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Abstract—Heterogeneousmulti-core processors (HMP)with the same instruction set architecture (ISA) integrate complex high

performance big coreswith power efficient small cores on the same chip. In comparisonwith homogeneous architectures, HMPshave been

shown to significantly increase energy efficiency. However, current techniques to exploit the energy efficiency of HMPs do not consider fair

usage of resources that leads to reduced performance predictability, a longer makespan, starvation, andQoS degradation. The effect of

different cluster voltage and frequency levels on fairness is another issue neglected by previous task scheduling algorithms. The present

study investigates both the fairness problem and energy efficiency inHMPs. This article proposes a heterogeneous fairness-aware energy

efficient framework (HFEE) that employs DVFS tomeet fairness constraints and provide energy efficient scheduling. The proposed

framework is implemented and evaluated on a real heterogeneousmulti-core processor. The experimental results indicate that the

introduced technique can significantly improve energy efficiency and fairness when compared to Linux standard scheduler and two

energy efficient and fairness-aware schedulers.

Index Terms—Energy efficient scheduling, fair scheduling, heterogeneous multi-core, big.LITTLE architecture

Ç

1 INTRODUCTION

THE dark silicon phenomenon, process variation, and the
failure of Dennard scaling pushed computer designers

to develop heterogeneous (asymmetric) multi-core process-
ors (HMP). HMPs can be divided into two categories: I)
cores with the same instruction set architecture, such as
ARM’s big.LITTLE and Nvidia’s Kal-El, and II) cores with
different instruction set architectures, such as IBM Cell,
Nvidia’s Tegra, and AMD’s Fusion.

ARM’s big.LITTLE processors contain two distinct types
of cores: high performance Cortex-A15 (big cluster) and low
power Cortex-A7 (little cluster). Each cluster has a specific
microarchitecture, voltage and frequency levels, cache size
and pipeline stages. The execution time and energy con-
sumption of any program is affected by: a) cluster type and
b) the voltage and frequency level of each cluster. Therefore,
exploiting these characteristics at the OS (Operating System)
scheduler level is crucial. With the aim of optimizing both
the overall makespan (the duration time of the start of pro-
grams to the end of the last program) and energy consump-
tion, a variety of scheduling algorithms have been proposed
for asymmetric multi-core processors [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28]. To achieve this,
the algorithms learn about application behaviors and map
CPU intensive workloads to big cores, while assign memory
intensive workloads to little cores. For workload distribution

among different clusters, some techniques [16], [27] exploit
ILP (instruction level parallelism) and MLP (memory level
parallelism) instead of the CPU and memory intensity of
tasks.

As a critical objective seriously affecting the performance
and power consumption of running programs, fairness has
been ignored by the previous energy efficient task scheduling
algorithms. One scheduler is considered fair if all programs
suffer from the same performance degradation normalized to
the isolated run on a base configuration [30], [32]. Ignoring
fairness in scheduling algorithms may cause undesirable
behaviors in the system [29], such as reduction in perfor-
mance predictability, a longer makespan, starvation, and
hence QoS degradation. Although some proposed algorithms
take into account fairness for heterogeneous multi-cores in
the OS scheduler [29], [30], [31], [32], they do not consider
power consumption and energy efficiency. To the best of the
present work’s knowledge, both fairness and energy effi-
ciency of a task scheduler onHMPs have not yet been studied.
The current paper introduces a scheduler that simultaneously
addresses both fairness and energy efficiency.

The effect of different cluster voltage and frequency lev-
els on energy efficiency and fairness is another overlooked
matter in task scheduling algorithms. According to the cur-
rent study’s experimental results, the voltage and frequency
ratio of big to little clusters significantly affects the fairness
and energy efficiency of the scheduler.

Generally, the proposed algorithm aims to improve the
scheduler’s energy efficiency by assigning big’s appropriate
programs to the big cluster and little’s appropriate programs
to the little cluster. For each program, the ratio of the instruc-
tion perwatt (IPW) of the big cluster to that of the little cluster
serves as an indicator of a program’s suitability for each clus-
ter type. Experimental results indicate that programs with a
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higher energy efficiency ratio (IPWbig/IPWlittle) are more
energy efficient to run on the big cluster and those with a
lower ratio value are suitable for the little cluster. The present
research does an exhaustive exploration on how voltage and
frequency values affect fairness. Based on this study, a reac-
tive algorithm is proposed to select the voltage and frequency
of each cluster, so that the target fairness is achieved. For
managing fairness among different programs, the voltage
and frequency ratio of the big to little cluster is considered.
Through proper task assignment to clusters andmanagement
of each cluster’s voltage and frequency, a certain level of fair-
ness, known as the fairness threshold, is guaranteed, while
energy efficiency (energy delay product) is improved.

The current paper presents a scheduler that works effec-
tively for heterogeneous big.LITTLE processors with DVFS
support. This scheduler is designed to replace task mapping
in Linux-like runtime systems and the ondemand DVFS
governor. The present research could not find a scheduler
with the same objectives as its own. Therefore, the proposed
scheduler is evaluated on a real asymmetric multi-core pro-
cessor with ARM big.LITTLE architecture and also com-
pared with Standard Linux scheduler and two state-of-the-
art competitors: 1) an energy efficient scheduler which does
not consider fairness [28] and 2) a fairness-aware scheduler
[31] which does not consider energy efficiency. The source
code of the proposed framework and the implemented
opponent algorithms are available online at https://github.
com/baghers/HFEE. The results show that the proposed
scheduler guarantees the fairness threshold while improv-
ing overall energy efficiency. In summary, the present paper
makes the following contributions:

� Investigation of the effect of different cluster voltage
and frequency levels on the fairness of running
programs.

