVFS): It is
an improvement of DVFS, which dynamically
determines the suitable voltage and frequency values in
real time (based on a closed loop control) [5].

C. ARM big.LITTLE Architectrue

ARM's big.LITTLE solution is a power-consumption
optimization technology for mobile processors that incorporate
both high-performance and high-efficiency CPU core clusters.
For low system load the high-efficiency core cluster whereas for
high system load the high-performance core cluster is operated,
thereby delivering good average consumption and high
performance [6].

The figure below is based on measurements made on a
Samsung Exynos 5422 processor and shows that at low
performance requirements the power consumption of the
"LITTLE" cores is much more favorable than that of the high-
performance cores.

Fig. 1. Big.LITTLE CPU Performance vs Power Consumption

The Samsung Exynos 5422 CPU is built up of the ARM
Cortex-A7 (LITTLE) and Cortex-A15 (big) cores. While the
Cortex-A7 is an in-order, non-symmetric dual-issue processor
with a pipeline length of between 8-stages and 10-stages,
Cortex-A15 is an out-of-order triple-issue processor with a
pipeline length of between 15-stages and 24-stages [7].

The key point of the solution is an algorithm that, based on
the load of the cores, ensures that the tasks (processes, threads)
are moved between the cores of different characteristics (but
each core is built on the same ISA).

In the ARM's big.LITTLE solution, the high processing
power and the low power cores are connected via a cache
coherent switching network, so each core accesses the same
shared memory. At application level, processor cores appear as
a classical symmetric multiprocessor system, so there is no need
to modify the application code running on them. Of course,
optimization tasks already appear at the operating system level.

The processor used in our work consists of ARM Cortex A15
and Cortex A7 cores [8]. Both core types are ARM-v7A ISA
compliant.

D. Scheduling Schemes for Big.LITTLE Systems

There are two aspects that determine the scheduling scheme,
as follows:

• the task granularity of migration and

• the exclusive or inclusive use of big.LITTLE resources.

Granularity determines whether the task is distributed at
cluster or individual core level. Exclusivity shows whether the
combined use of big and LITTLE resources is allowed, or not).
Based on the above, there are four possible models:

Fig. 2. Task Scheduling Possibilities in a big.LITTLE System [9]

The solution we are dealt with belongs to the Global Task
Scheduling (GTS model). Currently, several companies have
developed a scheduling solution for this purpose, such as Linaro
or Qualcomm, but this has not yet been done for the Samsung
Exynos 5422 processor.

Zs. Bringye et al. • Power Consumption Aware big.LITTLE Scheduler for Linux Operating System

000140

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 21:57:51 UTC from IEEE Xplore. Restrictions apply.

E. Big.LITTLE Scheduling Implementations

ARM published their GTS solution in 2013. MediaTek
introduced CorePilot 1.0 in 07/2013, Samsung its HMP in
09/2013, Qualcomm its EAS in 02/2014. The first production
version of ARM/Linaro EAS solution was revealed in 10/2016
(on the Google Pixel Phone).

F. The Energy-Aware Scheduling Project

ARM and Linaro has started their Energy-Aware Scheduling
(EAS) Project in 2013 [2].

The goal of the Energy-Aware Scheduling Project, is to
overcome the duality found in Linux-based performance
management subsystems (CPUFreq, CPUIdle subsystems), and
to coordinate the scheduling and performance management.. In
Linux, the CPUFreq and CPUIdle subsystems work
independently of each other, and at times even against each
other. Also, the scheduler does not consider any performance
cost considerations when placing the tasks.

Fig. 3. Linux subsystems responsible for CPU management [3]

Although the consolidation of the scheduler and
performance management subsystems seems to be a promising
solution, there are several problems to be solved during its
implementation. The key element of the problem is that the
scheduler does not have any information about the processor
architecture.

The purpose of the Linaro EAS project is to transform
subsystems in such a way that - for energy use – subsystems
provide a more efficient processor use [3].

G. Linux Governors

In Linux, Task Scheduling and Energy Management have
been implemented in three different, loosely related subsystems:

• Scheduler

• Cpuidle that manages the inactive state of the CPUs

• Cpufreq that controls processor frequency.

The Scheduler is a Unix-like short-time scheduler. There are
different algorithms for different task types, the most commonly
used algorithm is the CFS.

The CPUIdle subsystem is responsible for managing
inactive states. The governors belonging to this subsystem will
become initialized by the idle cycle of the CPUs. The scheduler
selects the idle cycle if the run queue for that processor is empty,
i.e., when the processor is idle.

