
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:7729–7748
https://doi.org/10.1007/s11227-021-04159-8

1 3

Online energy‑efficient fair scheduling for heterogeneous
multi‑cores considering shared resource contention

Bagher Salami1 · Hamid Noori1 · Mahmoud Naghibzadeh1

Accepted: 19 October 2021 / Published online: 3 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Heterogeneous multi-core processors (HMP) are dual-objective hardware plat-
forms which integrate both high-performance and low power consumption proces-
sors. Investigation of simultaneous fairness and energy efficiency could widen their
applicability and reveal their strengths. This paper proposes a scheduling framework
considering energy efficiency, shared resource contention, and fairness for heteroge-
neous multi-core processors. The presented framework is implemented and evalu-
ated on a real HMP platform. The obtained experimental results via SPEC CPU2006
benchmark indicate that the proposed framework surpasses Linux and four other
schedulers in terms of fairness (58% on average) and energy efficiency (37% on
average). The source code of the proposed framework and the opponent algorithms
are available online at https:// github. com/ baghe rs/ CEEF.

Keywords Shared resource contention · Energy efficiency · Fairness · Scheduling ·
Heterogeneous multi-core · big.LITTLE

1 Introduction

Heterogeneous multi-core processors (HMP) have different computational capa-
bilities. HMP as a promising paradigm show potential performance improvement
and power consumption reduction. This fact has yielded the development of recent
HMPs like ARM’s big.LITTLE processors, where powerful cores (big cluster) are
integrated with low-performance cores (little cluster). Both clusters share the same

 * Hamid Noori
 hnoori@um.ac.ir

 Bagher Salami
 bagher.salami@mail.um.ac.ir

 Mahmoud Naghibzadeh
 naghibzadeh@um.ac.ir

1 Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

http://orcid.org/0000-0003-1410-6781
https://github.com/baghers/CEEF.
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04159-8&domain=pdf
Peter Hu

7730 B. Salami et al.

1 3

instruction set architecture (ISA), while each cluster has a particular cache size,
pipeline stages, and voltage and frequency levels.

Multi-core processors share resources such as caches and memory controllers
with adjacent cores, which results in performance degradation due to contention for
shared resources. The shared resources consist of last level cache (L2 or L3), the
memory bus or interconnects, DRAM controllers, and pre-fetchers [1]. An applica-
tion may slow down by hundreds of percent if it shares resources with applications
running on adjacent cores compared to running alone [2]. There are several conten-
tion minimization techniques, such as last-level-cache partitioning [3], DRAM con-
troller [4], and thread-level scheduling [2] (mapping threads to the cores). Different
mappings lead to different mixes of threads competing for shared resources. Thread
scheduling techniques try to find the mappings that result in less shared resource
contention, achieving the best possible performance.

Energy efficiency is also achieved through optimizing both the performance (exe-
cution time) and energy consumption. The execution time and energy consumption
of any program in HMPs are affected by cluster type, cluster’s frequency, and the
program behavior. Various scheduling algorithms have been proposed to improve
energy efficiency of HMPs [5–11].

In contention-aware algorithms, performance is improved alongside other criteria
such as reliability [12] and fairness [2]. A scheduler is considered fair if all pro-
grams suffer from the same performance degradation normalized to the isolated run
on a base configuration [13, 14]. Likewise, in energy-efficient schedulers, energy
and performance are enhanced alongside other factors such as reliability [9], aging
rate [7], and temperature [11]. Dynamic voltage–frequency scaling (DVFS) remains
one of the prevalent options for chip power management despite the overhead and
associated static power (due to leakage current) [15]. This paper promotes the state
of the art in fairness-aware energy-efficient scheduling, by ((1) managing energy
efficiency online and (2) considering shared resource contention effects.

The disadvantage of offline energy efficiency management is that the applica-
tions should be known by the system and the tedious tasks profiling of the running
applications are required, which limits the application of offline scheme. The phase
changes of applications are also not considered in the offline energy efficiency man-
agement. This paper addresses the problem of considering contention, energy effi-
ciency, and fairness scheduling (CEEF) of tasks online on HMPs.

The ratio of the IPS (instruction per second) per watt (IPW) of the big cluster
to the little cluster for each program is an indicator of a program’s suitability for
each cluster type. According to our experiments, programs with higher energy effi-
ciency ratio (EER) values are more energy efficient to run on the big cluster which
enhances energy efficiency in terms of energy–delay product (EDP). Also, the prob-
lem of starvation and wait times of workloads are crucial issues, which have to be
considered in the policy of co-execution selection. The theoretical analysis is per-
formed to confront the problem of starvation by considering the wait time in pro-
gram selection for co-executing on each cluster. Experimental results also demon-
strate that the programs with the higher energy efficiency are more energy efficient
to run on the big cluster and those with low ratio values are suitable for the little
cluster. The proposed algorithm aims to improve the scheduler’s energy efficiency

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

7731

1 3

Online energy‑efficient fair scheduling for heterogeneous…

by assigning big’s appropriate programs to the big cluster and little’s appropriate
programs to the little cluster and co-executing pair of programs on each cluster with
less shared resource contention. Through proper task assignment to clusters, co-
executing less shared resource contention pair on each cluster, and management of
each cluster’s voltage and frequency, a certain level of fairness known as the fairness
threshold, is guaranteed, while energy efficiency (EDP) is improved.

The proposed framework is evaluated on a real ARM big.LITTLE multi-core
processor and compared with standard Linux scheduler and four state-of-the-art
schedulers. After running various experiments, the results demonstrate that the pro-
posed scheduler guarantees the fairness threshold while improving overall energy
efficiency. In summary, the present paper makes the following contributions:

• It addresses the problem of contention, energy efficiency, and fairness scheduling
of tasks on HMPs with DVFS capability simultaneously.

