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Abstract
Heterogeneous multi-core processors (HMP) are dual-objective hardware plat-
forms which integrate both high-performance and low power consumption proces-
sors. Investigation of simultaneous fairness and energy efficiency could widen their 
applicability and reveal their strengths. This paper proposes a scheduling framework 
considering energy efficiency, shared resource contention, and fairness for heteroge-
neous multi-core processors. The presented framework is implemented and evalu-
ated on a real HMP platform. The obtained experimental results via SPEC CPU2006 
benchmark indicate that the proposed framework surpasses Linux and four other 
schedulers in terms of fairness (58% on average) and energy efficiency (37% on 
average). The source code of the proposed framework and the opponent algorithms 
are available online at https:// github. com/ baghe rs/ CEEF.

Keywords Shared resource contention · Energy efficiency · Fairness · Scheduling · 
Heterogeneous multi-core · big.LITTLE

1 Introduction

Heterogeneous multi-core processors (HMP) have different computational capa-
bilities. HMP as a promising paradigm show potential performance improvement 
and power consumption reduction. This fact has yielded the development of recent 
HMPs like ARM’s big.LITTLE processors, where powerful cores (big cluster) are 
integrated with low-performance cores (little cluster). Both clusters share the same 
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instruction set architecture (ISA), while each cluster has a particular cache size, 
pipeline stages, and voltage and frequency levels.

Multi-core processors share resources such as caches and memory controllers 
with adjacent cores, which results in performance degradation due to contention for 
shared resources. The shared resources consist of last level cache (L2 or L3), the 
memory bus or interconnects, DRAM controllers, and pre-fetchers [1]. An applica-
tion may slow down by hundreds of percent if it shares resources with applications 
running on adjacent cores compared to running alone [2]. There are several conten-
tion minimization techniques, such as last-level-cache partitioning [3], DRAM con-
troller [4], and thread-level scheduling [2] (mapping threads to the cores). Different 
mappings lead to different mixes of threads competing for shared resources. Thread 
scheduling techniques try to find the mappings that result in less shared resource 
contention, achieving the best possible performance.

Energy efficiency is also achieved through optimizing both the performance (exe-
cution time) and energy consumption. The execution time and energy consumption 
of any program in HMPs are affected by cluster type, cluster’s frequency, and the 
program behavior. Various scheduling algorithms have been proposed to improve 
energy efficiency of HMPs [5–11].

In contention-aware algorithms, performance is improved alongside other criteria 
such as reliability [12] and fairness [2]. A scheduler is considered fair if all pro-
grams suffer from the same performance degradation normalized to the isolated run 
on a base configuration [13, 14]. Likewise, in energy-efficient schedulers, energy 
and performance are enhanced alongside other factors such as reliability [9], aging 
rate [7], and temperature [11]. Dynamic voltage–frequency scaling (DVFS) remains 
one of the prevalent options for chip power management despite the overhead and 
associated static power (due to leakage current) [15]. This paper promotes the state 
of the art in fairness-aware energy-efficient scheduling, by ((1) managing energy 
efficiency online and (2) considering shared resource contention effects.

The disadvantage of offline energy efficiency management is that the applica-
tions should be known by the system and the tedious tasks profiling of the running 
applications are required, which limits the application of offline scheme. The phase 
changes of applications are also not considered in the offline energy efficiency man-
agement. This paper addresses the problem of considering contention, energy effi-
ciency, and fairness scheduling (CEEF) of tasks online on HMPs.

The ratio of the IPS (instruction per second) per watt (IPW) of the big cluster 
to the little cluster for each program is an indicator of a program’s suitability for 
each cluster type. According to our experiments, programs with higher energy effi-
ciency ratio (EER) values are more energy efficient to run on the big cluster which 
enhances energy efficiency in terms of energy–delay product (EDP). Also, the prob-
lem of starvation and wait times of workloads are crucial issues, which have to be 
considered in the policy of co-execution selection. The theoretical analysis is per-
formed to confront the problem of starvation by considering the wait time in pro-
gram selection for co-executing on each cluster. Experimental results also demon-
strate that the programs with the higher energy efficiency are more energy efficient 
to run on the big cluster and those with low ratio values are suitable for the little 
cluster. The proposed algorithm aims to improve the scheduler’s energy efficiency 
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by assigning big’s appropriate programs to the big cluster and little’s appropriate 
programs to the little cluster and co-executing pair of programs on each cluster with 
less shared resource contention. Through proper task assignment to clusters, co-
executing less shared resource contention pair on each cluster, and management of 
each cluster’s voltage and frequency, a certain level of fairness known as the fairness 
threshold, is guaranteed, while energy efficiency (EDP) is improved.