The CPUFreq subsystem implements the DVFS
functionality. The subsystem consists of a combination of
architecture-independent and architecture-dependent parts [10].

III. THE PROPOSED SOLUTION

A. Description of the CPUFreq Governor Solution

Since the development of the kernel code is difficult, we
have decided to implement the solution in "mixed" mode: The
execution part of the code is running in kernel mode, but the
decisions are taken by the code running in user mode. Our
findings show that the code of the execution part is relatively
stable; the essential part of the algorithm is transferred to the user
mode code. This kind of approach is not a novelty in operating
systems, since the so-called microkernels have been based on
this concept [11].

B. Kernel Mode Functions

In Kernel mode, codes are running that directly access kernel
data and internal kernel functions. These are:

• Processor Frequency Query and Adjustment (per
cluster)

• Processor Mode (Active / Passive) Query and Setup (per
core)

• Processor Load value Query (per core)

Those kernel functions are accessible via the “sysfs”
interface, which is a standardized interface on Linux systems
between the kernel and the applications running in user mode.

C. Application in User Mode

The application running in user mode obtains the current
load parameters at specified intervals through the sysfs interface
and determines the target status that is set by kernel services
calling via the sysfs interface.

The essence of this solution is that the program with help of
a translation table determines the current computing power
(relative to the computing power of a LITTLE core running at
200 MHz) for each run cycle based on the clock speed and load
value of the processors, and then it determines the optimal
setting of the CPU cores. The calculations are made by using
tables prepared based on preliminary measurements.

IWOBI 2019 • IEEE International Work Conference on Bioinspired Intelligence • July 3-5, 2019 • Budapest, Hungary

000141

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 21:57:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. The proposed governor algorithm

IV. THE PROPOSED TESTING ENVIRONMENT

Testing is currently based on running a simple prime search
routine: the test procedure must look for the first "n" prime
numbers and calculate their sum. The test runs with 32-bit fixed-
point numbers. A framework designed to run a wide range of
testing tasks is set up to run the prime search.

A. Test Environment

The test environment is modular. Parts of the test solution
are the following:

• Test Generator: generates tasks according to a
predefined scenario (test script).

• Worker Threads: the prime search code in a
configurable number of instances.

• Message queues (Test tasks and Test responses):
provides a connection between the "tester" and
"worker" components, which also serves as a load
balancer function.

• Monitor: during testing, the processor's performance
characteristics (load values, CPU frequencies, core
temperature, consumption) are collected by this
component.

• Logger: a component that records the running
characteristics of testing per task (task characteristics,
timestamps, etc.).

Fig. 5. The Testing Environment

B. Time Stamps

During the execution of the test task one packet travels
through (a packet is a task), which contains the task
characteristics and the related timestamps (in µs resolution):

• T1 indicates when a task has been added to the task
queue,

• T2 indicates when the task processing has begun with a
"worker" component,

• T3 indicates when the "worker" component has
processed the task and placed it back in the response
queue,

• T4 indicates when the Logger has removed the task from
the response queue.

The tester configuration script consists of rows to be
executed in succession, one line describing a test section.
Features of a script are:

• The task to be performed (how many primes to search)

• Repetition time of the task (how often should the tester
generate a new task)

• Burst: how many tasks the tester should give at a given
time

• Cycle number: how many times the job is to be repeated

There is also a “wait” command as a special test line which
specifies the time spent in inactivity.

C. Usage of Message Queues

POSIX Message Queues play a key role in the solution:

• They make operation asynchronous, e.g. the Logger
cannot block Worker threads.

• They function as Load balancer between worker threads
(if a thread is free, prompts next job from the line)

• They include an addressing mechanism to allow
multiple test algorithms to run simultaneously (beyond
prime search).

Test tasks

Test responses

Worker
Threads

Test
Generator

Logger

Test
config.

Test log

MonitorMonitor log

T1

T2

T3

T4

Zs. Bringye et al. • Power Consumption Aware big.LITTLE Scheduler for Linux Operating System

000142

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 21:57:51 UTC from IEEE Xplore. Restrictions apply.

D. Delay Caused by Message Queues

The delay of the message queue-based solution has been
investigated by a "NULL" test where the Worker thread
immediately responds to the caller. The request has been
repeated 10,000 times. Having performed the test with
"Powersave" for minimum consumption and "Performance"
governors with maximum computing power, the following
turnaround times (TTR, calculated as T4-T1) have been added:

Fig. 6. Turnaround times

Based on the tests, it appears that the delay in handling
message queues does not represent a significant amount of
turnaround times in real tests.