• Unlike [16], the proposed online framework does not need any offline profiling
of running applications and also considers cache contention. The time complex-
ity of the scheduling process is low.

• Our proposed framework exploits a small set of performance metrics that can
be easily extracted using performance monitoring unit available in commercial
HMPs.

The remainder of the paper is organized as follows: The related work is discussed
in Sect. 2, and the preliminaries are presented in Sect. 3. Section 4 describes our
proposed framework in detail. In Sect. 5, the implementation and analysis results are
discussed, and conclusions are made in Sect. 6.

2 Related work

The advent of the HMP era and the emphasis of criteria such as performance, fair-
ness, and energy efficiency have forced us to reconsider the scheduling techniques.
The prior works examination is started with covering the performance, energy effi-
ciency, and fairness improvement proposals. Finally, the shared resource contention
management schemes are investigated.

2.1 Performance optimization

Performance improvement in HMPs has been achieved through proper mapping of
applications to different big and little cores. Workload memory intensity is one of
the first schemes [17] to guide applications mapping by assigning CPU-intensive
workloads to big cores, while memory-intensive workloads are run on the little
cores. Memory intensity alone is not a correct indicator for workload to core map-
ping, which causes suboptimal scheduling [8]. Van Craeynest et al. [8] exploit ILP
(instruction-level parallelism) and MLP (memory-level parallelism). They show that
small cores provide better performance for computer-intensive workloads whose

Peter Hu

Peter Hu

Peter Hu

Peter Hu

7732 B. Salami et al.

1 3

subsequent instructions in the dynamic instruction stream are usually independent
(i.e., high ILP) and big cores supply high performance for workloads that present a
large amount of MLP.

Recent studies [16] suggest to exploit the big to little speedup factor for mapping
applications to different core types. Performance improvement is achieved through
mapping of applications with higher big to little speedup factor (SF) to big cores and
applications with lower speedup factor to the little cores. Application’s SF measure-
ment is a crucial matter in the contemporary HMP performance management era.
Sampling [2] is a premier suggestion to calculate application’s SF via running each
program on both big and little cores to extract IPC. Further schemes of application’s
SF calculation consist of estimating application’s SF using performance models and
extracted runtime information from performance monitoring unit (PMU) [2].

2.2 Energy efficiency management

Improving energy and performance requires assigning tasks to the appropriate
core types and adjusting their frequencies to an appropriate value through DVFS
(dynamic voltage–frequency scaling). The first effort of closed-loop (feedback-based
controller) load balancing is SmartBalance [6]. Dissimilar to open-loop Linux load
balancer, which assigns the tasks evenly, SmartBalance through three phases of
sense, predict, and balance tries to assign the threads to the matched core type to
achieve the best energy efficiency. Myungsun et al. [10] studied energy efficiency
management through DVFS. They propose a utilization-aware load balancer via a
utilization estimator to determine the most appropriate frequency and core type for
a given set of programs. DTPM [11] is one of the latest studies of dynamic power
and frequency management using power budget and power consumption predictors
at different frequency level. DTPM specifies the maximum feasible frequency under
the available power budget.

2.3 Fairness improvement

Several fairness definitions have been presented in the prior works. Frequently, a
system is considered fair when all the running programs suffer the same slowdown
corresponding to their isolated execution [2]. Performance asymmetry in HMPs is
the main reason of different slowdown and low fairness. Asymmetry-aware Round-
Robin (ARR) scheduler is considered as first approach of fair scheduling on HMPs
through fair-sharing big core cycles [18]. RR improves fairness compared to fairness
agnostic schedulers. However, as shown in [18], it makes a suboptimal fairness solu-
tion and degrades performance substantially.

Application’s SF is considered when distributing big core cycles among the appli-
cations to improve both fairness and performance. In [19], RR and application’s SF
are combined to efficiently distribute big core cycles among different applications so
that target fairness is guaranteed. The remain big core cycles are allocated to appli-
cations according to their SF. Progress-based proposals are novel schemes to opti-
mize both fairness and performance on HMPs. Balanced progress of applications

7733

1 3

Online energy‑efficient fair scheduling for heterogeneous…

causes even out slowdowns, improving both fairness and performance. Feliu et al.
[13] present a progress-aware scheduler that estimates the progress experienced by
the processes and gives priority to the processes with lower accumulated progress.
HFEE [16] is the latest study of energy efficiency and fairness, including dynamic
voltage–frequency scaling (DVFS). HFEE tries to improve energy efficiency through
appropriate mapping of applications to different core types and make equal progress
of applications via both progress management (software approach) and frequency
scaling (hardware approach) to uniform application slowdowns, hence improving
fairness.

2.4 Shared resource contention management

HMPs are not independent processors, where last level cache (L2 or L3), the mem-
ory bus or interconnects, DRAM controllers are shared with neighboring cores that
results in performance degradation due to contention for shared resources. Conten-
tion-aware schedulers are very promising solutions at mitigating the performance
loss of shared resource contention. Contention-aware schedulers identify which
tasks should run near together and which tasks should run far away to mitigate the
harmful effects of contention. The initial efforts of contention management are per-
formed by Tian et al. [20] that assume the performance degradation of all possible
pair of tasks are known. Then, they constitute the complete graph, while nodes of
the graph are the tasks to be scheduled and the edges are the performance degra-
dation of co-scheduled tasks to the same cluster. The optimal solution is a mini-
mum weight perfect matching of the graph. However, the problem is NP-complete
for HMPs with more than two cores per cluster [20]. Zhuravlev et al. [21] proposed
a heuristic method known as distributed intensity (DI), where all tasks are sorted
based on their miss rate and tasks are co-executed from the opposite ends of the list.
Co-scheduling threads with complementary usage of shared resources is the most
prevalent scheme of contention management. One of the novel researches of con-
tention and fairness management has been presented in [2]. They exploit progress
information of tasks to even out slowdowns to improve fairness, and complementary
usage of bus transfer rate is used to mitigate the contention problem.