� Extending fairness definition for heterogeneous
multi-core processors with DVFS capability.

� Introduction of a scheduler that simultaneously gov-
erns both fairness and energy efficiency for heteroge-
neous multi-core processors.

� Improving both fairness and energy efficiency on a
real asymmetric multicore processor through apply-
ing the proposed algorithm compared to Linux sched-
uler and two contemporary schedulers (i.e., an energy
efficient scheduler which does not consider fairness
and a fairness-aware scheduler which does not con-
sider energy efficiency).

2 MOTIVATION AND RELATED WORK

Various methods for task scheduling on HMPs have been
proposed that can be categorized into single program (pro-
grams per core < ¼ 1) and multi-programs (programs per
core > 1) from the program count perspective. Also, these
algorithms can be classified into serial and parallel, based on
application types, forming four categories that are depicted
in Fig. 1. Single serial program schedulers [13], [15], [16] are
used usually in program phase detection [13], studying and
managing temperature, performance, and power behaviors
of different clusters [15], and analyzing programs’ attitude
on asymmetric multi-cores [16]. On the other hand, single

program schedulers for parallel applications [9], [14], [18]
are utilized in load balancing in order to prevent bottleneck
[9], asymmetric data partitioning [14], and critical section
management in asymmetric environments [18].

Multi-program schedulers utilize two kinds of tasks;
serial, and parallel, while to the best of authors’ knowledge,
no prior attempt has been made to implement an algorithm
for scheduling multi parallel programs simultaneously.
Multi-program serial schedulers [1], [3], [6], [17], [24], [25],
[26], [27], [28], [29], [30], [31] for asymmetric multi-core plat-
forms are employed to govern the trade-offs between two
criteria: e.g., performance versus power [1], [3], [17], [25],
[26], [27], performance versus fairness [29], [30], [31], or per-
formance versus other criterion such as temperature [28],
reliability [24] and aging rate [6].

Efficiently utilizing performance-power trade-offs need to
assign tasks to the appropriate core types and adjust their
frequencies to a suitable value through DVFS. SmartBalance
[3] is one of the first attempts of closed-loop load balancing,
consists of three phases of sensing, estimation, and predic-
tion. Unlike the open-loop standard Linux load balancer,
which distributes the threads uniformly, SmartBalance as a
Feedback based controller tries to assign the threads to the
matched core type to achieve the best energy efficiency with
the cost of performance overhead. HPM [27] is a control-
based framework to achieve the optimal performance-power
trade-off, with the aid of multiple PID controllers (one for
each application and one for each cluster), considering the
TDP (Thermal Design Power) budget. Cluster controller
allocates the power budget to each cluster and the other con-
trollers try to meet the TDP budget. However, for higher
number of clusters, its performance degrades dramatically.
ApxSched [25] presents a static scheduler, considering vari-
ous approximate versions of tasks to maximize performance
with respect to power constraints. Different versions of each
task are produced based on loop perforation [25] technique
and scheduling decisions are made according to an off-line
heuristic. Myungsun et al. [26] propose a utilization-aware
load balancer for big.LITTLE processors. A processor utili-
zation estimator is presented to determine the most appro-
priate frequency for a given set of tasks, considering
performance constraints. But, utilization-based criterion is
not adequate for power management of asymmetric multi-
cores. Paragon [24] is a resource allocation approach for
unknown incoming workloads. Paragon uses classification

Fig. 1. A hierarchical classification of related work.
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techniques to estimate the impact of heterogeneity and inter-
ference on performance uses this information for workload
assignment to different server types. The target server for
each workload provides the best performance and has less
interfere with other collocated workloads. Workload classifi-
cation is based on sampling, that has a huge overhead and it
may not be applicable to asymmetric multi-cores. DTPM [28]
is one of the latest studies of dynamic power and frequency
management. Bhat et al. [28] propose a power budget predic-
tor to estimate the power budget based on current tempera-
ture and temperature threshold. The other presented
predictor, predicts the power consumption based on the next
frequency setting using power sensors. Then, DTPM speci-
fies the maximum feasible frequency under the available
power budget. A leakage power model of the ARM big.LIT-
TLE architecture is used in their proposed technique.

On the other hand, performance-fairness trade-off man-
agement is the other problem of task scheduling. Several
definitions of fairness have been proposed in the literature.
Frequently, a system is considered fair when all the running
programs suffer the same slowdown corresponding to their
isolated execution [29]. On asymmetric multi-cores, the
slowdown depends on two main factors [29]: (1) perfor-
mance asymmetry and (2) shared-resource contention. Feliu
et al. [30] present a process scheduler for SMT multicores
that estimates the progress experienced by the processes,
and gives priority to the processes with lower accumulated
progress. This algorithm requires extension for asymmetric
multi-cores. One of the first researches of considering
shared-resource contention in task scheduler, which is the
second source of slowdown, has been presented in [29]. In
[31] some different fair schedulers are presented to effi-
ciently distribute big-core cycles among different applica-
tions. They ask for the target fairness from the user as an
input and try to meet the target fairness, while maximizing
performance. Table 1 summarizes the related schedulers in
terms of their specification.

