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Algorithmic Optimization of Thermal and Power Management

for Heterogeneous Mobile Platforms

Ganapati Bhat, Gaurav Singla, Ali K. Unver and Umit Y. Ogras

Abstract—State-of-the-art mobile platforms are powered by
heterogeneous system-on-chips that integrate multiple CPU cores,
a GPU, and many specialized processors. Competitive perfor-
mance on these platforms comes at the expense of increased
power density due to their small form factor. Consequently, the
skin temperature, which can degrade the experience, becomes
a limiting factor. Since using a fan is not a viable solution for
hand-held devices, there is a strong need for dynamic thermal
and power management (DTPM) algorithms that can regulate
temperature with minimal performance impact. This paper
presents a DTPM algorithm which uses a practical temperature
prediction methodology based on system identification. The
proposed algorithm dynamically computes a power budget using
the predicted temperature. This budget is used to throttle the fre-
quency and number of cores to avoid temperature violations with
minimal impact on the system performance. Our experimental
measurements on two different octa-core big.LITTLE processors
and common Android applications demonstrate that the proposed
technique predicts the temperature with less than 5% error
across all benchmarks. Using this prediction, the proposed DTPM
algorithm successfully regulates the maximum temperature and
decreases the temperature violations by one order of magnitude,
while also reducing the total power consumption on average by
7% compared to the default solution.

Index Terms—Dynamic power management, thermal man-
agement, heterogeneous computing, multi-processor systems-on-
chip, multicore architectures.

I. INTRODUCTION

THE phenomenal growth in the demand for mobile devices

has been pushing the limits of multiprocessor system-on-

chips, (MPSoC), which power majority of the mobile devices

in use today. The number and capacity of the CPU cores in-

crease at a steady rate, while the degree of heterogeneity grows

with the use of asymmetric cores and accelerators such as

GPU and audio/video processors. Larger computational power

increases the power dissipation of the device. This, in turn,

intensifies the skin temperature and reduces the battery life.

Indeed, recent results have shown that the skin temperature

is a performance limiter in mobile devices [1, 2], while rapid

changes in the temperature degrades reliability [3].

A variety of design and runtime approaches have been

developed to maximize the performance during high activity

periods, and minimize the power consumption when there is
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little activity. For instance, idle power management determines

the number of active cores, while dynamic voltage-frequency

scaling (DVFS) controls the operating frequency of active

resources to match the system performance to the application

requirements [4, 5, 6]. Newly emerged big.LITTLE architec-

tures work in tandem with these techniques by combining

high performance (big) and energy efficient (little) clusters [7].

The big cores are utilized when high performance is needed,

whereas the little cores are used during low activity periods.

A recent example of this architecture is the Samsung Exynos

chip, which integrates four A15 (big) and four A7 (little) cores.

Our measurements on this chip show 10× performance and

30× power consumption range between the lowest power and

the highest performance configurations. In addition, moderate

to high activity workloads easily raise the temperature beyond

acceptable levels, as shown in Figure 1. Our experimental

platform [8] employs a fan to address this problem. However,

using a fan is not feasible for mobile platforms, such as smart-

phones and tablets. Likewise, passively waiting for thermal

violations, and reactively throttling the cores degrades the

performance as well as reliability by causing large temperature

variations [9]. As a result, there is a strong need for DTPM

approaches for heterogeneous architectures to effectively reg-

ulate temperature with minimal performance impact.

This paper presents a predictive DTPM algorithm for hetero-

geneous mobile platforms. The first step of the proposed solu-

tion is a broadly applicable methodology for generating power

and thermal models for heterogeneous mobile platforms. This

methodology starts with basic principles, and then gener-

ates mathematical models that enable accurate power/thermal

predictions tailored to the mobile platform of interest. We

validate the proposed models empirically on two different

MPSoCs, using a variety of benchmarks. The second step is

a novel runtime technique to periodically compute the power

budget, and throttle the processing cores to avoid temperature

violations with minimal impact on performance. The major

knobs offered by big.LITTLE architectures to meet the power

budget are CPU cluster (big or little), the number of active

cores, the operating frequency (hence voltage) of the CPU

and GPU cores, and the state of active accelerators, such as

audio and image processors. Since the use of accelerators is

largely governed by the application code and compiler, the

proposed algorithm uses the rest of the knobs to constrain the

temperature with minimal performance impact.

The novel contributions of this paper are as follows:

• A methodology for generating power and thermal models

for heterogeneous MPSoCs, and experimental valida-

tion using two different commercial big.LITTLE plat-

forms [8],
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Fig. 1: Maximum core temperature with and without the fan.

• An algorithmic approach for dynamically computing the

power budget using temperature prediction,

• A DTPM algorithm based on the performance gradient

and power budget prediction,

• Exhaustive experimental evaluation on two commercial

MPSoCs. Our experiments demonstrate that the proposed

DTPM algorithm successfully regulates the maximum

temperature and decreases the variation by one order of

magnitude, while also reducing the total power consump-

tion on average by 7% compared to the default solution.

The rest of this paper is organized as follows. The related

work is reviewed in Section II. An overview of the proposed

DTPM technique is provided in Section III. Power and thermal

model generation methodologies are presented in Section IV.

Thermal prediction and DTPM algorithm based on thermal

prediction are described in Section V. Extensive experimental

evaluation using Samsung Exynos 5410 and 5422 octa-core

chips running a wide range of benchmarks is presented in Sec-

tion VI. Finally, the conclusions and future research directions

are discussed in Section VII.

II. RELATED WORK

Many hardware and software-based thermal modeling tech-

niques have been proposed for modern processors due to

increased power densities and reliability implications. When

the junction or skin temperature exceeds a safe operating point,

the cores need to be throttled to reduce the temperature by

lowering the power consumption. Therefore, the lack of a

DTPM can lead to reduced performance due to throttling [10].