An issue in task scheduling that has not been addressed by previous works is the
simultaneous consideration of energy efficiency, fairness, and contention to enhance
task scheduling on the asymmetric multi-core processors. This overlooked problem
is the motivation behind the current study.

3 Preliminaries

In this section, workload and platform models as well as energy efficiency and fair-
ness metrics are investigated. Also, the challenges associated with energy efficiency
and shared resource contention are studied.

7734 B. Salami et al.

1 3

3.1 System model and metrics

Workload model. There is a set of m single thread programs as P = {p1,p2,…,pm}
with the possibility of the program count being greater than that of core count (m ≥
Core#). In this paper, the term task is used for both programs and tasks. Task sched-
uling epoch is τ seconds.

Platform model. The HMP platform consists of a single-ISA heterogeneous multi-
core processors with n cores as C = {c1,c2,…,cn}. Cores are classified into s set of
clusters as Z = {z1,z2,…,zs}, and voltage/frequency of each cluster is adjusted dynam-
ically. It is supposed that HMP is equipped with hardware performance counters
and power sensor per cluster.

Energy efficiency metrics. Energy efficiency is defined as the combination of reduced
energy consumption and performance improvement (execution time) [22–28]. The
energy–delay product (EDP) is calculated by the product of the total amount of
energy consumed and the runtime duration, where the higher the energy efficiency,
the less the EDP. In contrast to EDP, the IPS per watt (IPW) is the total amount of
committed instruction for every watt of power consumed. The more the IPW, the
higher the energy efficiency is achieved.

Fairness metric. Previous studies of fairness management [13, 14, 16] define a
scheduler as fair if equal-priority applications in a workload suffer the same slow-
down due to sharing the system. In other words, a scheduler is considered fair if
the variation of performance degradation normalized to isolated run (one second on
the big and one second on the little core with the highest voltage and frequency) is
minimal.

The slowdown of program i under a scheduler is expressed as
slowdowni =

Tsch.,i

Tisolated run,i

 , where Tsch.,i is the execution time of program i and Tisolated run,i
is the execution time of isolated run of program i. The evaluation of fairness is per-
formed in terms of uniformity:

where �S and �S are the standard deviation and the average of slowdown values of all
programs.

Problem statement. This study explores the problem of assigning m single-thread
tasks to one n cores big.LITTLE processor. The shared resource contention among
the tasks is considered, and voltage and frequency of clusters are identified dynami-
cally such that energy efficiency is improved and system fairness is more than or
equal to the user-defined threshold.

(1)Uniformity = 1 −
�S

�S

7735

1 3

Online energy‑efficient fair scheduling for heterogeneous…

3.2 Shared resource contention impact on performance and energy efficiency

The impact of shared resource contention on performance of HMPs is fully investi-
gated in previous researches [2–4], while the resource contention impacts on energy
efficiency of schedulers are overlooked matters in task scheduling algorithms. An
experiment is conducted, and all dual pairs of programs from SPECCPU2006 bench-
mark suite are executed, and the values of instruction per second (IPS) and IPW are
extracted for each dual pair that is shown in Fig. 1. As shown in Fig. 1, the diagram
of IPS is much correlated with the diagram of IPW. Pearson product moment corre-
lation coefficient (PPMCC) [29] is a prevalent correlation computation method that
allows calculating the exact correlation of IPS to IPW. PPMCC is used to measure
the correlation of two variables X and Y. The r coefficient is calculated using Eq. 2:

where N is the number of sampled data and X , Y are the averages of X and Y vari-
ables, respectively. The relationship between X and Y is perfect, when r is 1 or − 1.
The negative value indicates that if X variable increases, Y will decrease. The r
coefficient of IPS and IPW is about 0.801, which shows a high relationship between
IPS and IPW. In other words, improving IPS of workload execution boosts the IPW
consequently. Recent processors feature a performance monitoring unit consisting
of a set of counters that can be programmed to extract different events during the
execution of tasks.

In order to find out the contention impact of application’s co-execution on per-
formance (IPS), one experiment is conducted to find out the performance coun-
ter (events) which has the greatest correlation with performance (IPS) of each
application’s pair. Most correlated performance counter with performance is
used as performance increment/decrement identifier. After identifying the most

(2)r =

∑N

i=1

�

Xi − X
��

Yi − Y
�

�

∑N

i=1

�

Xi − X
�2

�

∑N

i=1

�

Yi − Y
�2

,

Fig. 1 IPW and IPS of various dual pairs of workloads

7736 B. Salami et al.

1 3

correlated performance counter (PCm) with IPS of application’s pairs, the appli-
cation’s pair with the highest PCm is selected to co-execute at the same time. To
do so, all 756 (27 × 28) dual applications pairs of SPECCPU2006 benchmark
suite are run and the average IPS of each pair is extracted. Then, each single pro-
gram of SPECCPU2006 benchmark suite is run alone and for each program the
amount of 30 events (performance counters) are logged. For each performance
counter, the average (corr_avg) and difference (corr_dif) of performance counter
values of two programs running in isolation are correlated with the IPS value of
running two programs in shared. Figure 2 shows correlations of average and dif-
ference of various performance counter values of dual programs running in isola-
tion with the IPS value of running two programs in shared resources. As shown in
Fig. 2, corravg of IPC has the strongest correlation value among the other events,
so it is concluded that if two tasks with the highest IPC values in isolation are
co-executed, the greatest performance (IPS) and energy efficiency (IPW) are
achieved. Our proposed framework uses this event as a metric to mitigate conten-
tion through proper selection of paired tasks in each cluster. Therefore, the larger
the IPC value for a workload, the larger the performance and energy efficiency of
workload and vice versa.