The proposed framework is evaluated on a real ARM big.LITTLE multi-core 
processor and compared with standard Linux scheduler and four state-of-the-art 
schedulers. After running various experiments, the results demonstrate that the pro-
posed scheduler guarantees the fairness threshold while improving overall energy 
efficiency. In summary, the present paper makes the following contributions:

• It addresses the problem of contention, energy efficiency, and fairness scheduling 
of tasks on HMPs with DVFS capability simultaneously.

• Unlike [16], the proposed online framework does not need any offline profiling 
of running applications and also considers cache contention. The time complex-
ity of the scheduling process is low.

• Our proposed framework exploits a small set of performance metrics that can 
be easily extracted using performance monitoring unit available in commercial 
HMPs.

The remainder of the paper is organized as follows: The related work is discussed 
in Sect.  2, and the preliminaries are presented in Sect.  3. Section 4 describes our 
proposed framework in detail. In Sect. 5, the implementation and analysis results are 
discussed, and conclusions are made in Sect. 6.

2  Related work

The advent of the HMP era and the emphasis of criteria such as performance, fair-
ness, and energy efficiency have forced us to reconsider the scheduling techniques. 
The prior works examination is started with covering the performance, energy effi-
ciency, and fairness improvement proposals. Finally, the shared resource contention 
management schemes are investigated.

2.1  Performance optimization

Performance improvement in HMPs has been achieved through proper mapping of 
applications to different big and little cores. Workload memory intensity is one of 
the first schemes [17] to guide applications mapping by assigning CPU-intensive 
workloads to big cores, while memory-intensive workloads are run on the little 
cores. Memory intensity alone is not a correct indicator for workload to core map-
ping, which causes suboptimal scheduling [8]. Van Craeynest et al. [8] exploit ILP 
(instruction-level parallelism) and MLP (memory-level parallelism). They show that 
small cores provide better performance for computer-intensive workloads whose 
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subsequent instructions in the dynamic instruction stream are usually independent 
(i.e., high ILP) and big cores supply high performance for workloads that present a 
large amount of MLP.

Recent studies [16] suggest to exploit the big to little speedup factor for mapping 
applications to different core types. Performance improvement is achieved through 
mapping of applications with higher big to little speedup factor (SF) to big cores and 
applications with lower speedup factor to the little cores. Application’s SF measure-
ment is a crucial matter in the contemporary HMP performance management era. 
Sampling [2] is a premier suggestion to calculate application’s SF via running each 
program on both big and little cores to extract IPC. Further schemes of application’s 
SF calculation consist of estimating application’s SF using performance models and 
extracted runtime information from performance monitoring unit (PMU) [2].

2.2  Energy efficiency management

Improving energy and performance requires assigning tasks to the appropriate 
core types and adjusting their frequencies to an appropriate value through DVFS 
(dynamic voltage–frequency scaling). The first effort of closed-loop (feedback-based 
controller) load balancing is SmartBalance [6]. Dissimilar to open-loop Linux load 
balancer, which assigns the tasks evenly, SmartBalance through three phases of 
sense, predict, and balance tries to assign the threads to the matched core type to 
achieve the best energy efficiency. Myungsun et  al. [10] studied energy efficiency 
management through DVFS. They propose a utilization-aware load balancer via a 
utilization estimator to determine the most appropriate frequency and core type for 
a given set of programs. DTPM [11] is one of the latest studies of dynamic power 
and frequency management using power budget and power consumption predictors 
at different frequency level. DTPM specifies the maximum feasible frequency under 
the available power budget.

2.3  Fairness improvement

Several fairness definitions have been presented in the prior works. Frequently, a 
system is considered fair when all the running programs suffer the same slowdown 
corresponding to their isolated execution [2]. Performance asymmetry in HMPs is 
the main reason of different slowdown and low fairness. Asymmetry-aware Round-
Robin (ARR) scheduler is considered as first approach of fair scheduling on HMPs 
through fair-sharing big core cycles [18]. RR improves fairness compared to fairness 
agnostic schedulers. However, as shown in [18], it makes a suboptimal fairness solu-
tion and degrades performance substantially.

Application’s SF is considered when distributing big core cycles among the appli-
cations to improve both fairness and performance. In [19], RR and application’s SF 
are combined to efficiently distribute big core cycles among different applications so 
that target fairness is guaranteed. The remain big core cycles are allocated to appli-
cations according to their SF. Progress-based proposals are novel schemes to opti-
mize both fairness and performance on HMPs. Balanced progress of applications 
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causes even out slowdowns, improving both fairness and performance. Feliu et al. 
[13] present a progress-aware scheduler that estimates the progress experienced by 
the processes and gives priority to the processes with lower accumulated progress. 
HFEE [16] is the latest study of energy efficiency and fairness, including dynamic 
voltage–frequency scaling (DVFS). HFEE tries to improve energy efficiency through 
appropriate mapping of applications to different core types and make equal progress 
of applications via both progress management (software approach) and frequency 
scaling (hardware approach) to uniform application slowdowns, hence improving 
fairness.