E. Processing Test Data

Each run of the “Test Generator” program must be given a
name (a string) that is also displayed in the “Logger” output. We
have also generated a unique numerical project identifier with
two elements:

• the timestamp of the start of the Test Generator with a
second resolution,

• the number of the line in the Test Configuration file

In our work, we have count test cases in a counter type field.
This counter restarts for each configuration file line.

The "Logger" and "Monitor" components write the
measurement results into an easy-to-use "CSV" file. Between
the rows of the two files, a µs resolution timestamp creates a
connection. The output files are further processed by using R
language functions.

The following diagrams show the primary processing of the
execution results of a test run using the Interactive governor.
(Fig. 7.) shows the characteristics of the test task:

Fig. 7. Charasteristics of the Test task

(Fig. 8.) shows the size of the test queue (Red), the average
waiting time for queues (Black), and the average execution time
(T3-T2) for the tasks (Blue).

Fig. 8. Queue Load and execution time of tasks

Fig. 9 shows the frequency and the power consumption of the

big and LITTLE cores:

Fig. 9. CPU cluster frequencies and power consumption

F. Measuring Experience

For initial measurements, we have iterated over the free
parameters of the prepared governor and compared their results
with the Linux standard governors:

IWOBI 2019 • IEEE International Work Conference on Bioinspired Intelligence • July 3-5, 2019 • Budapest, Hungary

000143

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 21:57:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. Energy consumption during the initial tests

Fig. 11. Tesk task execution times during the initial tests

G. Further experience

The XU3 card's chiller cooling capacity does not allow long-
term operation of the "big" cores at maximum frequency. The
CPU temperature rises rapidly, and the system limits itself (the
built-in protection mechanism begins to reduce the clock speed).
This constraint, however, makes correct comparisons of test
results impossible, so as a bypass solution, we have limited the
maximum frequency of "big" cores at 2 GHz. At this frequency,
the processor’s temperature remains within the normal range.

Operation at a lower frequency results in energy savings, if:

∫ 𝑝𝑖𝑡𝑖 > ∫ 𝑝𝑗𝑡𝑗 (4)

Where "i" refers to the original settings and "j" to the
operation after the frequency reduction. Based on the
measurements, the XU3 card has a range where the above
inequality is not met (see Fig. 1). The reason behind this is that
the system has reduced the frequency but not the voltage. In the
constant table used in the application, therefore, these work
points have not been included.

V. CONCLUSIONS AND DEVELOPMENT OPPORTUNITIES

Based on the first results, it can be stated that the custom-
developed governor is worth of further refinement. The testing
environment can efficiently be utilized for further testing as
well.

The presented solution can be further developed in the

following areas:

• Governor algorithms: developing new customization
points in the algorithm

• Testing: The current test procedure makes use of a
single algorithm that is based on fixed point
calculations. It would also be useful to run other
algorithms as well which represent a different load class
(e.g. floating point calculations).

REFERENCES

[1] ODROID-XU3 Wiki; https://wiki.odroid.com/old_product/odroid-
xu3/odroid-xu3.

[2] Energy Aware Scheduling [EAS];
https://www.linaro.org/engineering/core/arm-power-management/eas/.

[3] Amit Kucheria; 2015; Energy Aware Scheduling Project;
https://www.linaro.org/blog/energy-aware-scheduling-eas-project/.

[4] Hennessy, J. L. and Patterson, D. A., Computer Architecture: A
Quantitative Approach., Morgan Kaufmann Publishers, Inc. San Mateo,
CA., Fifth Edition, 2011.

[5] D. Sima, “Power Management of Processors v1.0”, unpublished.

[6] ARM big.LITTLE Technology;
https://www.arm.com/products/processors/technologies/biglittleprocessi
ng.php.

[7] Peter Greenhalgh, Big.LITTLE Processing with ARM Cortex™-A15 &
Cortex-A7, ARM White Paper, 2011

[8] Mobile Processor, Exynos 5 Octa (5422);
https://www.samsung.com/semiconductor/minisite/exynos/products/mo
bileprocessor/exynos-5-octa-5422/

[9] D. Sima, “big.LITTLE technolog”, unpublished.

[10] Linux kernel source 3.10.96; www.kernel.org

[11] W. Stallings, Operating Systems, Pearson Education, Harlow, England,
Ninth Edition, 2018

Zs. Bringye et al. • Power Consumption Aware big.LITTLE Scheduler for Linux Operating System

000144

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 21:57:51 UTC from IEEE Xplore. Restrictions apply.