4 CEEF framework

The proposed hierarchical CEEF framework is shown in Fig. 3 and consists of
three components: (1) Energy Efficiency Management (EEM) exploits CPU power
sensors and performance counters for energy-efficient assignment of tasks to big
and little clusters; (2) Contention Administration (CA) specifies which pair of
tasks has less shared resource contention and more energy efficient for running
together, meanwhile preventing starvation of tasks; (3) Fairness Improvement
(FI) boosts scheduling fairness through intra-cluster fairness enhancement. The
following subsections fully describe the different parts of the CEEF framework.

Fig. 2 The correlation of average (corr_avg) and difference (corr_dif) of different performance counter val-
ues of programs running in isolation with the IPS value of running two programs simultaneously

7737

1 3

Online energy‑efficient fair scheduling for heterogeneous…

4.1 Energy efficiency management (EEM)

Appropriate tasks to clusters (core types) mapping on HMPs improve energy effi-
ciency significantly [5]. An energy efficiency speedup factor known as energy
efficiency ratio (EER) has been proposed in [16]. EER is described as the ratio
of instruction per watt on big to instruction per watt on the little cluster and is
expressed as:

where IPS(i)big and IPS(i)little are the average instruction per second (IPS) of program
i on big and little cores, respectively, extracted using the CPU performance counters.
The average power consumption of program i running on a big core is denoted by
P(i)big , and P(i)little is also the average power consumption of program i running on
a little core. The measurement of these four values is an important problem in EER
calculation. Sampling is the simplest scheme of IPS and power measurement, where
each task is executed on both core types and extracted values are used to calculate
EER. The major issue of this technique is the high-performance overhead of sam-
pling. The IPS and power prediction is a preferable approach to calculate EER with
low performance overhead. The linear regression models in [30] are exploited to

(3)EER(i) =

IPS(i)big

P(i)big

IPS(i)little

P(i)little

=
IPS(i)big ∗ P(i)little

IPS(i)little ∗ P(i)big

Fig. 3 Contention, energy-efficient, and fairness-aware framework

7738 B. Salami et al.

1 3

predict IPS and power consumption of tasks on a core type based on the IPS, LLCM
(last level cache misses), and power consumption of tasks on the other core type.
The task performance and power consumption prediction are extracted by collecting
performance and power consumption data from a set of nominating workloads in the
system and constructing the following linear regression models:

These performance and power prediction models are extracted from performance
and power data achieved by running different programs of the SPEC CPU2006 bench-
mark suite individually on each core type, and the coefficients w1 to w18 are derived
through curve fitting. After the EER value of each task is specified, energy efficiency
improves through assigning tasks with higher EER to big cores and mapping lower
EER tasks to little cores; thus, the tasks set is divided into high EER and low EER task
sets and are assigned to big and little clusters, respectively.

4.2 Contention administration (CA)

After determining energy-efficient task sets for each cluster, task selection for co-exe-
cution on each cluster is performed. In order to mitigate the effect of shared resource
contention, the selected co-running tasks on each cluster must have less contention
among each other. According to previous contention investigations, the selected tasks
with higher IPC in isolation cause less contention and higher energy efficiency.

The IPC of tasks in isolated are unknown, and accurate estimation of isolated IPC is
out of scope of this paper. An adequate approximation of stand-alone IPC of a task is
to consider IPC at the state of low-contention co-execution. Co-running tasks with the
highest IPC causes less contention. The IPC of a task is measured during the execution
of the low contention (co-running with high IPC tasks) and used as an estimation of its
stand-alone IPC for the following epochs. A history table is used to store the estimation
of stand-alone IPCs of all tasks.

However, mitigating contention impact through selecting high IPC tasks causes star-
vation and increase in wait time of some tasks, which can spoil fairness of the scheme.
To prevent starvation, the wait time of each task is considered along with IPC.

(4)IPSlittle = w1 ∗ IPSbig + w2 ∗ LLCMbig + w3

(5)IPSbig = w4 ∗ IPSlittle + w5 ∗ LLCMlittle + w6

(6)LLCMlittle = w7 ∗ IPSbig + w8 ∗ LLCMbig + w9

(7)LLCMbig = w10 ∗ IPSlittle + w11 ∗ LLCMlittle + w12

(8)Plittle = w13 ∗ IPSbig + w14 ∗ LLCMbig + w15

(9)Pbig = w16 ∗ IPSlittle + w17 ∗ LLCMlittle + w18

7739

1 3

Online energy‑efficient fair scheduling for heterogeneous…

For this purpose, IPC of tasks are normalized (i.e., they are bounded between 0 and
1):

Then, IPC with considering wait time are represented by IPCC(i) as:

where K(i) denotes the number of epochs waiting for a CPU and Wmax is the maxi-
mum number of epochs that a task can wait for CPU. Wmax is a user-defined value
which should be specified before the start of scheduling. Equation 11 guarantees that
all tasks receive CPU time before at most Wmax epochs. There is a history table for
each cluster that contains the IPCc of all tasks. All tasks are sorted based on their
IPCc, and tasks with higher IPCc values are selected to co-execute alongside each
other.