2.4  Shared resource contention management

HMPs are not independent processors, where last level cache (L2 or L3), the mem-
ory bus or interconnects, DRAM controllers are shared with neighboring cores that 
results in performance degradation due to contention for shared resources. Conten-
tion-aware schedulers are very promising solutions at mitigating the performance 
loss of shared resource contention. Contention-aware schedulers identify which 
tasks should run near together and which tasks should run far away to mitigate the 
harmful effects of contention. The initial efforts of contention management are per-
formed by Tian et al. [20] that assume the performance degradation of all possible 
pair of tasks are known. Then, they constitute the complete graph, while nodes of 
the graph are the tasks to be scheduled and the edges are the performance degra-
dation of co-scheduled tasks to the same cluster. The optimal solution is a mini-
mum weight perfect matching of the graph. However, the problem is NP-complete 
for HMPs with more than two cores per cluster [20]. Zhuravlev et al. [21] proposed 
a heuristic method known as distributed intensity (DI), where all tasks are sorted 
based on their miss rate and tasks are co-executed from the opposite ends of the list. 
Co-scheduling threads with complementary usage of shared resources is the most 
prevalent scheme of contention management. One of the novel researches of con-
tention and fairness management has been presented in [2]. They exploit progress 
information of tasks to even out slowdowns to improve fairness, and complementary 
usage of bus transfer rate is used to mitigate the contention problem.

An issue in task scheduling that has not been addressed by previous works is the 
simultaneous consideration of energy efficiency, fairness, and contention to enhance 
task scheduling on the asymmetric multi-core processors. This overlooked problem 
is the motivation behind the current study.

3  Preliminaries

In this section, workload and platform models as well as energy efficiency and fair-
ness metrics are investigated. Also, the challenges associated with energy efficiency 
and shared resource contention are studied.
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3.1  System model and metrics

Workload model. There is a set of m single thread programs as P = {p1,p2,…,pm} 
with the possibility of the program count being greater than that of core count (m ≥ 
Core#). In this paper, the term task is used for both programs and tasks. Task sched-
uling epoch is τ seconds.

Platform model. The HMP platform consists of a single-ISA heterogeneous multi-
core processors with n cores as C = {c1,c2,…,cn}. Cores are classified into s set of 
clusters as Z = {z1,z2,…,zs}, and voltage/frequency of each cluster is adjusted dynam-
ically. It is supposed that HMP is equipped with hardware performance counters 
and power sensor per cluster.

Energy efficiency metrics. Energy efficiency is defined as the combination of reduced 
energy consumption and performance improvement (execution time) [22–28]. The 
energy–delay product (EDP) is calculated by the product of the total amount of 
energy consumed and the runtime duration, where the higher the energy efficiency, 
the less the EDP. In contrast to EDP, the IPS per watt (IPW) is the total amount of 
committed instruction for every watt of power consumed. The more the IPW, the 
higher the energy efficiency is achieved.

Fairness metric. Previous studies of fairness management [13, 14, 16] define a 
scheduler as fair if equal-priority applications in a workload suffer the same slow-
down due to sharing the system. In other words, a scheduler is considered fair if 
the variation of performance degradation normalized to isolated run (one second on 
the big and one second on the little core with the highest voltage and frequency) is 
minimal.

The slowdown of program i under a scheduler is expressed as 
slowdowni =

Tsch.,i

Tisolated run,i

 , where Tsch.,i is the execution time of program i and Tisolated run,i 
is the execution time of isolated run of program i. The evaluation of fairness is per-
formed in terms of uniformity:

where �S and �S are the standard deviation and the average of slowdown values of all 
programs.

Problem statement. This study explores the problem of assigning m single-thread 
tasks to one n cores big.LITTLE processor. The shared resource contention among 
the tasks is considered, and voltage and frequency of clusters are identified dynami-
cally such that energy efficiency is improved and system fairness is more than or 
equal to the user-defined threshold.

