
Abstract-- The biggest difference of mobile devices over AC

powered such as servers and desktops is that their power budget

is very limited. In other words, the CPU resource management

solution for mobile devices makes a greater contribution to

product quality. Their main algorithm was to choose the

minimum energy or the best-fit performance to accommodate a

given job. However, in real world, performance and energy are

essential to each other and cannot be treated in these independent

and consecutive referencing methods. In this document, we would

like to give you new ideas for how to consider performance

efficiency in CPU resource management solution.

I. INTRODUCTION

OS (Operating System) Scheduler, CPU DVFS (Dynamic

Voltage and Frequency Scaling), and CPU Idle are commonly

used to operate CPU resources efficiently. The underlying

theory of these three solutions is to assign a given job to the

appropriate HW resource, or to provide the appropriate HW

resource for that job. State-of-the-art scheduling and CPU

DVFS technology for mobile devices that best meets the needs

of the times is EAS (Energy Aware Scheduling) [2], [3]. Its

main algorithm is to choose the best core or frequency that

uses the least amount of energy to process the amount of job

given. CPU Idle also has a same purpose in terms of choosing

the idle states with minimum energy for a given idle time

calculated by the scheduler. Although all of the above methods

are expected to reduce the power consumption without

performance degradation, in the real world, this method

behaves differently than expected due to the characteristics of

silicon, cache utilization, discrete range of frequency, and

intentional frequency boosting.

The following chapters explain in detail how the above

factors make the system behave differently than expected and

how they have been overcome.

II. CONSIDERING THE PERFORMANCE EFFICIENCY

A. PASE (Performance Aware Scheduling within a given

Energy budget)

This paper is based on big.LITTLE HMP architecture

(Exynos9820, CortexA55 × 4 for Little core, CortexA73 × 2

for middle, and M4 × 2 for big) [1], [4], [8] of three processor

sets with different performance efficiency. To support various

topologies as a common solution, EAS uses an algorithm to

"select the core with the minimum energy that meets the

performance requirements of a given job".

 In Fig.1, big core with ‘min-power @ BIG’ will be chosen

with EAS algorithm for ‘Demanding Perf (Performance)’. In

reality, however, such a decision is not reasonable. This is

because the DVFS frequency level is not continuous, or the

performance of the target core has been already determined

externally.

 As shown in Fig.2, the big core using minimum power (C.

Est. <Perf, Power> of BIG @ EAS) for required performance

(blue solid vertical line, “Required Perf”), was selected in the

conventional method of EAS. Due to the discrete DVFS level,

the actual performance of the big core is different from the

estimation (C). So the actual performance and power for

required performance is to be (B). That is, scheduler must

choose the best among (A) and (B), not (A) and (C).

Performance-efficient CPU resource management algorithm

on Heterogeneous multi-processor

Jonglae Park, Bumgyu Park, Youngtae Lee, Chulmin Jo, and Seogjun Lee

S.LSI, Samsung Electronics, Hwaseong-si, Republic of Korea

Email: {jonglae.park, bumgyu.park, yt0729.lee, cm.jo, seogjun.lee}@samsung.com

Fig. 1. For given demanding performance, big core with minimum power

will be selected instead of MID core.

Fig. 2. The actual power of Big cores (B) is the same as estimated (C), but

their actual performance (B) is overestimated. EAS choose the best among

(A) and (C).

2020 IEEE International Conference on Consumer Electronics (ICCE)

978-1-7281-5186-1/20/$31.00 ©2020 IEEE
Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 21:52:57 UTC from IEEE Xplore. Restrictions apply.

Peter Hu

Peter Hu

In order to compare the superiority between (A) and (B), we

will use the performance per energy. Considering 'the

performance return on energy investment', the middle core

should be chosen (A. Actual <Perf, Power> of MID).

Furthermore, this kind of wrong decision would happen

more often and more fatally when the performance of

candidate cores has already been determined due to various

external factors (such as intentional frequency boosting, or

load unbalance situation). Let’s suppose that the performances

of big cores and middle cores are determined externally as

shown in Fig. 3. And both the big core and the middle core are

capable of “Demanding Perf”, however, the power of the big

and the middle core are the same. In this situation, the big core

must be chosen for “Demanding Perf”, but middle core is

chosen by the conventional EAS. EAS does not consider these

exceptions.