4.3 Fairness improvement (FI)

Fair scheduling is defined as scheduling tasks such that all tasks suffer the same slow-
down corresponding to their isolated run. The performance asymmetry affects task’s
slowdown substantially. Performance asymmetry originates from the different high-
performance (big cores) and low-power (little cores) architecture of HMPs and pro-
duces diverse speedups (slowdowns) that endanger the fairness. Different CPU fre-
quency levels can be another source of performance asymmetry. However, it also can
be an effective instrument to reduce performance asymmetry and boosting fairness
through making two core types of speedups (computing power) almost the same. If two
cluster’s computing power becomes rather equal, performance asymmetry decreases
and fairness improves. DVFS is a tool which can be used to equalize two cluster’s com-
puting power, which causes the tasks taking the equal processing resources and even
out tasks slowdowns, hence improving fairness.

In our previous study [16], a finite-state machine (FSM) fairness manager is pre-
sented via adjusting the cluster’s frequency. As shown in Fig. 4, FSM fairness man-
ager consists of five states; each state is represented by the notation of (uniformity, fre-
quency) and enumerated as: {(L, L), (L, H), (H, L), (H, H)}. Two uniformity states and
two frequency states have been considered known as low and high, which are expressed
as {L, H} for short. When the current uniformity is lower than Uniformitythreshold (a
user-defined value), the system is in the low fairness state and high fairness state hap-
pens when the current uniformity is higher than Uniformitythreshold. The little cluster
always operates at its maximum frequency (similar to [11, 19]), and FSM only adjusts
the big cluster frequency. When the big cluster’s frequency is under fthreshold, the fre-
quency state is low, and the frequency state is high, when the big cluster’s frequency
is more than fthreshold. fthreshold described in [16] is a frequency level where for higher
big cluster’s frequency level than fthreshold, uniformity does not improve anymore. The

(10)IPCN(i) =
IPC(i) −minj∈P (IPC(j))

maxj∈P (IPC(j)) −minj∈P (IPC(j))

(11)IPCC(i) = IPCN(i) +
(

1 − IPCN

)

.
K(i)

Wmax

7740 B. Salami et al.

1 3

processor at each scheduling epoch can be in one of the five states. When the system
reaches the optimal state five, uniformity is high and frequency in this state remains
fixed.

4.4 Complexity analysis

Given the numbers of cores |C| and programs |P|, the proposed scheduler at each
scheduling epoch has the complexity of |P|× log(|P|) for sort of tasks based on
EER and IPCc in EEM and CA phases. Also, the fairness management phase has
the complexity of |1|. If we assume |P|> =|C|, then the runtime is bounded by O
(|P|× log(|P|)).

5 Experimental evaluation

The experimental results of different schemes for various workloads on a real
platform and analysis of the obtained results are presented in the following.

(1)
L,L

(++freq)

(3)
L,H

(--freq)

(4)
H,H

(--freq)

(5)
H,L

Uniformity<=uniformitythreshold

 &Freq<=fthreshold

Uniformity>uniformitythreshold

 &Freq<=fthreshold

Uniformity<=uniformitythreshold

 &Freq>fthreshold

Uniformity>uniformitythreshold

 &Freq>fthreshold

(2)
H,L

(++freq)

Uniformity>uniformitythreshold

 &Freq<=fthreshold

Uniformity<=uniformitythreshold

 &Freq>fthreshold

Uniform
ity>uniform

ity
threshold

 &
Freq>fthreshold

Uniformity<=uniformitythreshold

 &Freq>fthreshold

Uniformity>uniformitythreshold

 &Freq>fthreshold

Uniformity>uniformitythreshold

 &Freq<=fthreshold

Uniformity<=uniformitythreshold

 &Freq<=fthreshold

Uniformity>uniformitythreshold

 &Freq<=fthreshold

Fig. 4 FSM fairness manager through DVFS

7741

1 3

Online energy‑efficient fair scheduling for heterogeneous…

5.1 Experimental setup

The proposed contention-, energy efficiency-, and fairness-aware scheduling
framework is evaluated on a real ARM big.LITTLE processor. The embedded
platform is an ODROID-XU3 board integrating the Exynos Octa 5422 chip with
four Cortex-A15 3-way out-of-order and four Cortex-A7 2-way in-order cores.
The operating frequencies of the big cluster range are from 200 MHz to 2 GHz
and from 200 MHz to 1.4 GHz for the little cluster. Big cluster shares 2 MB L2
cache, and little cluster shares 512 KB L2 cache.

The size of DRAM is 2 GB which is inadequate to run eight programs on all
eight cores simultaneously [19]; therefore, at most six programs are executed simul-
taneously. Six (three big and three little) cores are enabled, and the remaining are
turned off. Also, Ubuntu MATE 16.04.3 (4.14 generic Kernel) and Perf library are
employed. The frequencies of clusters are scaled through cpufreq, and taskset is
used to assign a thread to a dedicate core and embedded power sensors of each clus-
ter are exploited for power measurement. The SPEC CPU2006 benchmark suite is
used, and applications are categorized in terms of instructions per second (IPS). IPS
and IPC are calculated with the aid of cycle count. So, if we know IPC and cycle
count, IPS is calculable. Also, if we know IPS and cycle count, IPC is calculable.
The IPS values of different applications on the big core are extracted, while IPS val-
ues are within a range from 0.22 × 109 to 2 × 109. Each application is classified into
one of three classes: 1) Low (IPS < 1×109), 2) Medium (1×109 < IPS < 1.5×109), and
3) High (IPS > 1.5× 109), respectively. The experimental workload consists of vari-
ous mixes of applications from different classes that are demonstrated in Table 1.