(1)Uniformity = 1 −
�S

�S
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3.2  Shared resource contention impact on performance and energy efficiency

The impact of shared resource contention on performance of HMPs is fully investi-
gated in previous researches [2–4], while the resource contention impacts on energy 
efficiency of schedulers are overlooked matters in task scheduling algorithms. An 
experiment is conducted, and all dual pairs of programs from SPECCPU2006 bench-
mark suite are executed, and the values of instruction per second (IPS) and IPW are 
extracted for each dual pair that is shown in Fig. 1. As shown in Fig. 1, the diagram 
of IPS is much correlated with the diagram of IPW. Pearson product moment corre-
lation coefficient (PPMCC) [29] is a prevalent correlation computation method that 
allows calculating the exact correlation of IPS to IPW. PPMCC is used to measure 
the correlation of two variables X and Y. The r coefficient is calculated using Eq. 2:

where  N is the number of sampled data and X , Y  are the averages of X and Y vari-
ables, respectively. The relationship between X and Y is perfect, when r is 1 or − 1. 
The negative value indicates that if  X variable increases,  Y will decrease. The  r 
coefficient of IPS and IPW is about 0.801, which shows a high relationship between 
IPS and IPW. In other words, improving IPS of workload execution boosts the IPW 
consequently. Recent processors feature a performance monitoring unit consisting 
of a set of counters that can be programmed to extract different events during the 
execution of tasks.

In order to find out the contention impact of application’s co-execution on per-
formance (IPS), one experiment is conducted to find out the performance coun-
ter (events) which has the greatest correlation with performance (IPS) of each 
application’s pair. Most correlated performance counter with performance is 
used as performance increment/decrement identifier. After identifying the most 

(2)r =

∑N

i=1

�

Xi − X
��

Yi − Y
�

�

∑N

i=1

�

Xi − X
�2

�

∑N

i=1

�

Yi − Y
�2

,

Fig. 1  IPW and IPS of various dual pairs of workloads
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correlated performance counter  (PCm) with IPS of application’s pairs, the appli-
cation’s pair with the highest  PCm is selected to co-execute at the same time. To 
do so, all 756 (27 × 28) dual applications pairs of SPECCPU2006 benchmark 
suite are run and the average IPS of each pair is extracted. Then, each single pro-
gram of SPECCPU2006 benchmark suite is run alone and for each program the 
amount of 30 events (performance counters) are logged. For each performance 
counter, the average (corr_avg) and difference (corr_dif) of performance counter 
values of two programs running in isolation are correlated with the IPS value of 
running two programs in shared. Figure 2 shows correlations of average and dif-
ference of various performance counter values of dual programs running in isola-
tion with the IPS value of running two programs in shared resources. As shown in 
Fig. 2, corravg of IPC has the strongest correlation value among the other events, 
so it is concluded that if two tasks with the highest IPC values in isolation are 
co-executed, the greatest performance (IPS) and energy efficiency (IPW) are 
achieved. Our proposed framework uses this event as a metric to mitigate conten-
tion through proper selection of paired tasks in each cluster. Therefore, the larger 
the IPC value for a workload, the larger the performance and energy efficiency of 
workload and vice versa.

4  CEEF framework

The proposed hierarchical CEEF framework is shown in Fig.  3 and consists of 
three components: (1) Energy Efficiency Management (EEM) exploits CPU power 
sensors and performance counters for energy-efficient assignment of tasks to big 
and little clusters; (2) Contention Administration (CA) specifies which pair of 
tasks has less shared resource contention and more energy efficient for running 
together, meanwhile preventing starvation of tasks; (3) Fairness Improvement 
(FI) boosts scheduling fairness through intra-cluster fairness enhancement. The 
following subsections fully describe the different parts of the CEEF framework.

Fig. 2  The correlation of average  (corr_avg) and difference  (corr_dif) of different performance counter val-
ues of programs running in isolation with the IPS value of running two programs simultaneously
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4.1  Energy efficiency management (EEM)

Appropriate tasks to clusters (core types) mapping on HMPs improve energy effi-
ciency significantly [5]. An energy efficiency speedup factor known as energy 
efficiency ratio (EER) has been proposed in [16]. EER is described as the ratio 
of instruction per watt on big to instruction per watt on the little cluster and is 
expressed as:

where IPS(i)big and IPS(i)little are the average instruction per second (IPS) of program 
i on big and little cores, respectively, extracted using the CPU performance counters. 
The average power consumption of program i running on a big core is denoted by 
P(i)big , and P(i)little is also the average power consumption of program i running on 
a little core. The measurement of these four values is an important problem in EER 
calculation. Sampling is the simplest scheme of IPS and power measurement, where 
each task is executed on both core types and extracted values are used to calculate 
EER. The major issue of this technique is the high-performance overhead of sam-
pling. The IPS and power prediction is a preferable approach to calculate EER with 
low performance overhead. The linear regression models in [30] are exploited to 