Similarly, different choices of DTPM have a significant impact

on performance [11, 12, 13]. In particular, poor performance

of reactive approaches has led researchers to develop compact

thermal models [9, 14, 15, 16] and thermal prediction tech-

niques [17, 18, 19, 20]. The work in [21] considers future

temperature as linear extrapolation of its previous values. The

thermal model we present in this work is similar to these

approaches in using a linear time invariant system to predict

temperature. However, instead of relying on material and

design parameters to find the model coefficients, we use actual

power, temperature measurements and system identification

tools to find the parameters of the model. Utilization of

temperature sensors and power meters [22, 23] makes our

approach feasible and accurate.

Temperature is a strong function of power consumption.

Therefore, accurate models of both dynamic and static power

consumption play a critical role in temperature prediction. As

technology is scaling, reduction in threshold voltage, channel

length, and gate oxide thickness increase the leakage power

component [24, 25]. The work in [26] proposes an approach

to control the fan speed for cooling of data center servers

by considering the dependence between leakage power and

temperature. However, we deal with mobile platforms wherein

fan is not an option. Simulators in [27, 28] assume a constant

ratio between leakage and dynamic power. This assumption is

not accurate since dynamic and leakage power’s dependence

on frequency, supply voltage, and temperature is different. We

demonstrate in Section IV-A that leakage power is sensitive

to temperature, while dynamic power is sensitive to frequency

of operation and voltage.

Most of the prior work on thermal management has been

done for homogeneous architectures, where all the cores

possess similar architecture, power consumption, and per-

formance abilities [29]. Heterogeneous processors increase

thermal management complexity, as multiple resources have

to be taken into consideration and the temperature of all these

resources depend on each other [30]. For instance, 3-D multi-

core architectures are taken into consideration in [31, 32, 33].

An optimal control algorithm for fractal workloads running

on multicore architectures with multiple voltage-frequency

islands is proposed in [34]. A hierarchical power management

technique for asymmetric processors is presented in [5], where

the authors try to optimize the energy/performance trade-off

under thermal design power constraints. Dynamic thermal

management algorithms using task migration are explored

in [35, 36]. CPU-GPU control frameworks for reducing the

energy consumption and optimally allocating the power budget

are presented in [37] and [38], respectively. Similarly, a control

theoretic CPU-GPU thermal management algorithm to im-

prove gaming performance is presented in [39]. However, this

study considers a single temperature for the CPU, GPU, and

the system, respectively. Another class of thermal management

algorithms target maintaining a sustained performance under

thermal limitations. For example, the work in [10] proposes a

closed loop QoS control policy to minimize the thermal impact

of extending the sustainability of desired QoS levels.

Unlike these studies, our approach calculates a precise

power budget based on thermal prediction. The resources of

heterogeneous architecture are utilized to distribute this power

budget and control thermal violations. The algorithm targets

heterogeneous platforms, but can also be used by other archi-

tectures. While most of the thermal management techniques

are implemented and validated in a simulation environment,

we demonstrate our technique on a commercial big.LITTLE

platform [8]. The used platform offers new capabilities such as

big/little clusters, and detailed power and temperature sensors.

Since developing simulation models for new processors is

obstructed by the difficulties in finding the exact floorplan,

heat sink information, and parameter values, researchers are

usually limited to few examples such as simple XScale core

and Alpha processor [18, 40]. We plan to open our power and

thermal models to the public in order to enable research on

emerging heterogeneous platforms.
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Additional inputs required by the proposed gradient search algorithm are shown with dashed lines.

III. OVERVIEW OF THE PROPOSED FRAMEWORK

The proposed DTPM framework is outlined in Figure 2.

Modern mobile platforms are highly integrated closed sys-

tems with tight hardware and software module interactions.

Therefore, techniques that target these platforms cannot be

designed or evaluated in isolation. To this end, all the models

and algorithms proposed in this paper are incorporated with the

existing software infrastructure. As such, existing frequency

and idle state governors, as well as the device specific drivers,

remain intact.

In the proposed DTPM flow, the default policy, such as the

on-demand governor [41], determines the operating frequency

of each core. Before taking any action, the proposed power

model uses these choices to predict the power consumption.

Then, the power consumption predictions are fed to the ther-

mal model to predict the temperature that would be reached

if these actions were taken. Therefore, different governors

or device specific optimizations implemented in dedicated

drivers can work in coordination with the proposed framework.

Unless a thermal violation is predicted, the decisions of the

default drivers are affirmed based on the DTPM algorithm.

Thus, the proposed DTPM approach is non-intrusive when

the temperature is within permissible levels. However, when

a temperature violation is predicted, the algorithm computes

the maximum power consumption that does not result in a

temperature violation. In general, there may be multiple con-

figurations that can meet the power budget constraint. Since

each feasible solution leads to a different loss in performance,

it is critical to choose the configuration with the highest

performance. We first present an overview of the cluster-

based control presented in [42]. This algorithm starts with

the temperature constraint and works backwards to determine

the maximum power consumption that can be tolerated. It

finds only the largest number of big cores and the big cluster

frequency that satisfies the power budget, since the big cores

have the highest performance impact. Second, we present a

new algorithm, which performs a gradient search at runtime to

find the feasible CPU configuration and GPU frequency with

minimum performance loss. The newly proposed algorithm

exploits more data, such as core and GPU utilizations, as

shown by the dotted arrow in Figure 2. Finally, we overwrite

the set of active resources and their frequencies such that the

temperature constraint violation can be prevented.

IV. POWER/THERMAL MODELING METHODOLOGY

Effective power and temperature management depends crit-

ically on accurate analytical models that can be evaluated at

runtime. Therefore, we start with presenting our modeling

methodology that leverages thermal and power sensors. Our

approach is applicable to arbitrary number of temperature and

power consumption sensors. In our experimental evaluations,

we employ thermal sensors to measure the temperature of each

big core and the GPU. Similarly, current sensors are used to

measure the power consumption of the big core cluster PA15,

little core cluster PA7, GPU PGPU , and memory Pmem.

A. Power Modeling

Power models have been discussed extensively in the lit-

erature [3] for major components, such as, CPU, GPU, dis-

play, and battery. Therefore, we only elaborate our empirical

approach to extract the leakage current and switching capaci-

tance. For a general discussion of processor power estimation

techniques, we refer the reader to the survey presented in [43].