An issue in task scheduling that has not yet been addressed
by previous works is the simultaneous consideration of both
fairness and energy efficiency for task scheduling on the
asymmetric multi-core processors. This overlooked problem
is the motivation behind the current work. The present study
also explores the cluster’s frequency and fairness relationship.
The results of this study are considered in developing the pro-
posed scheduler. Additionally, the proposed HFEE scheduler
supports DVFS and is the first to include DVFS in a fairness-
aware scheduler. When compared to Linux Standard Sched-
uler and two state-of-the-art works (an energy efficient [28]

and a fair scheduler [31]), HFEE improves both energy effi-
ciency and fairness.

3 SYSTEM MODEL, METRICS AND PROBLEM

STATEMENT

This section discusses the workload and platform models as
well as energy efficiency and fairness metrics are presented.

Workload Model. We consider a set of m single thread pro-
grams as P ¼ fp1; p2; . . . ; pmg that can be more than total core
count ðm � Core#Þ. For uniformity, in this paper the term
task is used interchangeably for both programs and tasks. We
assume that total instructions and average power consump-
tion of every task on each core type is known. Task scheduling
is done at fixed periods called epochs, which is denoted by t.

Platform Model. The system considered in this paper is an
HMP platform consists of multiple cache-coherent cores as
C ¼ fc1; c2; . . . ; cng, that share the same ISA and memory
address space. Cores are organized into the set of clusters as
Z ¼ fz1; z2; . . . ; zsg, while all cores in the same cluster sup-
port the same voltage/frequency pairs; therefore DVFS is
being applied at the cluster level. It is assumed that each
core provides hardware performance counters and each cluster
has a power sensor, which allows to characterize programs
power consumption.

Energy Efficiency Metrics. Energy efficiency is defined as
the combination of reduced energy consumption and per-
formance improvement (runtime) [33]. The energy-delay
product (EDP) is considered as a long-term metric and cal-
culated by the product of the total amount of energy con-
sumed and the runtime duration. The higher the energy
efficiency, the less EDP value. As a short-term criterion, the
instruction per watt is another energy efficiency metric,
which is the total amount of committed instruction for every
watt of power consumed. Clearly, the more IPW, the higher
energy efficiency.

FairnessMetric. According to our studies, there is not a sin-
gle and unique definition of fairness. One of the most preva-
lent definition of fairness is expressed as: An scheduler is
considered fair if the variation of performance degradation normal-
ized to isolated run is minimal [30], [32], Where, Van Craeynest
[32] considers fast cores, while Feliu [30] considers equal
usage of both big and little cores as isolated run. Dynamic
frequency scaling has not been studied in the previousworks
andwe need to consider frequency in the fairness definition.

The fairness definition in [30], [32] has been extended to
support DVFS as: A scheduler is considered fair if the variation
of performance degradation normalized to isolated run on big core
with highest voltage and frequency is minimal.

The slowdown of each program under a scheduler is

expressed as: S maxi ¼ Tsch:;i
Tmaxfreq:;i

, where Tsch:;i is the execu-

tion time of program i under the scheduler and Tmaxfreq:;i is
the execution time of program i on the big core with maxi-
mum voltage and frequency which enables the evaluation of
fairness in terms of uniformitymax:

Uniformitymax ¼ 1� sS max

mS max

; (1)

Where sS max and mS max are the standard deviation and the
average of S max values of all programs respectively.

TABLE 1
Specification of Related Work Schedulers

Scheduler Real platform DVFS Performance Energy Fairness

HPM [27] @ @ @ @
Utilization-Aware [26] @ @
SmartBalance [3] @ @ @
ApxSched [25] @ @ @ @
Paragon [24] @ @
Algorithmic Opt. [28] @ @ @ @
Perf&Fair [30] @ @ @
Contention-Aware [29] @ @ @
Min-Fair [31] @ @
HFEE @ @ @ @ @
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Problem statement. We study the problems of assigning m
single thread programs to one n cores big.LITTLE processor
and determining the voltage and frequency of each cluster
(voltage and frequency of each cluster can be adjusted
locally) dynamically such that the system fairness is less than
a user defined threshold and energy efficiency ismaximum.

4 HFEE FRAMEWORK

As shown in Fig. 2, the HFEE framework for HMPs is com-
posed of four parts: 1) Pre-processing exploits CPU power
sensors and performance counters to identify the energy
efficiency ratio of each program; 2) Ranking specifies a pro-
gram’s suitability score for the two big and little clusters; 3)
Mapping maximizes energy efficiency through choosing
appropriate programs for each cluster after the programs
have been ranked; 4) Frequency scaling guaranties fairness
threshold through proper frequency selection. The follow-
ing subsections fully describe the different parts of the
HFEE framework.