(3)EER(i) =

IPS(i)big

P(i)big

IPS(i)little

P(i)little

=
IPS(i)big ∗ P(i)little

IPS(i)little ∗ P(i)big

Fig. 3  Contention, energy-efficient, and fairness-aware framework
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predict IPS and power consumption of tasks on a core type based on the IPS, LLCM 
(last level cache misses), and power consumption of tasks on the other core type. 
The task performance and power consumption prediction are extracted by collecting 
performance and power consumption data from a set of nominating workloads in the 
system and constructing the following linear regression models:

These performance and power prediction models are extracted from performance 
and power data achieved by running different programs of the SPEC CPU2006 bench-
mark suite individually on each core type, and the coefficients w1 to w18 are derived 
through curve fitting. After the EER value of each task is specified, energy efficiency 
improves through assigning tasks with higher EER to big cores and mapping lower 
EER tasks to little cores; thus, the tasks set is divided into high EER and low EER task 
sets and are assigned to big and little clusters, respectively.

4.2  Contention administration (CA)

After determining energy-efficient task sets for each cluster, task selection for co-exe-
cution on each cluster is performed. In order to mitigate the effect of shared resource 
contention, the selected co-running tasks on each cluster must have less contention 
among each other. According to previous contention investigations, the selected tasks 
with higher IPC in isolation cause less contention and higher energy efficiency.

The IPC of tasks in isolated are unknown, and accurate estimation of isolated IPC is 
out of scope of this paper. An adequate approximation of stand-alone IPC of a task is 
to consider IPC at the state of low-contention co-execution. Co-running tasks with the 
highest IPC causes less contention. The IPC of a task is measured during the execution 
of the low contention (co-running with high IPC tasks) and used as an estimation of its 
stand-alone IPC for the following epochs. A history table is used to store the estimation 
of stand-alone IPCs of all tasks.

However, mitigating contention impact through selecting high IPC tasks causes star-
vation and increase in wait time of some tasks, which can spoil fairness of the scheme. 
To prevent starvation, the wait time of each task is considered along with IPC.

(4)IPSlittle = w1 ∗ IPSbig + w2 ∗ LLCMbig + w3

(5)IPSbig = w4 ∗ IPSlittle + w5 ∗ LLCMlittle + w6

(6)LLCMlittle = w7 ∗ IPSbig + w8 ∗ LLCMbig + w9

(7)LLCMbig = w10 ∗ IPSlittle + w11 ∗ LLCMlittle + w12

(8)Plittle = w13 ∗ IPSbig + w14 ∗ LLCMbig + w15

(9)Pbig = w16 ∗ IPSlittle + w17 ∗ LLCMlittle + w18
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For this purpose, IPC of tasks are normalized (i.e., they are bounded between 0 and 
1):

Then, IPC with considering wait time are represented by IPCC(i) as:

where K(i) denotes the number of epochs waiting for a CPU and Wmax is the maxi-
mum number of epochs that a task can wait for CPU. Wmax is a user-defined value 
which should be specified before the start of scheduling. Equation 11 guarantees that 
all tasks receive CPU time before at most Wmax epochs. There is a history table for 
each cluster that contains the IPCc of all tasks. All tasks are sorted based on their 
IPCc, and tasks with higher IPCc values are selected to co-execute alongside each 
other.

4.3  Fairness improvement (FI)

Fair scheduling is defined as scheduling tasks such that all tasks suffer the same slow-
down corresponding to their isolated run. The performance asymmetry affects task’s 
slowdown substantially. Performance asymmetry originates from the different high-
performance (big cores) and low-power (little cores) architecture of HMPs and pro-
duces diverse speedups (slowdowns) that endanger the fairness. Different CPU fre-
quency levels can be another source of performance asymmetry. However, it also can 
be an effective instrument to reduce performance asymmetry and boosting fairness 
through making two core types of speedups (computing power) almost the same. If two 
cluster’s computing power becomes rather equal, performance asymmetry decreases 
and fairness improves. DVFS is a tool which can be used to equalize two cluster’s com-
puting power, which causes the tasks taking the equal processing resources and even 
out tasks slowdowns, hence improving fairness.