Let the number of resources whose frequency can be

controlled at runtime be M , and the frequency of resource

j be fj , 1 ≤ j ≤ M . The total power consumption of the

jth resource can be written as the sum of the dynamic and

leakage power as:

Pj,total = Pj,dynamic + Pj,leakage

Pj,total = αjCjV
2
j fj + VjIj,leakage (1)

where αj is the activity factor, Cj is the switching capacitance,

Vj is the operating voltage, and fj is the operating frequency.

Leakage current can be expressed as:

Ij,leakage = As

W

L

kT 2
j

q
e

q(VGS−Vth)

nkTj + Ij,gate

Ij,leakage = cj,1T
2
j e

cj,2
Tj + Ij,gate (2)
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TABLE I: The list of major parameters

Symbol Description

M
Number of processing elements (resources)
in the SoC

P [k]
M × 1 array where Pj [k], 1 ≤ j ≤ M

denotes the power consumption of the jth resource

fj The operating frequency of the jth resource

~f The vector of frequencies [f1, f2, . . . , fM ]T

N Number of thermal hotspots

T [k]
N × 1 array where Ti[k], 1 ≤ i ≤ N

denotes the temperature of the ith hotspot

T̂ [k + n] The predicted temperature in interval k + n

As, Bs
Parameters of the discrete time state-space system,
that describe the thermal dynamics (Equation 5)

bij Entries of Bs for 1 ≤ i ≤ N , 1 ≤ j ≤ M

T ∗

i Maximum thermally safe temperature

where As is a technology dependent constant, L and W
are channel length and width, k is the Boltzmann constant,

Tj is the temperature, q is the electron charge, VGS is the

gate to source voltage, Vth is the threshold voltage, n is

the sub-threshold swing coefficient, and Ij,gate is the gate

leakage current [44, 45]. In the second line of Equation 2, the

technology and device parameters are condensed into generic

parameters denoted by cj,1 and cj,2 for each of the resources.

Next, we describe the step-by-step process to find the unknown

parameters, assuming that dynamic power shows negligible

variation with temperature. Our models can be used not only

for DTPM as we demonstrate in this work, but also for power-

temperature stability analysis [46].

Leakage Power Characterization: By using Equation 1 and

Equation 2, the total power consumption is expressed as:

Pj,total = αjCjV
2
j fj + Vj(cj,1T

2
j e

cj,2
Tj + Ij,gate) (3)

Equation 3 has four unknowns, αjCj , cj,1, cj,2, and Ij,gate
for a given operating frequency, voltage, and temperature. This

equation needs to be solved for each resource to get the values

of the corresponding parameters. To estimate these parameters

for our target platform, we place the target platform in a

furnace as shown in Figure 3. Next, we set the temperature

of the furnace to 40◦C. During the characterization, we use

a light workload running only on the jth resource with fixed

fj and Vj such that the dynamic power does not increase the

temperature. Therefore, the operating frequency fj , voltage

Vj and temperature Tj in Equation 3 are known. Then, we

measure the total power consumption as a function of time,

as illustrated in Figure 4. We repeat the same measurement

by sweeping the temperature of the furnace in increments of

10◦C up to 80◦C. As a result, we obtain multiple sets of power

consumption measurements and four unknowns. Finally, we

employ nonlinear curve fitting to find the unknowns and model

the leakage power.

The proposed analysis is repeated for each computing re-

source, such as the little cores and GPU, to find the unknowns

Fig. 3: Experimental setup for leakage power characterization.
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Fig. 4: Power measurements on the Odroid-XU3 platform at

different temperatures with light dynamic activity.

in the leakage power model. We validate this approach on

both Exynos 5410 and Exynos 5422 SoCs, as depicted in

Figure 5 and Figure 6, respectively. Next, we discuss runtime

computation of activity factor α and switching capacitance C.

Runtime computation of αC: We compute the activity factor

αC every 100 ms at runtime in the Linux kernel. The steps in

computing αC in the Linux kernel are as follows:

1) Read the registers that provide the current power con-

sumption and temperature readings.

2) Compute the leakage power using the temperature and

the leakage power model.

3) Subtract the leakage power from step 2 from the total

power to get the dynamic power, as shown in Figure 7.

4) Divide the dynamic power in step 3 by V 2f to compute

αC.

The second step of this calculation (i.e., the leakage power

model) requires the technology dependent parameters of the

platform. These parameters are extracted offline, as explained

under leakage power characterization, while the rest of the

operations are performed at runtime.

We use the proposed approach to predict the dynamic

power consumption before any decision on the frequency is

made. The accuracy of leakage and total power prediction

is demonstrated in Figure 5 and Figure 6 for Exynos 5410

and Exynos 5422 SoCs, respectively. Our power model results

in less than 5% prediction error on average as compared to

measurements across a wide variety of workloads. Further ex-

perimental evaluation under common benchmarks is presented

in Section VI-B.
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Exynos 5410 SoC results
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Exynos 5422 SoC results
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B. Thermal Modeling

Using the duality between the thermal and electrical net-

works, one can model the dynamics of the temperature using

a state-space model [18]. Suppose that there are N nodes in

the network, whose temperature and power consumption are

given by [T (t)]N×1 and [P (t)]N×1, respectively. Then,

Ct

dT

dt
= −GtT (t) + P (t) (4)

where Ct and Gt are the thermal capacitance and conductance

matrices [9]. Power/temperature measurements and control

actions are performed periodically in OS kernels or firmware

in practice. Hence, we discretize Equation 4 assuming a

sampling period of Ts, and obtain the following equations:

T [k + 1] = (I − TsC
−1
t Gt)T [k] + TsC

−1
t P [k]

T [k + 1] = AsT [k] +BsP [k] (5)

Finding the thermal conductance and capacitance matrices

using finite element simulations or a thermal modeling frame-

work like Hotspot [9] would require detailed design infor-

mation such as floorplan, heat sink geometry, and material

properties, which are either not public or very difficult to

obtain. Furthermore, validating the thermal model would still

require actual power and temperature measurements. There-

fore, we start directly with actual measurements, and then

employ system identification to find Ct and Gt, as detailed

next.