4.1 Pre-Processing

Asmentioned, energy efficiency improvement is achieved by
assigning tasks to the appropriate core types [1]. The ratio of
instruction per watt on the big cluster to instruction per watt
on the little cluster of a program can be an indicator of its suit-
ability for each cluster type. The energy efficiency ratio (EER)
is the name given to this ratio by the current study:

EER ið Þ ¼
inst: ið Þbig
watt ið Þbig
inst: ið Þlittle
watt ið Þlittle

¼ inst: ið Þbig � watt ið Þlittle
inst: ið Þlittle � watt ið Þbig

; (3)

where inst:ðiÞbig, inst:ðiÞlittle are the instructions per second
(IPS) of program i on big and little cores, respectively, and
can be extracted using the CPU performance counters. The
average power consumption of program i on big and little
cores are denoted by wattðiÞbig and wattðiÞlittle, which are
obtained from the CPU power sensors. When there are 2N
programs, N little cores and N big cores, to reach higher
energy efficiency, N programs with lower EER values are
more suitable to run on little cores and N programs with

higher EER values are more suitable to run on big cores. The
fully investigation of EER values of SPEC CPU2006 bench-
mark are presented in the Section 5.3.

As it is shown in Fig. 2, this phase can be performed
online or offline based on hardware capabilities. Since our
evaluated board provides power sensor per cluster, we are
not able to do pre-processing phase online and it is carried
out offline. For offline preprocessing, all applications are
run on both types of cores and the average of power con-
sumption and retired instructions of each application from
start to end is used to calculate EER. However, to have
online pre-processing phase, the evaluation board has to be
equipped with the power sensor per core. To have online
preprocessing, one solution can be as following. For the first
two epochs, each program is run on big and little cores,
then IPW of big and little cores are known. These IPWs are
updated on next epochs.

4.2 Ranking

After determining EER values during the pre-processing
phase, program ranking phase then decides the assignment
of programs to different cores. For this purpose, first EERðiÞ
is normalized (i.e., it is limited between 0 and 1):

EERN ið Þ ¼ EER ið Þ �minj2P EER jð Þð Þ
maxj2P EER jð Þð Þ �minj2P EER jð Þð Þ : (4)

Programs with EERNðiÞ values closer to one are more
appropriate for big cores, while programswithEERNðiÞ val-
ues closer to 0 are more suitable to run on little cores. If pro-
grams are sorted solely by EERNðiÞ, then some programs
withEERNðiÞ values close to 0.5 confront starvation. To pre-
vent starvation, the wait time of each program is considered
along with EERNðiÞ, so that different programs are sorted
according to ScoreðiÞ as:

Score ið Þ ¼ EERN ið Þ þ EERN ið Þ
0:5

� 1

� �
:K ið Þ: (5)

whereKðiÞ denotes the number of epochs waiting for a CPU
and scoreðiÞ is the score of program i. If EERNðiÞ is greater
than 0.5, then ðEERN ðiÞ

0:5 � 1Þ will be from 0 to 1. If EERNðiÞ is
less than 0.5, then it will be from �1 to 0. With the use of Eq.
(5), programs with EERNðiÞ ¼ 0:5 still confront starvation
and programs with EERNðiÞ near to 0.5 must wait a long
time for a CPU. Therefore, it is necessary to ensure that all
programs receive CPU time after at most K epochs. For this
purpose, the EERNðiÞ value of programs waiting for more
than K epochs is corrected. Fig. 3 shows the program ranking
for big and little cores. a1 and a2 are the suggested parame-
ters where a1 is the minimum EERNðiÞ value for a program
to receive a CPU (big cores) after K epochs (via Eq. (5)):

1 ¼ /1 þ /1

0:5
� 1

� �
:K ) 1 ¼ /1 þ 2/1 � 1ð Þ:K

) /1 þ 2K/1 �K ¼ 1 ) /1 ¼ K þ 1

2K þ 1
:

(6)

Similarly, a2 is the maximum EERNðiÞ value for a pro-
gram to obtain a CPU (little cores) after K epochs (via Eq. (5)):

Fig. 2. Heterogeneous fairness-aware energy efficient framework.
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0 ¼ /2 þ /2

0:5
� 1

� �
:K ) 0 ¼ /2 þ 2/2 � 1ð Þ:K

) /2 þ 2K/2 �K ¼ 0 ) /2 ¼ K

2K þ 1
:

(7)

In the proposed framework, if EERNðiÞ 2 ð0:5:a1Þ. then
theEERCðiÞ value is considered as a1; ifEERNðiÞ 2 ða2: 0:5Þ.
then theEERCðiÞ value is presumed to be a2:

EERC ið Þ
Max EERN ið Þ; 0:5þ/1ð Þ EERN ið Þ > 0:5
Min EERN ið Þ; 0:5�/2ð Þ EERN ið Þ < 0:5
Rand 0:5þ/1; 0:5�/2ð Þ EERN ið Þ ¼ 0:5

8<
: :

(8)

Finally, scoreðiÞ is obtained as follows:

Score ið Þ ¼ EERC ið Þ þ EERC ið Þ
0:5

� 1

� �
:K ið Þ: (9)

With Eq. 9, the wait time of each programwill be less than
K epochs. The highest wait time of different programs is:

Max wait ¼ K þM

C
:

Where M and C are program and core counts, respec-
tively. At the end of this phase, all programs are sorted based
on their scores via Eq. (9).