In our previous study [16], a finite-state machine (FSM) fairness manager is pre-
sented via adjusting the cluster’s frequency. As shown in Fig. 4, FSM fairness man-
ager consists of five states; each state is represented by the notation of (uniformity, fre-
quency) and enumerated as: {(L, L), (L, H), (H, L), (H, H)}. Two uniformity states and 
two frequency states have been considered known as low and high, which are expressed 
as {L, H} for short. When the current uniformity is lower than Uniformitythreshold (a 
user-defined value), the system is in the low fairness state and high fairness state hap-
pens when the current uniformity is higher than Uniformitythreshold. The little cluster 
always operates at its maximum frequency (similar to [11, 19]), and FSM only adjusts 
the big cluster frequency. When the big cluster’s frequency is under fthreshold, the fre-
quency state is low, and the frequency state is high, when the big cluster’s frequency 
is more than fthreshold. fthreshold described in [16] is a frequency level where for higher 
big cluster’s frequency level than fthreshold, uniformity does not improve anymore. The 

(10)IPCN(i) =
IPC(i) −minj∈P (IPC(j))

maxj∈P (IPC(j)) −minj∈P (IPC(j))

(11)IPCC(i) = IPCN(i) +
(

1 − IPCN

)

.
K(i)

Wmax
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processor at each scheduling epoch can be in one of the five states. When the system 
reaches the optimal state five, uniformity is high and frequency in this state remains 
fixed.

4.4  Complexity analysis

Given the numbers of cores |C| and programs |P|, the proposed scheduler at each 
scheduling epoch has the complexity of |P|× log(|P|) for sort of tasks based on 
EER and IPCc in EEM and CA phases. Also, the fairness management phase has 
the complexity of |1|. If we assume |P|> =|C|, then the runtime is bounded by O 
(|P|× log(|P|)).

5  Experimental evaluation

The experimental results of different schemes for various workloads on a real 
platform and analysis of the obtained results are presented in the following.

(1) 
L,L

(++freq)

(3) 
L,H

(--freq)

(4) 
H,H

(--freq)

(5) 
H,L

Uniformity<=uniformitythreshold

 &Freq<=fthreshold

Uniformity>uniformitythreshold

 &Freq<=fthreshold

Uniformity<=uniformitythreshold

 &Freq>fthreshold

Uniformity>uniformitythreshold

 &Freq>fthreshold

(2) 
H,L

(++freq)

Uniformity>uniformitythreshold

 &Freq<=fthreshold

Uniformity<=uniformitythreshold

 &Freq>fthreshold

Uniform
ity>uniform

ity
threshold

 &
Freq>fthreshold

Uniformity<=uniformitythreshold

 &Freq>fthreshold

Uniformity>uniformitythreshold

 &Freq>fthreshold

Uniformity>uniformitythreshold

 &Freq<=fthreshold

Uniformity<=uniformitythreshold

 &Freq<=fthreshold

Uniformity>uniformitythreshold

 &Freq<=fthreshold

Fig. 4  FSM fairness manager through DVFS
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5.1  Experimental setup

The proposed contention-, energy efficiency-, and fairness-aware scheduling 
framework is evaluated on a real ARM big.LITTLE processor. The embedded 
platform is an ODROID-XU3 board integrating the Exynos Octa 5422 chip with 
four Cortex-A15 3-way out-of-order and four Cortex-A7 2-way in-order cores. 
The operating frequencies of the big cluster range are from 200 MHz to 2 GHz 
and from 200 MHz to 1.4 GHz for the little cluster. Big cluster shares 2 MB L2 
cache, and little cluster shares 512 KB L2 cache.

The size of DRAM is 2  GB which is inadequate to run eight programs on all 
eight cores simultaneously [19]; therefore, at most six programs are executed simul-
taneously. Six (three big and three little) cores are enabled, and the remaining are 
turned off. Also, Ubuntu MATE 16.04.3 (4.14 generic Kernel) and Perf library are 
employed. The frequencies of clusters are scaled through cpufreq, and taskset is 
used to assign a thread to a dedicate core and embedded power sensors of each clus-
ter are exploited for power measurement. The SPEC CPU2006 benchmark suite is 
used, and applications are categorized in terms of instructions per second (IPS). IPS 
and IPC are calculated with the aid of cycle count. So, if we know IPC and cycle 
count, IPS is calculable. Also, if we know IPS and cycle count, IPC is calculable. 
The IPS values of different applications on the big core are extracted, while IPS val-
ues are within a range from 0.22 ×  109 to 2 ×  109. Each application is classified into 
one of three classes: 1) Low (IPS < 1×109), 2) Medium (1×109 < IPS < 1.5×109), and 
3) High (IPS > 1.5×  109), respectively. The experimental workload consists of vari-
ous mixes of applications from different classes that are demonstrated in Table 1.

5.2  Performance and power consumption prediction

The performance and power consumption predictor models (Eqs. 4–9) are exploited 
to estimate the values for the next scheduling epoch. In this section, the accuracy 
of performance and power consumption predictors are investigated. Figure 5 illus-
trates the predicted versus actual values of IPS and power for the random execution 
of SPEC benchmark when running on a cluster and intended to be run on the other 
cluster. As given in Table 2, the performance prediction error (given by the normal-
ized root-mean-square error) for little core when running on big core (IPS_little) is 
3.3%, while the performance prediction error for big core when running on little 
core is (IPS_big) 1.7%. The power consumption prediction error of P_little and Pbig is 
2.9% and 3.8%, respectively. The acceptable prediction errors of predictors indicate 
that our estimation model can accurately predict the performance and power con-
sumption of a task running on different core types.