System Identification: The output of the state-space model

given in Equation 5 is the temperature of the thermal hotspots,

while the inputs are the corresponding power dissipations. In

general, the system is not fully observable, i.e., we cannot

measure the temperature at each node of the thermal network.

In our mathematical formulation, the hotspots are the points

whose temperature can be measured. This corresponds to

temperatures of four big cores and the GPU on our exper-

imental platform. In general, the hotspots should be chosen

as the locations on the chip with the largest power density,

since they are more likely to have higher temperatures. The

chip designers need to make the temperature at these points

observable by either using thermal sensors or analytical models

that use software counters. Similarly, the power consumption

of only a subset of the resources can be measured. For

instance, in our system, the temperatures of the big cores

and the GPU are observable, while the power consumption

of the little and big core clusters, the GPU, and memory

can be measured. Therefore, we perform system identification

to characterize the temperature dynamics of the observable

thermal hotspots in terms of P [k]. The resulting entries in

As describe how the temperatures in time step k affect the

temperature in the following interval. That is, the As matrix

captures the coupling between different thermal hotspots in

time. The entries in Bs describe how each power source affects

the observable thermal hotspots. For example, the first column

of Bs describes how the little cluster power consumption

PL[k] (i.e., the first entry in P [k]) affects the temperature of

each thermal hotspot.

In order to obtain an accurate characterization, we control

each resource separately, except for memory, while keeping

the remaining ones turned off or running at their minimum

frequency using the powersave governor. For example, when

profiling the big cores, we run a single little core at the lowest

frequency and turn off the GPU using the dynamic hotplug

mechanism in the Linux kernel. Memory is excluded since the

target platform does not provide memory frequency control.

With this setup, we oscillate the frequency of the active cluster

between its minimum and maximum values using a pseudo-
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random bit sequence (PRBS). The PRBS input is generated to

cover a frequency spectrum, which is broader than that excited

by an arbitrary application. During each experiment, we record

the input power series P [k] and the output temperature T [k].
The data recorded using the PRBS sequence for each resource

is used to estimate the column corresponding to the respective

resource in the Bs matrix. To further improve the accuracy

of modeling As, we perform one more experiment. We first

apply a heavy dynamic activity to drive all the temperature

hotspots close to their maximum safe values. Then, we turn

off all the cores to pull the power dissipation P [k] close to

zero, and let the system cool down. The power and temperature

measurements during the cool down period reveal the natural

response of the system. Finally, we employ the system identi-

fication toolbox of Matlab, and our input/output measurements

to find As and Bs in Equation 5. The mean squared error in

the system identification is less than 9%, which indicates a

good fit to the measurements. The technique is scalable and

can be implemented for any system.

C. Thermal Prediction and Validation

The dynamics of the temperature as a function of the

power consumption is governed by the state-space system in

Equation 5. We can use this state-space equation to predict the

temperature at an arbitrary number of time steps ahead. More

precisely, we derive the temperature at time step k + n as:

T̂ [k + n] = An
sT [k] +

n−1∑

i=0

Ai
sBsP [k + n− i− 1] (6)

Before changing the frequency of a core, we predict the power

consumption at the new frequency using Equation 1. Then,

we plug the power consumption to Equation 6 to predict the

resulting temperature. We confirmed that all the eigenvalues

of As are within the unit circle, as expected for a practical

system. Hence, bounded power consumption inputs P [k] will

lead to bounded output. Since the future dynamic activity is

unknown, we assume that the frequency stays constant while

evaluating Equation 6. However, we account for the increase

in the leakage power using the predicted temperature at each

interval and our leakage model. This equation is implemented

in Linux kernel, and its accuracy is validated by comparing

the temperature predictions with actual measurements. More

precisely, we predict four big core temperatures and the

GPU temperature using the proposed thermal model at every

control interval, i.e., every 100 ms. Therefore, the predictions

are periodically corrected leading to the accurate results. If

the maximum of these predictions exceeds the temperature

constraint, then the proposed DTPM algorithm is triggered

in that interval. Therefore, we are interested in the error

between the predicted maximum temperature and the measured

maximum temperature. Figure 8 shows that the prediction

error is less than 3% (1◦C) up to 1 second, while the error is

within 7% (2.5◦C) for as long as 5 seconds when running the

Vellamo benchmark, as shown in Figure 8. The temperature

prediction error grows with the time horizon primarily due to

increased difference between the actual and predicted power
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consumption. Further evaluation using the complete set of

benchmarks is presented in Section VI.

V. DYNAMIC THERMAL AND POWER MANAGEMENT

Existing governors implemented in commercial mobile sys-

tems increase the operating frequencies and the number of

active cores to meet the demands of active applications.

Higher performance, in turn, increases the power dissipation

and generates thermal hotspots. Then, the resulting thermal

violations are avoided by throttling the cores at the expense of

performance loss. Since throttling penalizes the performance

significantly, avoiding thermal violations proactively improves

the performance by using the thermal headroom more effi-

ciently [10, 42]. The DTPM algorithm presented in this section

achieves this objective using the power and thermal models

presented in Section IV. First, it dynamically computes the

power budget that ensures no thermal violation will happen.

Then, this power budget is used at runtime to limit the types,

number, and frequencies of active resources.

A. Runtime Power Budget Computation

Let the maximum thermally safe temperature be given by

Tconstr. Since each thermal hotspot needs to stay below this

value, the temperature constraint for each thermal hotspot can

be written as [Tconstr]N×1. Using Equation 5, we can express

the temperature constraints as:

|T̂ [k + 1]| ≤ |Tconstr|

|AsT [k] +BsP [k]| ≤ |Tconstr| (7)

where the | · | represents the norm operation. Since thermal

control algorithms typically use the maximum temperature,

we employ the L∞ norm and denote |Tconstr|∞ = Tmax to

re-write the temperature constraint as:

|AsT [k] +BsP [k]|∞ ≤ Tmax

max {As,iT [k] +Bs,iP [k]} ≤ Tmax 1 ≤ i ≤ N (8)

where As,i and Bs,i denote the ith row of matrices As and

Bs, respectively. Hence, we convert the matrix inequality into

a set of scalar inequalities, one for each thermal hotspot.