4.3 Mapping

This phase maps appropriate programs to different clusters.
High score programs are more suitable for big cores, while
low score programs are more appropriate for little cores. As
demonstrated in Fig. 3, selected programs from the rightmost
side of the sorted list are assigned to the big cores and pro-
grams from the leftmost side aremapped to the little cores.

4.4 Frequency Scaling

As mentioned, the selected voltage and frequency of each
cluster impacts the fairness in executing programs on HMP
at runtime. However, previous task scheduling algorithms
have neglected the effect of different cluster voltage and fre-
quency levels on the fairness of running programs. If the
applications take the equal processing resources, the fairness
would be high. But there are different processing resources
in the heterogeneous processors (different core types and fre-
quency levels), thus applications suffer more unfairness
compared to homogeneous processors. The more difference
of core’s computing power, the less fairness amount. To
investigate how different cluster frequencies may alter the
fairness of the scheduler, the present study investigates how
both big and little voltage and frequency values impact fair-
ness. To this end, various set of workloads are selected and
executed over combinations of big and little frequency levels

and the fairness value of each combination is calculated in
terms of uniformity, which is fully investigated in the
Section 5.3. The experimental results indicate when the
computing power of two clusters are the same (the big to
little cluster speedup¼ 1), the higher fairness is achieved.

CPU frequency is a source of diversity among the two
clusters. For example, when the little cluster’s frequency is
constant at 1400 MHz and big cluster’s frequency is
2000 MHz, the big computing power is much more than lit-
tle. When the big cluster’s frequency decreases from 2000
MHz, the difference of two core’s computing power
decreases at first (rising uniformity) until two cluster’s com-
puting power become rather equal (the big to little cluster
speedup ¼ 1). This frequency is application dependent and
called freqeq. By scaling down big cluster’s frequency lower
than freqeq, while little cluster’s frequency is fixed 1400
MHz, the difference of the two cluster’s computing power
increases (little cluster computing power would be more
than big), causes lower uniformity. So, at the state of
decreasing big cluster’s frequency from maximum fre-
quency value, uniformity at first rises until freqeq is reached,
but for more scaling down under freqeq, then uniformity
falls substantially. Thus, it is vital to stop scaling down big
cluster’s frequency when uniformity starts to decline.

According to our experiments (Section 5.3), another
observation is that the highest values of uniformity for all
workloads happen when the big cluster’s frequency is lower
than 1400 MHz. The scaling up of big cluster’s frequency
higher than 1400 MHz, always causes fairness corruption
for all workloads. So, the improvement of uniformity is
never achieved by scaling up big cluster’s frequency value
more than 1400 MHz in our workloads. This frequency
value is defined as fthreshold by the present study. Generally,
the procedure of fthreshold calculation consists of two steps:
1) For each workload, the value of freqeq is measured. 2)
After freqeq are identified for all workload, maxðfreqeqÞ is
considered as fthreshold.

Motivated by these observations and with the intent of
controlling system fairness and guaranteeing a user-defined
level of fairness known as Uniformitythreshold (demonstrated
in Fig. 4), the present research proposes a reactive frequency
adjusting technique based on a state transition. In the pro-
posed approach the little cluster always operates at its maxi-
mum frequency similar to [28], [31]. Little cluster power
consumption is always low, so it is not necessary to exploit
DVFS for power management. In the proposed state transi-
tion, there are only two fairness states, namely {low, high}
or {L, H} for short. When the current system’s uniformity is
under Uniformitythreshold, then the system is in the low fair-
ness state. In contrast, the high fairness state occurs when
the current system’s uniformity is higher or equal to
Uniformitythreshold. Also, we assume there are two fre-
quency states: {L, H} or low (when the big cluster’s fre-
quency is under fthreshold) and high (when the big cluster’s
frequency is higher or equal to fthreshold) respectively. Thus,
the processor at each scheduling epoch can be in one of four
states represented by the notation of (uniformity, frequency)
and enumerated as: {(L, L), (L, H), (H, L), (H, H)}.

The present study’s target (optimal) state is (H, L) when
system uniformity is high and the frequency of the big clus-
ter is lower than fthreshold. However, as mentioned earlier,

Fig. 3. Program ranking for big and little cores.
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the (H, L) state can be reached through either incrementing
or decrementing the big cluster’s frequency. Therefore, as
seen in Fig. 4, there are two (H, L) states: state numbers 2
and 5. The distinction of these two states is in their previous
states. Target (optimal) state number 5 is reached after a fre-
quency down scaling in state numbers 3 and 4, while state
number 2 is achieved following a frequency up scaling in
state number 1. When the system reaches state number 5,
uniformity and frequency are in appropriate conditions. In
other words, the current system’s uniformity is higher or
equal to Uniformitythreshold, the big cluster’s frequency is
under fthreshold, and frequency in this state remains fixed.

4.5 Complexity Analysis

Given the number of cores jC j , and programs jP j , proposed
scheduler at each scheduling epoch has the complexity of jP j
� log( jP j ) for Ranking, jC j in Mapping phase, and j 1 j for
frequency scaling, while jP j in Pre-processing phase. If we
assume jP j >¼ jC j , then the runtime is bounded by O( jP j
� log( jP j )) defined by the Ranking phase.

5 EXPERIMENTAL EVALUATION

This section presents the experimental results for different
applications on a real platform and provides analysis of the
obtained results.