5.2 Performance and power consumption prediction

The performance and power consumption predictor models (Eqs. 4–9) are exploited
to estimate the values for the next scheduling epoch. In this section, the accuracy
of performance and power consumption predictors are investigated. Figure 5 illus-
trates the predicted versus actual values of IPS and power for the random execution
of SPEC benchmark when running on a cluster and intended to be run on the other
cluster. As given in Table 2, the performance prediction error (given by the normal-
ized root-mean-square error) for little core when running on big core (IPS_little) is
3.3%, while the performance prediction error for big core when running on little
core is (IPS_big) 1.7%. The power consumption prediction error of P_little and Pbig is
2.9% and 3.8%, respectively. The acceptable prediction errors of predictors indicate
that our estimation model can accurately predict the performance and power con-
sumption of a task running on different core types.

5.3 Results and discussion

The proposed CEEF framework considers energy efficiency, contention, and fair-
ness simultaneously, when executing different tasks. EEM, CA, and intra-cluster

7742

B. Salam
i et al.

1 3

Table 1 Multi-application workload combinations

Name Applications Name Applications

W1 omnetpp + lbm + mcf + perlbench + leslie3d + astar W13 gobmk + bwaves + astar + mcf + perlbench + omnetpp
W2 gobmk + sjeng + GemsFDTD + povray + milc + cactusADM W14 leslie3d + namd + lbm + perlbench + omnetpp + mcf
W3 bzip2 + gamess + calculix + xalancbmk + tonto + zeusmp W15 gromacs + bwaves + omnetpp + astar + mcf + perlbench
W4 libquantum + h264ref + gcc + soplex + mcf + perlbench W16 povray + GemsFDTD + gromacs + bwaves + calculix + tonto
W5 leslie3d + zeusmp + lbm + hmmer + povray + perlbench W17 omnetpp + povray + bwaves + gromacs + libquantum + calculix
W6 gromacs + bwaves + leslie3d + zeusmp + lbm + perlbench W18 gobmk + omnetpp + povray + GemsFDTD + gromacs + bwaves
W7 hmmer + libquantum + h264ref + povray + milc + cactusADM W19 bzip2 + gobmk + omnetpp + povray + GemsFDTD + gromacs
W8 xalancbmk + soplex + GemsFDTD + povray + milc + perlbench W20 milc + bzip2 + gobmk + omnetpp + povray + GemsFDTD
W9 GemsFDTD + povray + milc + omnetpp + mcf + perlbench W21 h264ref + bwaves + perlbench + zeusmp + mcf + milc
W10 cactusADM + GemsFDTD + povray + milc + perlbench + omnetpp W22 leslie3d + h264ref + bwaves + perlbench + zeusmp + mcf
W11 soplex + GemsFDTD + povray + milc + cactusADM + omnetpp W23 lbm + leslie3d + h264ref + bwaves + perlbench + zeusmp
W12 gcc + soplex + omnetpp + astar + mcf + perlbench W24 soplex + lbm + leslie3d + h264ref + bwaves + perlbench

7743

1 3

Online energy‑efficient fair scheduling for heterogeneous…

fairness management sections of the CEEF are repeated every one second (epoch
duration). When a task execution completes, it is not relaunched and the number
of tasks decreases until all of them terminate. The Wmax and Uniformitythreshold are
user-defined values which are specified before the start of scheduling. CEEF frame-
work is an extension of our previous framework. Two significant changes have been

(a) (b) (c) (d)

Fig. 5 The predicted versus actual values of a IPS_little, b IPS_big, c P_little, and d P_big for the random
execution of SPEC benchmark

Table 2 Performance and power
prediction error

IPS_little IPS_big P_little P_big

Performance prediction error (%) 3.3 1.7 2.9 3.8

Table 3 Specification of
different schedulers

Scheduler Energy eff.
Aware

Contention
aware

Fairness aware

Linux
DTPM [11] ✓

Minfair [19] ✓

HFEE [16] ✓ ✓

CAMPS [2] ✓ ✓

CEEF ✓ ✓ ✓

Fig. 6 EDP and uniformity improvement in different schedulers compared to standard Linux schedulers

7744 B. Salami et al.

1 3

applied as the extensions: (1) online energy efficiency management; (2) performing
contention administration.

5.3.1 CEEF versus other schedulers

Various schedulers, shown in Table 3, are implemented, and their results are com-
pared to CEEF in terms of EDP and uniformity. Figure 6 exhibits the joint EDP and
uniformity improvement ([uniformity of CEEF-uniformity of other scheduler]/uni-
formity of CEEF) of CEEF framework and various schedulers compared to standard
Linux scheduler for all 24 selected workloads. As shown in Fig. 6, CEEF incorpo-
rates most improvement for EDP and uniformity simultaneously, among all other
schedulers. CEEF framework improves EDP and uniformity by 74.5% and 64.9%
compared to Linux standard scheduler. The second-best scheduler is HFEE, while
EDP and uniformity improvements are 73.9% and 63.2%, respectively. The lack of
contention management and static energy management in HFEE compared to CEEF
causes less EDP and uniformity improvement. CAMPS and Minfair are unaware of
energy efficiency that leads to less EDP improvement which are 48.8% and 35.8%,
respectively. Uniformity improvement in CAMPS and Minfair compared to standard
Linux schedulers is 53.5% and 63.4% correspondingly. DTPM is just energy-aware
algorithm and does not consider uniformity and makespan. It has least EDP and uni-
formity improvement, 30.1% and 6.1% accordingly. The fully structural analysis of
different schedulers is presented in the following subsections.

5.3.2 Clusters utilization

Big (little) cluster’s utilization is defined as the ratio of execution time of a workload
on big (little) cluster to the total execution time of both clusters. Big clusters’ utiliza-
tion and little clusters’ utilization are crucial factors that affect the scheduler perfor-
mance and EDP significantly. Higher little cluster’s utilization increases makespan
compared to higher big cluster’s utilization. Figure 7 shows the big/little cluster’ uti-
lization of different algorithms under various workloads. CEEF exploits little clus-
ter when the number of tasks is more than big core count and little cores are idle,

Fig. 7 The average big and little cluster usage of different schedulers under various workloads

7745

1 3

Online energy‑efficient fair scheduling for heterogeneous…

in case the task count is less than big core count. This reduces the execution time
significantly.