Temperature constraints can be written as:

Bs,iP [k] ≤ Tmax −As,iT [k] 1 ≤ i ≤ N (9)
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The right hand-side is known since we obtained As and Bs

through system identification and measured T [k]. We call this

value the thermal headroom for the ith hotspot, and denote it

as T ∗
i = Tmax − As,iT [k] for 1 ≤ i ≤ N . The left hand side

can be further expanded as:

Bs,iP [k] =

M∑

j=1

bijPj [k] ≤ T ∗
i (10)

where Pj [k] is the power consumption of the jth resource, and

bij’s are the entries of Bs, as summarized in Table I. For exam-

ple, P1[k]–P4[k] in our system are the power consumption of

the little cluster, big cluster, memory, and GPU, respectively.

Equation 10 has multiple solutions. In order to obtain a unique

solution, we propose to maximize the performance while

maintaining the temperature below the maximum temperature

constraint. The run time algorithms proposed to achieve this

objective is described next.

B. Predictive DTPM Algorithm using Gradient Search

Accurate temperature predictions can be used to design

proactive algorithms that can prevent thermal violations. We

presented a particular example that uses power budget given

by Equation 10 in [42]. In what follows, we overview this

algorithm and discuss its limitations. Then, we present a novel

predictive algorithm based on gradient search.

CPU Cluster Oriented Algorithm (CCA) [42] This algorithm

first checks whether the core configuration and frequency

chosen by the default governors can lead to a thermal violation.

If a violation is detected, the algorithm uses the inequality

given by Equation 10 to determine how much reduction in

the power consumption is required to meet the budget. Since

P [k] is a vector where each entry corresponds to the power

consumption of different sources, there are many different

ways of decreasing the frequencies to satisfy this inequal-

ity. Furthermore, each alternative solution has a different

performance impact as a function of the workload. Hence,

the general solution of this matrix inequality is nontrivial.

The algorithm presented in [42] finds the largest big cluster

frequency that satisfies the power budget without reducing the

frequency of the other resources. Hence, we refer to this as

the CPU cluster oriented algorithm. If the lowest possible big

cluster frequency (flow) leads to a thermal violation, then it

resorts to reducing the GPU frequency. Finally, CCA moves

the application to the little cluster and turns off the big cluster

as the last resort.

CCA relies on the empirical observation that the big CPU

cluster has the largest impact on thermal hotspots. Since the

big cluster may also have larger impact on performance,

a more general solution should also consider performance.

Similarly, CCA is quite effective when only one CPU cluster

can be active at any given time, as in Samsung Exynos 5410.

In general, both clusters and other processing elements may

be active at the same time. Next, we present a gradient search

algorithm (GSA) that overcomes these limitations.

1) Problem Formulation: Using the frequency fj and uti-

lization ρj for each resource 1 ≤ j ≤ M , we can approximate

the objective function as the execution or response time of an

application as:

O(~f) =

M∑

j=1

ρj
fj

+ t0 (11)

where the parameters ρj ≥ 0 represent the weighted effect of

fj on the execution time, and t0 accounts for the frequency

independent fraction [47]. This equation helps us quantify

the relative importance of a certain computing resource on

performance. We need to minimize this objective function

under the power budget constraints given in Equation 10.

The inequality in Equation 10 is written in terms of power

consumption, while the objective function is written in terms

of frequency. Hence, we re-write this inequality by substituting

Equation 1 into Equation 10 as:

M∑

j=1

bijPj [k] ≤ T ∗
i , 1 ≤ i ≤ N (12)

M∑

j=1

bij

[
αCjV

2
j [k]fj [k] + Vj [k]Ij,leakage

]
≤ T ∗

i , 1 ≤ i ≤ N

The voltage Vj is typically a linear function of the operating

frequency [47, 48]. Therefore, we approximate the voltage

as Vj [k] = βfj [k] + γ. By substituting this relation to

Equation 12, the power consumption of the jth resource can

be expressed as a cubic function of the frequency:

Pj [k] = αjCj(βfj [k] + γ)2fj [k]+

(βfj [k] + γ)(cj,1T
2
j e

cj,2
Tj + Ij,gate)

= αjCjβ
2fj [k]

3 + 2αjCjβγfj [k]
2+

(αjCjγ
2 + βcj,1T

2
j e

cj,2
Tj + βIj,gate)fj [k]+

γ(Ij,gate + cj,1T
2
j e

cj,2
Tj )

(13)

For notational convenience, we define non-negative coeffi-

cients m0j −m3j :

m3j , αjCjβ
2, m2j , 2αjCjβγ

m1j , (αjCjγ
2 + βcj,1T

2
j e

cj,2
Tj + βIj,gate),

m0j , γ(Ij,gate + cj,1T
2
j e

cj,2
Tj )

(14)

With this simplification, the constraint can be re-written as:

M∑

j=1

bij

[
m3jfj [k]

3+m2jfj [k]
2+m1jfj [k]+m0j

]
≤ T ∗

i (15)

for 1 ≤ i ≤ N . Thus, using Equations 11 and 15, the

optimization problem can be formulated as:

minimize O(~f) =

M∑

j=1

ρj
fj

+ t0 (16)

subject to

M∑

j=1

bij(m3jf
3
j +m2jf

2
j +m1jfj +m0j) ≤ T ∗

i

for 1 ≤ i ≤ N
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Fig. 9: Platform data demonstrating the performance as a

function of the operating frequency for CPU and GPU bound

benchmarks. Basicmath is a CPU bound benchmark and

3DMark is a GPU bound benchmark.

where the time index k is dropped, since this problem is solved

at each control interval.