5.1 Experimental Setup

The proposed fairness-aware energy efficient scheduling
framework is evaluated by a real HMP processor with the
ARM big. LITTLE architecture. The evaluation platform is an
Odroid-XU3 board featuring the Exynos5422 SoC with four
Cortex-A15 3-way out-of-order (big) cores and four Cortex-

A7 2-way in-order (little) cores on a chip. The range of the big
core frequencies is from 200 MHz to 2 GHz and from 200
MHz to 1.4 GHz for the little cores. Four big cores share a
2MBL2 cache and four little cores share a 512 KB L2 cache.

The device has only 2 GB DRAM which is insufficient to
run eight benchmarks on all of the eight cores, which has
also been mentioned in [31]. Thus, similar to [31], only two
big cores and two little cores are used, and the remaining
are turned off. Ubuntu-mate 16.04.3 is installed with kernel
version of 4.14 on it and Perf library is employed as one of
the two most common performance counter profiling tools
on Linux. cpufreq is used to adjust the processor frequency
and power consumption is extracted from the embedded
power sensors of each cluster.

5.2 Workloads

In the present study’s experimental evaluation, the work-
loads consist of SPEC CPU2006 mixes, which are character-
ized in application throughput terms as instructions per
second (IPS). Fig. 5 presents the IPS values of different
applications on the big cluster, where IPS values spread
over a range from 0.22 � 109 to 2 � 109. Application work-
loads are categorized based on their IPS values as low (IPS
< 1 � 109), medium (1 � 109 < IPS < 1.5 � 109), and high
(IPS > 1.5 � 109) and denoted by L, M, and H respectively
as depicted in Table 2. As demonstrated in Table 3, fifteen
different subsets of SPEC CPU2006 benchmarks are selected
for evaluations of the schedulers.

5.3 Application Characterization

In this section, the EER value and DVFS impact on fairness
are fully investigated.

Fig. 4. State transition diagram of DVFS adjusting.

Fig. 5. Application characterization in terms of IPS.

TABLE 2
Speccpu2006 Benchmark Categorization Based on IPS

Benchmark Class Benchmark Class

998.specrand L 416.gamess H
999.specrand L 401.bzip2 H
429.mcf L 454.calculix H
400.perlbench L 483.xalancbmk H
471.omnetpp L 465.tonto H
473.astar L 434.zeusmp H
403.gcc M 435.gromacs H
445.gobmk M 410.bwaves H
450.soplex M 437.leslie3d H
459.GemsFDTD M 444.namd H
458.sjeng M 470.lbm H
453.povray M 456.hmmer H
436.cactusADM M 462.libquantum H
433.milc M 464.h264ref H
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5.3.1 EER Value

SPEC CPU2006 benchmark is employed in our experi-
ments. Fig. 6 provides the EER values for all applications
using Eq. (3). The EER values are spread over a range from
0.89 to 2.44. AS we mentioned before, programs with lower
EER values are more energy efficient to run on little cores,
while programs with higher EER values are more energy
efficient for the big cores.

5.3.2 DVFS Impact on Fairness

Fairness is harder to achieve for heterogeneous multi-core
processors compared to homogenous, due to more variation
in computing resources, including different core types and
frequency levels. The more difference of core’s computing
power, the less fairness amount. The computing power of

big and little clusters are equal, when the big to little cluster
speedup (ratio of execution time of running application on
big to execution time of running those application on the lit-
tle cluster) is one. Fig. 7 shows big to little cluster speedup of
some programs at different big cluster frequencies, while lit-
tle cluster’s frequency is fixed at 1400 MHz. As it is seen in
Fig. 7, two lessons can be learned: 1) due to different applica-
tions behavior, speedup of applications are different at fixed
big and little frequencies and, 2) the speedup value of one
(equal clusters computing power) is achieved at big cluster’s
frequency lower than 1400 MHz. These two insights are true
for all applications of SPEC2006 that we examined, however
only six applications have been reported for readability. We
conducted an extensive experiment to assess the impact of
CPU frequency on fairness. Fig. 8 shows the uniformity

TABLE 3
Multi-Application Workload Combinations

Name Class Benchmarks

W1 LLLLLL 471.omnetpp þ 998.specrand þ 429.mcf þ 400.perlbench þ 999.specrand þ 473.astar
W2 MMMMMM 445.gobmkþ 458.sjengþ 459.GemsFDTD þ 453.povray þ 433.milcþ 436.cactusADM
W3 HHHHHH 401.bzip2þ 416.gamessþ 454.calculix þ 483.xalancbmk þ 465.tonto þ 434.zeusmp
W4 HHMMLL 462.libquantum þ 464.h264refþ 403.gcc þ 450.soplex þ 429.mcfþ 400.perlbench
W5 HHHHML 437.leslie3d þ 434.zeusmp þ 470.lbm þ 456.hmmerþ 453.povray þ 400.perlbench
W6 HHHHHL 435.gromacs þ 410.bwaves þ 437.leslie3dþ 434.zeusmpþ 470.lbmþ 400.perlbench
W7 HHHMMM 456.hmmer þ 462.libquantum þ 464.h264refþ 453.povray þ 433.milc þ 436.cactusADM
W8 HMMMML 483.xalancbmk þ 450.soplex þ 459.GemsFDTD þ 453.povray þ 433.milc þ 400.perlbench
W9 MMMLLL 459.GemsFDTD þ 453.povray þ 433.milc þ 471.omnetpp þ 429.mcf þ 400.perlbench
W10 MMMMLL 436.cactusADM þ 459.GemsFDTD þ 453.povray þ 433.milc þ 400.perlbench þ 471.omnetpp
W11 MMMMML 450.soplex þ 459.GemsFDTD þ 453.povray þ 433.milcþ 436.cactusADMþ 471.omnetpp
W12 MMLLLL 403.gcc þ 450.soplex þ 471.omnetpp þ 473.astar þ 429.mcf þ 400.perlbench
W13 MHLLLL 445.gobmkþ 410.bwaves þ 473.astar þ 429.mcfþ 400.perlbenchþ 471.omnetpp
W14 HHHLLL 437.leslie3d þ 444.namdþ 470.lbmþ 400.perlbenchþ 471.omnetpp þ 429.mcf
W15 HHLLLL 435.gromacs þ 410.bwaves þ 471.omnetppþ 473.astar þ 429.mcf þ 400.perlbench