So we propose that best target core must be decided not by

the minimum energy, but by the ‘performance per energy' for

given job.

The proposed core selection algorithm for given job ‘j’

satisfies the following equation (1), and will choose the

‘target’ core.

),
),(

),(
(

),arg(

),arg(

jcpuenergy

jcpuperf
MAX

jettenergy

jettperf

 (1)

 where ∀cpu ∈available cores accommodating given ‘j’

 , energy (cpu, j) is consumed energy for ‘j’ on cpu
 , perf (cpu, j) is estimated latency for ‘j’ on cpu

Previously, the ‘target’ is the core in which only the energy

is minimum for given ‘j’.

With using the maximum ‘real performance per energy’

method, instead of a minimum energy, we achieved overall

12% performance improvement especially in UX (User

eXperience) benchmark, but the DoU (Day of Use, battery life

time) dropped only 1.3%.

B. Power step-wise frequency scaling (PSF)

In this chapter, we introduce ‘power step’, a new method of

frequency selection in DVFS. The key concept of PSF is to

consider the energy cost when choosing the next OPP

(Operating Performance Point, same as frequency). In the

point of considering energy cost, H-EARtH [9] and energy

aware Schedutil [10] have similar intentions in common, but

PSF differs in that it refers to the energy cost when predicting

the appropriate OPP in the future. As shown in Fig. 4, the

existing DVFS algorithm selects the next OPP proportional to

the current OPP and utilization on it. But the PSF uses the

energy cost as an input parameter in addition.

Formally speaking, the problem in DVFS is that there are

initial OPP given and job to be done, but invisible for its

quantity. And the goal of problem is to find the optimal path of

series of OPP selection minimizing the energy consumption

and latency. PSF is explained as following equation (2).

)))'(((' 1 nnn UpfrFreqToPoweqPowerToFref
 , (2)

 where fn , fn+1 is current and next OPP respectively

 , PowerToFreq(P) returns OPP for power P (mW)
 , FreqToPower(F) returns power (mW) for OPP F
 , Un is the utilization of CPU so far

 , △p : CPU power budget / N.

 Since most of job is not measurable of its size except

deadline one, ‘energy cost’ is substituted for ‘power’ in (2).

As shown in Fig.4, PSF will ramp up the OPP quickly in

lower performance range (f’n > fn), but slowly in higher OPP

(f’n+1 < fn+1). In the previous DVFS solution, these behaviors

Fig. 3. Big and Mid core have same power, but Big core has superior

performance.

Fig. 4. Concept of power-proportional DVFS (PSF) and performance-

proportional DVFS.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 21:52:57 UTC from IEEE Xplore. Restrictions apply.

Peter Hu

are done by the pre-defined frequency-variant tuning

parameters through the lots of experiment. These behaviors

can increase the consumer satisfaction with both

responsiveness and power consumption of the product. But

PSF can provide with the ideal ramp-up shape of OPP

selection in DVFS by considering the energy cost without

heuristic tuning parameter. In Fig.5, each plotting graph shows

the shape of OPP selection for each N value of (2). The

smaller the N is, the faster the OPP goes up or down.

 We compared the ‘performance return on consumed

energy’ for various DVFS algorithm including PSF. Previously,

fn+1 is calculated by multiplying the product of the utilization

and the fn by a constant margin. ‘x1.25’ is the previous DVFS

with 25% margin. ‘PSF-/8’ means that the N value in (2) is 8.

‘max’ is a DVFS algorithm that provides a max OPP when

utilization is above a certain threshold. Finally, PSF-BS means

that power step is proportional to ‘power of max OPP – power

of current OPP’.

In Fig.6 and Table I, it can be said that the PSF algorithm is

generally superior to other algorithms in the view of

performance efficiency.