2) Solution Approach: The gradient of the

objective function can be found as ∇(~f) =
[−ρ1/f

2
1 ,−ρ2/f

2
2 , . . . ,−ρM/f2

M ]T . By taking the second

order derivative with respect to the frequencies, the Hessian

matrix H of the objective function O(~f), can be obtained as:

Hi,j =

{
2ρj

f3
j

i = j, 1 ≤ i, j ≤ M,

0 otherwise.
(17)

We can see that all the nonzero entries of the Hessian are

positive as ρj ≥ 0 and fj > 0, 1 ≤ j ≤ M . Using

Sylvester’s criterion, we can see that the Hessian matrix of

the objective function is positive definite [49]. Therefore, the

objective function O(~f) is a convex function of the operating

frequencies. For illustration, Figure 9 shows the execution

time and frame processing time for a CPU and a GPU bound

application, respectively. We observe that the both are convex

functions of the operating frequency.

Equation 16 is an inequality constrained convex optimiza-

tion problem [50]. We know that it needs to be solved at

runtime, only if the inequality constraint is violated. When

this happens, the operating frequencies need to be decreased

such that the power consumption reduces until the thermal

constraints are satisfied. This, however, will also reduce the

performance, i.e., lead to an increase in the objective function

O(~f). One could find the optimum set of frequencies by

performing an exhaustive depth first search for all available

frequency levels. However, performing an exhaustive search

in the OS kernel at each iteration of the CPU frequency

governor is prohibitive. The convexity of O(~f) reveals that

the performance loss will be minimized, if the frequencies

are decreased along the direction that maximizes the gradient

∇(~f). Therefore, we propose the computationally efficient

gradient search algorithm described next.

3) Gradient Search Algorithm: The GSA algorithm starts

with predicting the temperature at a future time step k + n
using the current temperature vector T [k]. If the predicted

temperature is greater than the threshold Tmax for any hotspot,

the algorithm intervenes to prevent the violation, as outlined

in the pseudo-code shown Figure 10 (line 3). The gradient

Require: Active cores, frequency, temperature
1: procedure GRADIENT SEARCH ALGORITHM

2: T̂ [k + n]← Predict Temperature after n control intervals

3: if T̂ [k + n] ≥ Tmax for any thermal hotspot then
4: Evaluate the Constraint given by Equation 10
5: if Constraint is violated then
6: while Constraint is violated do OR fj 6= flow ∃j
7: Evaluate ~∆[O(~fk)] given by Equation 18
8: if More than one resource has ρj > 0 then

9: Find j s.t. ~∆j [O(~fk)] =
min(|~∆j [O(~fk)]|), ∀j

10: Reduce frequency of resource j by δfj
11: Predict the P [k + 1] using the new ~fk
12: T̂ [k + n] ←

Predicted temperature after n intervals
13: Evaluate the Constraint given by Equation 10
14: else
15: Compute the power budget for active resource using

Equation 10
16: Solve for frequency that meets the calculated power

budget
17: break
18: end if
19: end while
20: end if
21: if Thermal Constraint is violated AND fj = flow∀j then
22: Turn off the hottest resource
23: end if
24: Apply frequency changes to the system
25: return
26: else
27: Use default policy
28: end if
29: end procedure

Fig. 10: Pseudo-code for the second DTPM algorithm based

on gradient search.

search starts with ~f initialized to the values determined by

the default governor. Let fj [k] be the current frequency of

resource j, and δfj be the difference between fj [k] and

the next lower frequency level. For example, if the current

frequency is 1.3 GHz and the set of supported frequencies

are [1.2 GHz, 1.3 GHz, . . . , 2 GHz], then δfj = 100 MHz.

The algorithm computes the projected performance loss of

reducing the frequency of each resource, as follows:

∆j [O(~fk)] = O(~fk)
∣∣∣
fj=fj [k]

−O(~fk)
∣∣∣
fj=fj [k]−δfj

=
ρj

fj [k]
−

ρj
fj [k]− δfj

1 ≤ j ≤ M

= −ρj
δfj

fj [k](fj [k]− δfj)

(18)

After computing ∆j [O(~fk)] for each resource, we construct

vector ~∆O(~fk) = [∆1[O(~fk)], . . . ,∆M [O(~fk)]]. ~∆O(fk) is

simply the gradient ∇(~f) evaluated at fk, which takes the

discrete frequency values supported by the corresponding

resource. In our implementation, ρj is the utilization of each

resource, since the utilization is an indicator of relative impor-

tance of each resource and it is easy to profile in the kernel

without any overhead. Once the gradient at the current oper-

ating point ~∆O(fk) is found, the algorithm checks if multiple
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resources are active or not. That is, we check if only one

resource has ρj > 0. In such cases, we first calculate the power

budget for the active resource using Equation 10. We can use

Equation 10 to calculate the power budget since only one of

the resources is active. Once the power budget is calculated,

we solve for the frequency that meets the power budget. This

avoids unnecessary gradient search. Otherwise, the algorithm

finds the resource that has the minimum |~∆jO(fj)|. Since this

implies the smallest performance penalty, the frequency of the

corresponding resource is marked for reduction by one level,

i.e., from fj [k] to fj [k]− δfj (lines 8-10 in Figure 10). Using

the new frequency level, we predict the new power consump-

tion vector. Then, we use the projected power consumption

to predict the temperature at a future time step k + n. If

the new prediction still violates the temperature constraint,

we re-iterate the loop between lines 8-19 in Figure 10. This

continues until either the temperature constraint is met or each

core reaches its minimum frequency. If the latter is true, there

may be still a thermal violation after n control intervals. This

is evaluated in lines 21-23 in Figure 10. If we still predict a

thermal violation, the condition in line 22 will put the hottest

core to sleep and the tasks running on it are migrated. Finally,

we assign the new frequency levels and exit the algorithm.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup and Methodology

1) Experimental Platforms: The proposed framework is

evaluated using the Odroid-XU3 platform [8] powered by

Samsung Exynos 5422 MPSoC. The Odroid-XU3 is a single

ISA heterogeneous big.LITTLE processor composed of a big

core cluster (4 A15 cores), little cluster (4 A7 cores), a GPU,

and other basic components. Unlike the previous generation

big.LITTLE architectures which were used in our previous

study [42], Odroid-XU3 can run both the big and little clusters

at the same time. This new capability allows scheduling the

background tasks of the OS to the little cores, and running

the intensive applications on big cores when needed. Built-in

power sensors measure the power consumption of big core

cluster, little core cluster, GPU, and memory separately, while

external power meters enable logging the total platform power.