Fig. 6. Energy Efficiency Ratio (EER) of SPEC CPU2006 benchmarks.

Fig. 7. The big to little cluster speedup of some benchmarks at different
big cluster frequencies, while little cluster’s frequency is fixed 1400 MHz.

Fig. 8. Uniformitymax of all big and little frequency level combinations for
different sets of W3(HHHHHH) workload.
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values of all big and little frequency levels combinations for
HHHHHH workload. The greater the uniformity value, the
more fairness in the system. As illustrated in Fig. 8: 1) the
highest values of uniformity are for points with big cluster
frequencies lower than 1400MHz, 2) the maximum values of
uniformity are located on the zone where the big cluster’s
frequency is lower than the little cluster (when speedup is
one). Little cluster consumes low power, so it is not necessary
to exploit DVFS for its power management. Therefore, the
frequency of little cluster is fixed at 1400MHz similar to [28],
[31]. So, for next experiments the uniformity of different
workloads is calculated for various big core frequencies
ranging from 400MHz to 1800MHz, while little cluster’s fre-
quency is fixed at 1400MHz (Fig. 9).

As demonstrated in Fig. 9, by scaling up big cluster’s fre-
quency from 400 MHz to freqeq (depending on the applica-
tion is between 600 MHz to 1400 MHz), uniformity rises in
all scenarios. This is due to that the difference of two core’s
computing power decreases and big core computing power
is getting closer to little core until two cluster’s computing
power become rather equal at freqeq. But, when frequency
scales up more than freqeq uniformity falls substantially,
because big core computing power becomes larger than the
little cores. For example, for the HHHHHL workload the
maximum fairness happens at 1000 MHz for big cluster,
however for the MMMMMM workload, the frequency for
maximum fairness is at 800 MHz.

5.4 Results and Discussion

The proposed HFEE framework considers fairness and
energy efficiency for asymmetric multi-cores, simultaneously,
when executing different program types. Since our evaluation
board provides power sensor per cluster, the pre-processing
phase is not performed online and this phase is carried out
offline, however, in case the target platform supports power

sensor per core, it can be applied online. Ranking, mapping,
and frequency scaling phases of the HFEE framework are
repeated every one second (epoch duration).When a program
completes its execution, it is not relaunched and the number
of programs decreases until all of them finish. The K parame-
ter, a1, a2, and Uniformitythreshold are user-defined values
specified before the start of scheduling.

5.4.1 HFEE Versus Other Schedulers

HFEE is compared against Linux standard scheduler for
heterogeneous architectures. Also, fairness-aware (Min-Fair
[31]) and energy-aware (DTPM [28]) schedulers are imple-
mented for comparison. Each algorithm for every workload
combination is repeated 100 times and the average is plotted
in the Figs. 10 and 11.

Fig. 10 shows the uniformity of different schedulers for
the representative workloads in terms of Uniformitymax.
Two fairness agnostic techniques, Linux standard scheduler
and DTPM demolish the uniformity in all workloads and
has the least fairness compared to HFEE and Min-Fair.
HFEE improves uniformity on average by about 57.6 and 51
percent compared to Linux standard scheduler and DTPM,
respectively. Min-Fair scheduler focuses on the fairness and
produces the best result of fairness and has a 3 percent
higher uniformity than HFEE on average, without consider-
ing energy efficiency.

For a performance comparison, the makespan of the
schedulers are measured. EDP represents the energy effi-
ciency metric where the lower EDP, the more energy effi-
ciency. Fig. 11 shows the makespan, energy delay product
(EDP), and energy consumption of all schedulers for differ-
ent workload combinations. As it is seen in Fig. 11, HFEE
outperforms all other schedulers in makespan and EDP,
while DTPM achieves the best result in energy consump-
tion. After running various sets of programs, the proposed
framework appears, on average, to improve EDP by about
68, 57, and 61 percent in comparison with Linux, Min-Fair,
and DTPM, respectively. The experimental results also indi-
cate that HFEE reduces makespan by about 57, 27, and 65
percent when compared to Linux, Min-Fair, and DTPM,
correspondingly. Energy consumption of HFEE is about
9 percent more than DTPM, while 33 and 41 percent less
than Linux and Min-Fair, respectively. The average
improvement of uniformity, EDP, makespan, and energy
consumption of HFEE compared to other schedulers for all
15 workloads are shown in Fig. 12.