HFEE has 31.2% more utilization of little cluster compared to CEEF, which is
due to lack of contention management. Minfair maximizes fairness by equal utiliza-
tion of big and little clusters with the cost of higher execution time. Both big and
little clusters are always active in this policy even when the task count is lower than
big core count, which degrades performance (execution time) dramatically. DTPM
target is energy consumption management and does not consider fairness. It uses big
cluster less than little cluster in order to reduce energy consumption, which results
in longer execution time. Heterogeneity agnostic Linux standard scheduler uses little
cluster more than big cluster and increases execution time consequently.

5.3.3 Clusters frequency

Another important characteristic of schedulers is the level of clusters frequency uti-
lization which is defined as the period of time a specific frequency level of cluster
is used that affects substantially performance, energy consumption, and uniformity.
Using higher frequency level improves performance at the cost of higher energy con-
sumption. Also, the frequency level of clusters affects the uniformity considerably.

According to previous studies [16], DVFS is performed on the big clusters and
the frequency of little cluster remains unchanged. Figure 8 shows the frequency level
of all schedulers under running w3 workload. CEEF enhances uniformity via DVFS
and even out cluster’s computing power, which results in higher fairness. Also, fre-
quency scaling is applied only at the state of task count more than big core count,
otherwise all tasks are mapped to big cores, which improves performance (execu-
tion time decrement) and fairness significantly. As shown in Fig. 8, CEEF exploits
low frequency levels compared to other schedulers (excluding DTPM that is just
energy-aware and does not consider fairness). Lower execution time and energy con-
sumption result in lower EDP compared to other schedulers. Close frequency-level
utilization of CEEF and HFEE makes energy consumption of two schedulers rather
equal. Little cluster utilization of HFEE is more than CEEF, so it has lower per-
formance (more execution time) compared to CEEF; therefore, the EDP of HFEE

Fig. 8 The frequency level of all schedulers under running w3 workload

7746 B. Salami et al.

1 3

is slightly more than that of CEEF. Dynamic EEM of CEEF versus static EEM of
HFEE boosts CEEF uniformity about 1.7% compared to HFEE uniformity. DTPM
as a fairness agnostic scheduler exploits low frequency levels and little cluster more
than big cluster, which results in lower energy consumption and higher execution
time and, hence, degrades EDP dramatically.

Min-Fair target is fairness improvement without considering DVFS and energy
efficiency which results in higher energy consumption. High execution time due to
both clusters’ activation increases EDP substantially. CAMPS and Linux standard
scheduler always operate at high frequency levels, which results in higher energy
consumption. Little cluster utilization of these two schedulers is more than big clus-
ter utilization that increases execution time. Their longer delay and higher energy
consumption result in higher EDP. In order to investigate the CEEF overhead, the
framework is operated at two different states of isolated and shared (alongside
the workload set) and their performance is compared. The results indicate 1.95%
overhead.

6 Conclusion and future work

In this paper, a scheduling framework consisting of energy efficiency, shared
resource contention, and fairness management for heterogeneous multi-core proces-
sors is presented via frequency scaling support. The performance per watt ratio of
big to little cluster which is predicted online with a highly accurate regression model
plays a critical role in energy efficiency management. The presented shared resource
contention administration boosts performance and fairness through scaling the fre-
quency of big cores. The experimental results indicate that the proposed framework
surpasses Linux and four other schedulers in terms of fairness and energy efficiency.
Future work will be the presentation of performance, energy efficiency, and fairness
models in order to estimate shared metric values via isolated values. The extension
of FSM in order to support local DVFS is considered as the other further study.

References

 1. Zhuravlev S, Saez JC, Blagodurov S, Fedorova A, Prieto M (2012) Survey of scheduling techniques
for addressing shared resources in multicore processors. ACM Comput Surv 45(1):1–28

 2. Garcia-Garcia A, Saez JC, Prieto-Matias M (2018) Contention-Aware Fair Scheduling for Asym-
metric Single-ISA Multicore Systems. IEEE Trans Comput 67(12):1703–1719

 3. Srikantaiah S, Das R, Mishra AK, Das CR, Kandemir M (2009) A case for integrated processor-
cache partitioning in chip multiprocessors. In: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, pp 1–12

 4. Delaluz V, Sivasubramaniam A, Kandemir M, Vijaykrishnan N, Irwin MJ (2002) Scheduler-based
DRAM energy management. In: Design Automation Conference (DAC), pp 697–702

 5. Lukefahr A, Padmanabha S, Das R, Dreslinski Jr R, Wenisch TF, Mahlke S (2014) Heterogeneous
microarchitectures trump voltage scaling for low-power cores. In: Parallel architectures and compi-
lation Techniques (PACT), pp 237–250

7747

1 3

Online energy‑efficient fair scheduling for heterogeneous…

 6. Sarma S, Muck T, Bathen LA, Dutt N, Nicolau A (2015) SmartBalance: a sensing-driven linux
load balancer for energy efficiency of heterogeneous MPSoCs. In: Design Automation Conference
(DAC), pp 1–6

 7. Mück TR, Ghaderi Z, Dutt ND, Bozorgzadeh E (2017) Exploiting heterogeneity for aging-aware
load balancing in mobile platforms. IEEE Trans Multi-Scale Comput Syst 3(1):25–35