In recent study, Linaro (Collaborative engineering

organization consolidating and optimizing open source

software and tools for ARM) introduced the new DVFS

algorithm called EA-SU (Energy Aware SchedUtil) mentioned

above. This algorithm uses the variable margin of OPP

selection error converted from the energy differentials through

the series of workload pattern. Using this algorithm, OPP

reaches the target frequency very quickly, and reduces the

redundant margin when repeated workload pattern. This

algorithm can be said to be the smart way to consider energy

costs, but performance efficiency is not good as shown in the

Table II, if the simulation is based on the real silicon power

data.

 With this method, when measuring the score on the

PCMark benchmark, the overall score is increased by 15%

(about 26% for some sub tests, such as photo editing). At the

same time the power consumption is just increased by only 6%.

In the typical user scenario, the power consumption is just

increased by 4%.

C. Performance aware idle depth selection (PAI)

 The CPU idle framework predicts a state that consumes the

least energy among the available idle states for the estimated

idle time [6]. In recent technology, the private cache can be

turned off in the C2 state or deeper state [7]. In this case, CPU

idle framework is overlooking something related with follow-

up performance after idle, by considering only minimum

energy. If most of instruction and data is hit in cache, and the

estimated idle time is long, cache will be flushed to the

memory by idle framework. In this case, if the flushed

instruction and data are to be reused, performance degradation

may become severe after idle exit. Another thing that is

overlooked with cache flush is that performance impact due to

cache miss has a very important relation with memory clock in

addition to CPU clock. But, the Linux idle framework does not

consider the target idle state according to the any clock [6]. So

we propose a new idle state prediction method based on cache

Fig. 5. PSF derives the next frequency based on power budget as well as the

required performance - utilization.

Fig. 6. Performance/energy ratio of each DVFS algorithm versus the

performance efficiency of x1.25.

TABLE I

PERFORMANCE / ENERGY FOR EACH DVFS

 Constant margin PSF max

 x1.5 x2.5 x3.5 N=4 N=8 N=16 BS max

P/E

(%)

100 91.25 94.52
100.33

108.71 110.87 88.24 53.11

The performance is a reciprocal of total execution time. And the energy

is the accumulation of product of power and time for each OPP.

TABLE II

PERFORMANCE / ENERGY OF EA-SU

P/E (%) Random load –

PCMark

Load Rush – GeekBench Load Rush – Dhrystone

x1.25 100 100 100

EA-SU 94.23 100.15 100.46

PSF 126.46 103.66 100.60

Refer the Fig.7, 8 and 9 for each load pattern.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 21:52:57 UTC from IEEE Xplore. Restrictions apply.

miss rate and relate frequency. That is, not only the energy

consumed, but also the performance impact will be considered

for selecting the idle state. The following equation (3)

describes the PAI algorithm.

Let Cn’s target residency and transition time, Rn, Tn

For given estimated idle time I,

Find the min energy idle state, Ct in the existing method

)),,(min(ITREnergyC kkt
,

 Where k = 1, .., n (available idle state Cn)

In addition to the above equation,

Let Dn for performance impact by cache dirtiness:

ratedirtycache

Dn __
1 ,

Fn for performance impact by frequencies, such as CPU,

MIF (Memory I/F), …:

 ... MIFMIFCPUcpun FwFwF ,

 Where τ = constant for performance impact of frequency

Estimated Negative Performance Impact:

nnn DFPD ,

 Where γ = constant for performance impact

Find the min energy and min performance impact in

proposed method:

)),,(min(kkkt PDITREnergyC , (3)

 Where k = 1... n (available idle state Cn)

To see the quick proof of concept, we implemented the

frequency variant criteria for target residency and exit latency

and applied some frequency-variant parameters. And we were

able to increase the original 47 frames to 51 frames on the

commercial benchmark called Manhattan off-screen.

Considering multiple frequencies or referring to cache usage is

currently under review and we are in the process of identifying

the practical feasibility of the proposed method.

III. CONCLUSION

A. Experiments

The following table shows the measured data for the

performance and power consumption of the proposed

algorithms. The values obtained in these experiments are the

percentage of improvement compared to the scores of the

shipped product. The percentage of improvement mentioned in

each chapter is the value when the each algorithm is applied

alone in the controlled environment.