5.4.2 Clusters’ Usages Analysis

Additional experiments are performed for better behavior
analysis of all schedulers. Big and little clusters’ usages (the
ratio of execution time on big or little cluster to the total execu-
tion time) are reported as the first parameter for schedulers’

Fig. 9. Uniformitymax of executing all workloads at different big core fre-
quencies, while the little cluster’s frequency is 1400 MHz.

Fig. 10. Uniformity comparison of different schedulers for the representative workloads in terms of Uniformitymax.
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attitude observation. This parameter is a key factor that affects
makespan significantly. Makespan decreases if we use big
clustermore than little cluster.

The Fig. 13 shows the big and little cluster’ usage for dif-
ferent algorithms. The proposed framework (HFEE) uses lit-
tle cluster when the number of programs is more than big
cluster core count. It does not use little cluster, in case the
program count is lower than big cluster core count. This
improves makespan consequently.

Min-Fair scheduler tries to reach higher fairness by
almost equal usage of big and little clusters. This policy
improves fairness at the cost of higher makespan. Min-Fair
uses both big and little clusters to improve fairness even
when the program count is lower than big cluster core count
which degrades makespan. However, HFEE uses big cluster
in these cases which improves makespan.

DTPM just tries to save energy consumption and do not
consider fairness. This scheduler uses little cluster more than
the big cluster to improve energy consumption, therefore, it
results in longer makespan. Linux standard scheduler is

heterogeneity agnostic and uses little cluster more than big
cluster, which results in highermakespan.

5.4.3 DVFS Analysis

The frequency level usage of clusters (the period of time a spe-
cific frequency in a cluster is used) is another importantmetric
which should be studied to better understand the behavior of
each scheduler. According to our observations, all schedulers
use high frequency levels for little cluster and none of the
schedulers changes the little cluster’s frequency level. The big
cluster’s frequency level usage for different algorithms run-
ningHHHHHHworkload are shown in Fig. 14.

HFEE controls only big cluster’s frequency. The little
cluster works at its highest frequency level. HFEE tries to
improve uniformity through adjusting the big cluster’s fre-
quency, so that the two clusters operate almost with the
same computing power, which results in higher fairness. In
HFEE when the program count is lower than big cluster
core count, all remaining applications are migrated to big
cluster, which improves fairness significantly. On the other

Fig. 11. (a) Makespan, (b) Energy delay product (EDP), and (c) Energy consumption comparison of different schedulers for the representative
workloads.

Fig. 12. The average improvement of HFEE related to other sch.
Fig. 13. The average big and little cluster usage of different workloads of
different schedulers.
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hand, HFEE usually uses low frequency levels of big cluster,
which results in lower energy consumption compared to
other schedulers (except DTPM, which is just energy-aware
algorithm and does not consider fairness). Lower values of
makespan and energy consumption of HFEE result in lower
EDP compared to other approaches and makes HFEE a
more effective algorithm. DTPM (which does not consider
fairness) uses low frequency levels of big cluster and uses
little cluster more than big cluster, which results in lower
energy consumption, however, degrades the makespan and
EDP consequently. Min-Fair scheduler focuses on the fair-
ness and does not consider energy efficiency and tries to
improve fairness as much as possible. Since it does not con-
sider energy efficiency, it operates at high frequency levels,
which results in more energy consumption. Also, because it
migrates applications between big and little clusters, it
lengthens makespan, and increases EDP. Linux standard
scheduler always works under high frequency levels which
results in higher energy consumption. According to Fig. 13,
since it’s usage of little cluster is very high, it has a longer
makespan. Its longer makespan and higher energy con-
sumption result in higher EDP.

5.4.4 HFEE Overhead

Another experiment is conducted to calculate scheduling
overhead of HFEE framework. For this purpose, four cores
are dedicated (two big and two little cores) for programs exe-
cution and one extra core (fifth core) is enabled for executing
only HFEE framework. All 15 workload are run under this
new condition (five enabled cores) and their makespan are
compared to the general condition (four enabled cores where
the HFEE framework is executed alongside other applica-
tions). The results show about 1.7 percent difference inmake-
span for these two cases (i.e., the scheduling overhead is
about 1.7 percent).

6 CONCLUSION AND FUTURE WORK

In this paper we explore the fairness and energy efficiency
management via frequency scaling support for heteroge-
neous multi-core processors. The analysis concludes that fre-
quency scaling plays a critical role in fair scheduling and
energy efficiency can significantly improve by considering
the performance per watt ratio of big to little cluster. To miti-
gate the problem, the current study proposes a heteroge-
neous fairness-aware energy efficient framework that utilizes

DVFS to guarantee a minimumuser-defined fairness, consid-
ering energy efficiency. The experimental results obtained by
SPEC CPU2006 benchmark running on a real HMP platform
indicate that the proposed framework outperforms Linux
standard scheduler and two energy efficient and fairness-
aware schedulers in terms of energy efficiency and fairness.
Future work will extend the proposed framework to support
resource contention management among the running pro-
grams and also explore the effect of contention on fairness
and energy efficiency simultaneously. The other further
study is the extension of FSM to support local DVFS.
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