 8. Van Craeynest K, Jaleel A, Eeckhout L, Narvaez P, Emer J (2012) Scheduling heterogeneous multi-
cores through performance impact estimation (PIE). In: International Symposium on Computer
Architecture (ISCA), pp 213–224

 9. Delimitrou C, Kozyrakis C (2013) Paragon: QoS-Aware Scheduling for Heterogeneous Datacenters.
In: Architectural support for programming languages and operating systems (ASPLOS), pp 77–88

 10. Kim M, Kim K, Geraci JR, Hong S (2014) Utilization-aware load balancing for the energy efficient
operation of the big. LITTLE processor. In: Design, Automation & Test in Europe (DATE), pp 1–4

 11. Bhat G, Singla G, Unver AK, Ogras UY (2018) Algorithmic optimization of thermal and power
management for heterogeneous mobile platforms. IEEE Trans Very Large Scale Integr (VLSI) Syst,
26(3): 544–557

 12. Roy SK, Devaraj R, Sarkar A, Maji K, Sinha S (2020) Contention-aware optimal scheduling of
real-time precedence-constrained task graphs on heterogeneous distributed systems. J Syst Archit
105(1):101706

 13. Feliu J, Sahuquillo J, Petit S, Duato J (2017) Perf&Fair: a progress-aware scheduler to enhance per-
formance and fairness in SMT multicores. IEEE Trans Comput 66(5):905–911

 14. Van Craeynest K, Akram S, Heirman W, Jaleel A, Eeckhout L (2013) Fairness-aware scheduling
on single-ISA heterogeneous multi-cores. In: Parallel Architectures and Compilation Techniques
(PACT), pp 177–187

 15. Ankit T, Chaudhari K, Shah M (2020) A comprehensive survey on energy-efficient power manage-
ment techniques. Procedia Comput Sci 167(1):1189–1199

 16. Salami B, Noori H, Naghibzadeh M (2020) Fairness-aware energy efficient scheduling on heteroge-
neous multi-core processors. IEEE Trans Computs, pp 1–1

 17. Li T, Brett P, Knauerhase R, Koufaty D, Reddy D, Hahn S (2010) Operating system support for
overlapping-ISA heterogeneous multi-core architectures. In: High Performance Computer Architec-
ture (HPCA), pp 1–12

 18. Becchi M, Crowley P (2006) Dynamic thread assignment on heterogeneous multiprocessor architec-
tures. In: Computing Frontiers (CF), pp 29–40

 19. Kim C, Huh J (2018) Exploring the design space of fair scheduling supports for asymmetric multi-
core systems. IEEE Trans Comput 67(8):1136–1152

 20. Tian K, Jiang Y, and Shen X (2009) A study on optimally co-scheduling jobs of different lengths on
chip multiprocessors. In: Computing Frontiers (CF), pp 41–50

 21. Zhuravlev S, Blagodurov S, Fedorova A (2010) Addressing shared resource contention in multicore
processors via scheduling. ACM Sigplan Notices 45(3):129–142

 22. Moreno IS Yang R, Xu J, Wo T (2013) Improved energy-efficiency in cloud datacenters with inter-
ference-aware virtual machine placement. In: International Symposium on Autonomous Decentral-
ized Systems (ISADS), pp 1–8

 23. Kim YG, Kim M, Kong J, Chung SW (2020) An Adaptive Thermal Management Framework for
Heterogeneous Multi-Core Processors. IEEE Trans Comput 69(6):894–906

 24. Jain PN, Surve SK (2020) A review on shared resource contention in multicores and its mitigating
techniques. Int J High Perform Syst Archit 9(1):20–48

 25. da Silva J, Leao L, Petrucci V, Gamatié A, Pereira F (2020) Mapping computations in heterogene-
ous multicore systems with statistical regression on inputs. In: Brazilian Symposium on Computing
Systems Engineering (SBESC)

 26. Singh AK, Dey S, McDonald-Maier K, Basireddy KR, Merrett GV, Al-Hashimi BM (2020)
Dynamic energy and thermal management of multi-core mobile platforms: A survey. IEEE Des Test
37(5):25–33

 27. Pasricha S, Ayoub R, Kishinevsky M, Mandal SK, Ogras UY (2020) A survey on energy manage-
ment for mobile and IoT devices. IEEE Des Test

 28. Ortega C, Alvarez L, Casas M, Bertran R, Buyuktosunoglu A, Eichenberger AE, Bose P, Moreto M
(2020) Intelligent adaptation of hardware knobs for improving performance and power consump-
tion. IEEE Trans Comput

 29. Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat
42(1):59–66

7748 B. Salami et al.

1 3

 30. Petrucci V, Loques O, Mossé D, Melhem R, Gazala NA, Gobriel S (2015) Energy-efficient thread
assignment optimization for heterogeneous multicore systems. ACM Trans Embedded Comput Syst
TECS 14(1):1–26

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Online energy-efficient fair scheduling for heterogeneous multi-cores considering shared resource contention
	Abstract
	1 Introduction
	2 Related work
	2.1 Performance optimization
	2.2 Energy efficiency management
	2.3 Fairness improvement
	2.4 Shared resource contention management

	3 Preliminaries
	3.1 System model and metrics
	3.2 Shared resource contention impact on performance and energy efficiency

	4 CEEF framework
	4.1 Energy efficiency management (EEM)
	4.2 Contention administration (CA)
	4.3 Fairness improvement (FI)
	4.4 Complexity analysis

	5 Experimental evaluation
	5.1 Experimental setup
	5.2 Performance and power consumption prediction
	5.3 Results and discussion
	5.3.1 CEEF versus other schedulers
	5.3.2 Clusters utilization
	5.3.3 Clusters frequency

	6 Conclusion and future work
	References