5.3  Results and discussion

The proposed CEEF framework considers energy efficiency, contention, and fair-
ness simultaneously, when executing different tasks. EEM, CA, and intra-cluster 
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Table 1  Multi-application workload combinations

Name Applications Name Applications

W1 omnetpp + lbm + mcf + perlbench + leslie3d + astar W13 gobmk + bwaves + astar + mcf + perlbench + omnetpp
W2 gobmk + sjeng + GemsFDTD + povray + milc + cactusADM W14 leslie3d + namd + lbm + perlbench + omnetpp + mcf
W3 bzip2 + gamess + calculix + xalancbmk + tonto + zeusmp W15 gromacs + bwaves + omnetpp + astar + mcf + perlbench
W4 libquantum + h264ref + gcc + soplex + mcf + perlbench W16 povray + GemsFDTD + gromacs + bwaves + calculix + tonto
W5 leslie3d + zeusmp + lbm + hmmer + povray + perlbench W17 omnetpp + povray + bwaves + gromacs + libquantum + calculix
W6 gromacs + bwaves + leslie3d + zeusmp + lbm + perlbench W18 gobmk + omnetpp + povray + GemsFDTD + gromacs + bwaves
W7 hmmer + libquantum + h264ref + povray + milc + cactusADM W19 bzip2 + gobmk + omnetpp + povray + GemsFDTD + gromacs
W8 xalancbmk + soplex + GemsFDTD + povray + milc + perlbench W20 milc + bzip2 + gobmk + omnetpp + povray + GemsFDTD
W9 GemsFDTD + povray + milc + omnetpp + mcf + perlbench W21 h264ref + bwaves + perlbench + zeusmp + mcf + milc
W10 cactusADM + GemsFDTD + povray + milc + perlbench + omnetpp W22 leslie3d + h264ref + bwaves + perlbench + zeusmp + mcf
W11 soplex + GemsFDTD + povray + milc + cactusADM + omnetpp W23 lbm + leslie3d + h264ref + bwaves + perlbench + zeusmp
W12 gcc + soplex + omnetpp + astar + mcf + perlbench W24 soplex + lbm + leslie3d + h264ref + bwaves + perlbench
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fairness management sections of the CEEF are repeated every one second (epoch 
duration). When a task execution completes, it is not relaunched and the number 
of tasks decreases until all of them terminate. The Wmax and Uniformitythreshold are 
user-defined values which are specified before the start of scheduling. CEEF frame-
work is an extension of our previous framework. Two significant changes have been 

(a) (b) (c) (d)

Fig. 5  The predicted versus actual values of a  IPS_little, b  IPS_big, c  P_little, and d  P_big for the random 
execution of SPEC benchmark

Table 2  Performance and power 
prediction error

IPS_little IPS_big P_little P_big

Performance prediction error (%) 3.3 1.7 2.9 3.8

Table 3  Specification of 
different schedulers

Scheduler Energy eff. 
Aware

Contention 
aware

Fairness aware

Linux
DTPM [11] ✓

Minfair [19] ✓

HFEE [16] ✓ ✓

CAMPS [2] ✓ ✓

CEEF ✓ ✓ ✓

Fig. 6  EDP and uniformity improvement in different schedulers compared to standard Linux schedulers
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applied as the extensions: (1) online energy efficiency management; (2) performing 
contention administration.

5.3.1  CEEF versus other schedulers

Various schedulers, shown in Table 3, are implemented, and their results are com-
pared to CEEF in terms of EDP and uniformity. Figure 6 exhibits the joint EDP and 
uniformity improvement ([uniformity of CEEF-uniformity of other scheduler]/uni-
formity of CEEF) of CEEF framework and various schedulers compared to standard 
Linux scheduler for all 24 selected workloads. As shown in Fig. 6, CEEF incorpo-
rates most improvement for EDP and uniformity simultaneously, among all other 
schedulers. CEEF framework improves EDP and uniformity by 74.5% and 64.9% 
compared to Linux standard scheduler. The second-best scheduler is HFEE, while 
EDP and uniformity improvements are 73.9% and 63.2%, respectively. The lack of 
contention management and static energy management in HFEE compared to CEEF 
causes less EDP and uniformity improvement. CAMPS and Minfair are unaware of 
energy efficiency that leads to less EDP improvement which are 48.8% and 35.8%, 
respectively. Uniformity improvement in CAMPS and Minfair compared to standard 
Linux schedulers is 53.5% and 63.4% correspondingly. DTPM is just energy-aware 
algorithm and does not consider uniformity and makespan. It has least EDP and uni-
formity improvement, 30.1% and 6.1% accordingly. The fully structural analysis of 
different schedulers is presented in the following subsections.