The platform also provides temperature sensors located on

each big core and GPU, which are used as the thermal hotspots

in our evaluation.

2) Benchmarks: We employ 18 benchmarks to validate

the proposed approach; 11 from the Mi-Bench embedded

benchmark suite [51], 3 benchmarks from the PARSEC suite

[52], 3 frequently used graphics benchmarks (3DMark Ice

Storm Extreme, GLBench ALU, GLBench trex), and one

custom matrix multiplication code, which is mainly used dur-

ing debugging. The benchmarks and their relevant properties

are summarized in Table II. PARSEC suite is selected to

evaluate our algorithm on multi-threaded workloads. We run

each PARSEC benchmark with four threads (i.e., the number

of A15 cores in the system). It is also important to note

that benchmarks run along with Android operating system

and all other kernel background processes. Hence, there are

many active threads in the system, even when running a single

TABLE II: Benchmarks used in the experiments.

Type Benchmarks

Security Blowfish, Sha

Network Dijkstra, Patricia

Computational
Basicmath, Matrix Multiplication, Bitcount,

Qsort, Blackscholes, Fluidanimate

Telecom CRC32, GSM, FFT

Consumer JPEG

Streaming Streamcluster

Browser Vellamo

Graphics GLBench, 3DMark (GT1, GT2, Physics tests)

threaded benchmark. Therefore, multiple cores were active

during the experiments and this number varied dynamically.

Finally, the games and video benchmarks utilize the GPU more

heavily, while the other benchmarks are CPU intensive.

3) Comparisons: We compare the proposed gradient search

algorithm (i.e., GSA) against the CPU Cluster Oriented Algo-

rithm, (i.e., CCA) [42] and the default configuration without

the fan, which is described next.

Default configuration without fan – This configuration uses the

Linux kernel (3.10.9) that comes with the device. We disable

the fan on the development board, since it not feasible when

this chip is used in a smartphone or tablet. We note that the

default intelligent power allocation algorithm (IPA), which is

integrated into the Linux kernel [53] and the default CPU/GPU

governors, are still active in this configuration. Disabling the

fan has no impact during light activity, but the temperature

increases more quickly for high loads, as shown in Figure 13.

We use this configuration as a baseline for our performance,

power consumption, and energy savings comparisons.

4) Implementation Details and Overhead: All the power

and temperature models and the proposed algorithms are

incorporated with the existing governors in the Linux 3.10.9

kernel, as illustrated in Figure 2. Our implementation consists

of two major components. The power models presented in

Section IV-A and the temperature prediction model (Equa-

tion 6) described in Section IV-C are implemented as custom

functions that can be called by the frequency governors in

the kernel. Likewise, the algorithm that controls the set of

active cores and their frequencies is implemented as a patch in

the cpufreq driver subsystem. After compiling the kernel with

our modifications, we flash it to the device. If a temperature

violation is predicted, we run the proposed algorithm outlined

in Figure 10. Otherwise, we do not intervene and apply

the decision of the default governors. The proposed DTPM

algorithm takes around 390 µs to predict the temperature

and to determine the frequency levels. The kernel functions

implementing our models are called periodically whenever

the CPU frequency driver is executed (by default once every

100 ms). Since the proposed algorithm does not run unless

there is a thermal violation, the overhead of our approach is

less than 0.39%. All the results reported in this paper are direct

measurements on this platform. Hence, the implementation

overheads are accounted for in the reported results.
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Fig. 11: Summary of power prediction error. The default on-demand governor changes the frequency dynamically during each

run. Therefore, the power model is validated under dynamically varying frequency settings.

Fig. 12: Temperature prediction error for all the benchmarks.

B. Power Consumption and Temperature Prediction Accuracy

We start the experimental study by evaluating the accuracy

of our power model, since it is an integral part of the pro-

posed DTPM algorithm. The power prediction error for each

benchmark is listed in Figure 11. The relative absolute error

is less than 5% for most of the benchmarks, and the average

error is only 4.7%. We observe a slightly higher error for

several benchmarks including 3DMark, GLBench trex, and

Vellamo. Closer inspection of these benchmarks reveals that

these benchmarks exhibit rapid changes in dynamic activity at

certain intervals. Our model over- or undershoots during these

intervals, while maintaining less than 5% relative error most

of the remaining time. In particular, median relative absolute

error ranges from 2.7% to 3.1% even for these benchmarks.

To evaluate the accuracy of our temperature model, we ran

each benchmark and predicted the temperature T [k + 10] at

every control interval T [k]. That is, the temperature one second

(10 control intervals) ahead of time is predicted using a sliding

window, and the predictions are compared to the measured

values at the end of each experiment. Figure 12 shows that

the average prediction error is less than 3% (1◦C), and it

never exceeds 5% (2◦C). A one-second prediction window

is selected since 10 control intervals are sufficient to regulate

the temperature. We also note that prediction windows as large

as 5 seconds do not increase the processing time, while the

prediction error increases moderately, as depicted in Figure 8.

C. Temperature Control and Stability

The objective of the DTPM algorithm is to ensure that

the temperature is regulated successfully without a fan. The

proposed algorithm can regulate the temperature for all of the

benchmarks with minimal performance impact. To illustrate

the temperature control of demanding GPU and CPU-bound

applications, we provide the temperature profile as a func-

tion of time for 3DMark and Fluidanimate benchmarks in

Figures 13 and 14, respectively. Figure 13 clearly shows that

the temperature profile of CCA and GSA are the same as the

default algorithm before there is any temperature violation.

When the temperature exceeds 78◦C at around t =85s, the

GSA algorithm starts throttling the GPU frequency. As the

zoomed graph clearly illustrates, the GSA algorithm regulates

the temperature successfully. In contrast, the default algorithm

and CCA lead to higher temperatures, since they do not

control the GPU frequency effectively. We also note that the

temperature fluctuates as the 3DMark benchmark transitions

from the GT1 test to GT2 test (around t = 216 s) and GT2 test

to physics test (around t = 261 s). Since the GPU utilization

reaches 100% during the heavy phases of GT1 and GT2, the

GSA algorithm allows higher frequency during these times.