B. Summary and future work

As mentioned in abstract, the energy given and the

performance that can be achieved by using it are closely

TABLE III

PERFORMANCE AND POWER IMPROVEMENT

 CPU/System Performance UX Performance

%
Antutu

v7

GeekBench

Single – v4

GeekBench

Multi – v4

PCMark

2.0

BBench App

Launch

DoU

PASE 0.25 -2.13 -0.92 11.00 37.50 -4.34 -1.30

PSF 0.20 0.50 5.30 7.00 1.04

The performance is a reciprocal of total execution time. And the energy is

the accumulation of product of power and time for each OPP.

Fig. 7. OPP Selection for ramdom load.

Fig. 8. OPP selection for load rush of GeekBench.

Fig. 9. OPP selection for load rush of Dhrystone.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 21:52:57 UTC from IEEE Xplore. Restrictions apply.

related. Thus, independent and consecutive referencing

methods have verified that there are various errors. This is a

problem that can only be confirmed in the real world that

cannot be found in the controlled environment. And these are

should be considered in the development process for mass

product.

Unfortunately, the PAI has no additional benefit beyond the

above-mentioned experiments in the above experiment.

Currently, we are working on additional implementation and

experiments for PAI optimization, and if new HW is available

to obtain the cache utilization information, such as AMU

(Activity Monitor Unit) [11], we will also implement the

ultimate implementation of PAI idea.

 REFERENCES

[1] Geenhalgh , P., "Big.LITTLE Processing with ARM® CortexTM-A15 &

Cortex-A7," ARM® White paper, Sep. 2011.

[2] Rickards, I. (ARM®) and Kucheria, A. (Linaro), "Energy Aware

Scheduling (EAS) progress update," Linaro article, available at:

https://www.linaro.org/blog/energy-aware-scheduling-eas-progress-

update/, Sep. 2015.

[3] Wysoski, R.J., "CPUFreq and The Scheduler, Revolution in CPU Power

management," in LinuxCon + ContainerCon North America 2016,

available at:

https://events.static.linuxfound.org/sites/events/files/slides/cpufreq_and

_scheduler_0.pdf, Aug. 2016.

[4] "Exynos 9820 Processors: Specs, Features | Samsung Exynos," available

at:

https://www.samsung.com/semiconductor/minisite/exynos/products/mo

bileprocessor/exynos-9-series-9820/

[5] Chan, M., "cpufreq: interactive: New 'interactive' governor," LWN

article, available at:

https://lwn.net/Articles/662209/, Oct. 2015.

[6] Ven , A.V.D., "Some improvements to the cpuidle menu governor,"

LWN article, available at:

https://lwn.net/Articles/386990/, May. 2010.

[7] Hansson, U., "Cluster idle - Now and next," in OSPM Summit 2019,

available at:

http://retis.sssup.it/ospm-summit/, May. 2019

[8] Craeynest , K.V., Jaleel , A., Eeckhout, L., Narvaez , P., Emer , J.,

“Scheduling heterogeneous multi-cores through performance impact

estimation (PIE),” in 39th Annual International Symposium on

Computer Architecture, Jun. 2012.

[9] Rotem, E., Weiser, U.C., Mendelson, A., Ginosar, R., Weissmann, E.,

Aizik, Y., “H-EARtH: Heterogeneous Multicore Platform Energy

Management,” in vol 49, Issue 10, IEEE Computer, Oct. 2016.

[10] Raillard, D., “sched/cpufreq: Make schedutil energy aware,” LWN

article, available at:

https://lwn.net/Articles/792252/, (Jun. 2019).

[11] “ARM® CortexTM-A75 Core Revision: r2p0,” in chapter C3.3

Technical Reference Manual.

[12] Corbet, J., “Per-entity load tracking,” LWN article, available at:

https://lwn.net/Articles/531853/

[13] Mulukutla, V., “sched: Introduce Window Assisted Load Tracking,”

LWN article, available at:

https://lwn.net/Articles/704903/

[14] Bellasi, P., “SchedTune: central, scheduler-driven, power-performance

control,” LWN article, available at:

https://lwn.net/Articles/704859/

[15] “Power management,” Google documents, available at:

https://source.android.com/devices/tech/power/performance

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 21:52:57 UTC from IEEE Xplore. Restrictions apply.