5.3.2  Clusters utilization

Big (little) cluster’s utilization is defined as the ratio of execution time of a workload 
on big (little) cluster to the total execution time of both clusters. Big clusters’ utiliza-
tion and little clusters’ utilization are crucial factors that affect the scheduler perfor-
mance and EDP significantly. Higher little cluster’s utilization increases makespan 
compared to higher big cluster’s utilization. Figure 7 shows the big/little cluster’ uti-
lization of different algorithms under various workloads. CEEF exploits little clus-
ter when the number of tasks is more than big core count and little cores are idle, 

Fig. 7  The average big and little cluster usage of different schedulers under various workloads
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in case the task count is less than big core count. This reduces the execution time 
significantly.

HFEE has 31.2% more utilization of little cluster compared to CEEF, which is 
due to lack of contention management. Minfair maximizes fairness by equal utiliza-
tion of big and little clusters with the cost of higher execution time. Both big and 
little clusters are always active in this policy even when the task count is lower than 
big core count, which degrades performance (execution time) dramatically. DTPM 
target is energy consumption management and does not consider fairness. It uses big 
cluster less than little cluster in order to reduce energy consumption, which results 
in longer execution time. Heterogeneity agnostic Linux standard scheduler uses little 
cluster more than big cluster and increases execution time consequently.

5.3.3  Clusters frequency

Another important characteristic of schedulers is the level of clusters frequency uti-
lization which is defined as the period of time a specific frequency level of cluster 
is used that affects substantially performance, energy consumption, and uniformity. 
Using higher frequency level improves performance at the cost of higher energy con-
sumption. Also, the frequency level of clusters affects the uniformity considerably.

According to previous studies [16], DVFS is performed on the big clusters and 
the frequency of little cluster remains unchanged. Figure 8 shows the frequency level 
of all schedulers under running w3 workload. CEEF enhances uniformity via DVFS 
and even out cluster’s computing power, which results in higher fairness. Also, fre-
quency scaling is applied only at the state of task count more than big core count, 
otherwise all tasks are mapped to big cores, which improves performance (execu-
tion time decrement) and fairness significantly. As shown in Fig. 8, CEEF exploits 
low frequency levels compared to other schedulers (excluding DTPM that is just 
energy-aware and does not consider fairness). Lower execution time and energy con-
sumption result in lower EDP compared to other schedulers. Close frequency-level 
utilization of CEEF and HFEE makes energy consumption of two schedulers rather 
equal. Little cluster utilization of HFEE is more than CEEF, so it has lower per-
formance (more execution time) compared to CEEF; therefore, the EDP of HFEE 

Fig. 8  The frequency level of all schedulers under running w3 workload
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is slightly more than that of CEEF. Dynamic EEM of CEEF versus static EEM of 
HFEE boosts CEEF uniformity about 1.7% compared to HFEE uniformity. DTPM 
as a fairness agnostic scheduler exploits low frequency levels and little cluster more 
than big cluster, which results in lower energy consumption and higher execution 
time and, hence, degrades EDP dramatically.

Min-Fair target is fairness improvement without considering DVFS and energy 
efficiency which results in higher energy consumption. High execution time due to 
both clusters’ activation increases EDP substantially. CAMPS and Linux standard 
scheduler always operate at high frequency levels, which results in higher energy 
consumption. Little cluster utilization of these two schedulers is more than big clus-
ter utilization that increases execution time. Their longer delay and higher energy 
consumption result in higher EDP. In order to investigate the CEEF overhead, the 
framework is operated at two different states of isolated and shared (alongside 
the workload set) and their performance is compared. The results indicate 1.95% 
overhead.

6  Conclusion and future work

In this paper, a scheduling framework consisting of energy efficiency, shared 
resource contention, and fairness management for heterogeneous multi-core proces-
sors is presented via frequency scaling support. The performance per watt ratio of 
big to little cluster which is predicted online with a highly accurate regression model 
plays a critical role in energy efficiency management. The presented shared resource 
contention administration boosts performance and fairness through scaling the fre-
quency of big cores. The experimental results indicate that the proposed framework 
surpasses Linux and four other schedulers in terms of fairness and energy efficiency. 
Future work will be the presentation of performance, energy efficiency, and fairness 
models in order to estimate shared metric values via isolated values. The extension 
of FSM in order to support local DVFS is considered as the other further study.
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