Similarly, Figure 14 shows that the default algorithm leads

to temperature violation a couple of seconds after launching

the application. In contrast, the CCA and GSA algorithms

successfully maintain the temperature within the specified

constraint with less than 10% impact on the performance.

Effect of GPU Temperature Control: We emphasize that
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Fig. 15: Violation index for all the benchmarks.

the CCA algorithm proposed in [42] does not provide an

effective control of the GPU frequency, unlike the proposed

GSA algorithm. Therefore, CCA can violate the maximum

chip temperature constraint, when a GPU intensive application

runs. Hence, the primary advantage of GSA over CCA is the

ability to handle both CPU and GPU-bound applications.

D. Performance, Power and Energy Consumption Evaluation

Temperature control, the primary objective of the proposed

DTPM algorithm, is achieved by throttling the cores and

turning them off when necessary. Therefore, it is imperative

to study the effectiveness in preventing temperature violations

and impact on performance, power consumption, and total

energy. In order to obtain accurate evaluations, we performed

five separate runs, and confirmed the consistency of mea-

surements. The performance of CPU and GPU applications

are measured by execution time and frames rate, respectively.

During evaluations, we use a temperature constraint of 68◦C

for the single threaded applications, Vellamo, GLBench ALU,

and GLBench trex. We use a higher threshold (78◦C) for

multi-threaded benchmarks, 3DMark and FFT, since they have

very high computational requirements and tend to push the

temperature higher.

We first analyze the ability of GSA to minimize the tem-

perature violations, since this also helps in understanding the

impact on performance and power consumption. To quantify

the number of temperature violations, we define the set of all

control intervals with a temperature violation as SV . We need

to minimize both the number of violations and the difference

with the temperature constraint Tconstr. Therefore, we define

the violation index as:

Violation Index =

∑
j∈SV

(|Tj − Tconstr|)

Nv

(19)

where Nv is the number of temperature violations observed

with the default configuration. Equation 19 penalizes larger

violations more heavily and normalizes the violation index

with respect to the default configuration. Figure 15 shows the

violation indices first for the GPU benchmarks followed by

the CPU-bound benchmarks in decreasing order. We observe

that the CCA algorithm performs similar to the default con-

figuration for GPU benchmarks, since it does not control the

GPU frequency effectively. In contrast, GSA decreases the

temperature violations significantly. We note that both CCA

and GSA are able to capture the temperature profile accurately

as they use the same thermal model. GSA is able to reduce

the temperature violations, since it is able to control both CPU

and GPU frequencies effectively. We also observe that both

GSA and CCA are very effective in avoiding temperature

violations of the remaining set of benchmarks. Finally, the

last four light benchmarks do not lead to noticeable amount



12

Fig. 16: (a) Frame rates for GPU benchmarks. (b) Normalized performance of CCA and GSA for CPU-heavy benchmarks.

Performance is measured by the execution time for CPU benchmarks and performance score for Vellamo.

Fig. 17: Power savings achieved by CCA and GSA with respect the default configuration (these results do not include the

savings due to disabling the fan).

Fig. 18: Energy savings achieved by CCA and GSA with respect the default configuration (these results do not include the

savings due to disabling the fan).

of violations even with the default configuration. They are

included to demonstrate that the proposed algorithm does not

interfere with the performance, when there are no temperature

violations. Indeed, Figure 16 shows that GSA and CCA do not

cause any performance penalty for these four benchmarks.

We analyze the performance impact of GPU and CPU

benchmarks in Figure 16 in terms of frame rate (measured

in FPS) and normalized execution time, respectively. The

default configuration and CCA both achieve 41 FPS for

GLBench trex benchmark, which is expected since both have

similar amounts of temperature violations. Although GSA

reduces the number of temperature violations by 5×, it still

achieves 39 FPS, which is hard to distinguish visually from

the default configuration. Similarly, the frame rate achieved

by GSA is within 3 FPS of the default configuration for the

3DMark tests, although the number of temperature violations

are decreased significantly, as shown in Figure 15. We observe

a performance degradation for more intensive benchmarks,

such as Vellamo and Blackscholes. However, the performance

impact is always less than 9%, and both the median and

mean performance loss are 5%. We also observe that GSA

and CCA have similar performance when there is little or no

GPU activity, since the gradient search reduces to throttling

the CPU frequency.
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The biggest advantage of the proposed GSA algorithm is

its ability to control both GPU and CPU temperature hotspots

with minimal performance impact, and without using a fan.

When we enable the fan in our platform, a power consumption

overhead of 400-800 mW is observed. This corresponds on

average to 20-30% of total (big cluster, little cluster, GPU

and memory) power consumption for the benchmarks used

in this work. In addition to this, throttling the performance

leads to further reduction in the power consumption. In

particular, we observe greater power and energy savings for

those benchmarks that experience larger performance impact,

as summarized in Figure 17 and Figure 18. For example, GSA

leads to 17% less power consumption than the default config-

uration while running the Vellamo application. On average,

GSA achieves 7% power and 4% energy savings, in addition

to eliminating the fan power. CCA produces similar results,

but it is not able to stabilize the temperature for GPU heavy

applications.

VII. CONCLUSION

In this paper, we presented a feasible temperature prediction

methodology and a DTPM algorithm for heterogeneous MP-

SoCs. We demonstrated that the proposed technique predicts

the temperature with less than 5% error across all benchmarks.

Using the temperature predictions, the proposed algorithmic

optimization approach computes a precise power budget at

runtime. Then, this budget is used to throttle the frequency and

number of cores with minimal impact on system performance.

A thorough experimental evaluation shows that the proposed

approach not only eliminates the need for a fan, which is not a

viable choice for mobile devices, but also provides significant

thermal and reliability advantages. In particular, the proposed

DTPM algorithm successfully regulates the maximum temper-

ature and decreases the temperature violations by one order of

magnitude, while also reducing the total power consumption

on average by 7% compared to the default solution.
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