
Scheduling Unit Tasks to Minimize the Number of Idle Periods:

A Polynomial Time Algorithm for Offline Dynamic Power Management

Philippe Baptiste∗

October 7, 2005

Abstract

Power Management policies aim at reducing the
amount of energy consumed by battery operated
systems, while keeping the overall performance
high. In this paper we focus on shut-down mech-
anisms that put a system into a sleep state when
it is idle. A very small amount of energy is con-
sumed in this state but, a fixed amount of energy
is required when moving the system from the sleep
state to the active state. The offline version of this
problem consists in scheduling a set of unit exe-
cution tasks, with release dates and deadlines, on
a single machine in order to minimize the number
of idle time periods. We show that this problem
can be solved in polynomial time by Dynamic Pro-
gramming.

1 Introduction

Power Management policies aim at reducing the
amount of energy consumed by battery operated
systems, while keeping the overall performance
high. Two mechanisms are used to save energy:
speed scaling and shut-down mechanisms.

• Speed scaling mechanisms rely on the fact that
the speed (or frequency) of processors can be
changed online. As the energy required to
perform the same task increases with the speed
of the processor, speed scaling policies tend to
slow down the processor as much as possible
while performing all tasks within a reasonable
delay.

∗Ecole Polytechnique, Laboratoire d’Informatique CNRS LIX,
F-91128 Palaiseau, Philippe.Baptiste@polytechnique.fr

• Shut-down mechanisms put a system into a
sleep state when it is idle. A very small
amount of energy is consumed in this sleep
state but a fixed amount of energy is required
when moving the system from the sleep state
to the active state.

More complex systems play with several sleep
states simultaneously together with speed scaling
techniques. We reefer to [4] for an up-to-date sur-
vey on algorithmic problems in power management.

We assume the following model for the shut-
down power management problems considered in
this paper. n tasks 1, ..., n are to be processed on
the processor and each task i is associated with
a release date ri, a deadline di and a processing
time pi. Tasks can be interrupted at any integer
time point (i.e, preemption is allowed). The energy
required by a transition from the sleep state to the
active state is L times the energy required by a unit
task. All data are integer and the objective is to
minimize the total energy required to process all
tasks. Informally, we look for a schedule with few
and long idle time periods. Note that when L is
1, the problem reduces to computing a preemptive
schedule of tasks, under time-windows constraints,
with a minimum number of idle time intervals.

As tasks to be performed are often not known
in advance, the online version of this problem is
especially important. The optimal competitive
ratio that can be achieved by any online algorithm
is 2 [3]. There are few results on the offline case.
Deciding whether there is a schedule with no idle
times can be done in polynomial time (see [2] for
the most recent results in this field). As reported in
[5] as well as in a Dagstuhl 2002 Online algorithms

364

SODA ’06, January 22-26, Miami, FL 
©2006 SIAM  ISBN 0-89871-605-5/06/01 

http://crossmark.crossref.org/dialog/?doi=10.5555%2F1109557.1109598&domain=pdf&date_stamp=2006-01-22
Peter Hu

Peter Hu



workshop, the complexity status of the general
offline problem remains unknown. S. Irani and K.
Pruhs [4] report that

“ [this problem] is the “most intellectually
intriguing question related to speed scal-
ing / power down strategies [...] Many
seemingly more complicated problems in
this area can be essentially reduced to this
problem, so a polynomial time algorithm
for this problem would have wide applica-
tion.”

In this paper we focus on the unit execution time
tasks case (i.e., ∀i, pi = 1) and we introduce a
simple dominance property (Section 2) for optimal
schedules. We introduce in Section 3 a decompo-
sition scheme based on ideas introduced in [1] for
scheduling equal length jobs on parallel machines.
The decomposition leads to a simple polynomial
time dynamic programming algorithm.

2 Dominance Properties

The following proposition shows that there are “few
relevant time points” at which tasks start in some
optimal schedule.

Proposition 2.1. There is an optimal schedule
in which, for any task i, the distance between the
starting time of i and one of the release dates or
deadlines is at most n

Proof. Among optimal schedules, consider the
schedule S that lexicographically minimizes the
vector (t1, ..., tn) of starting times. Assume there is
a task i such that ∀j, |ti−rj | > n and ∀j, |ti−dj | >
n. Let then s denote the largest time points before
ti such that [s − 1, s) is idle and let e denote the
smallest time points after ti such that [e, e + 1) is
idle. The interval [s, e) is full and there are e−s ≤ n
tasks in this interval. As ∀j, |ti−rj | > n, tasks that
start in [s, e) do not start at their release dates. As
∀j, |ti − dj | > n, tasks that start in [s, e) are not
completed by their deadlines. So we can modify
the schedule S by moving all tasks in [s, e) from 1
unit either to the right (schedule R) or to the left
(schedule L).

As the initial schedule S is an optimal sched-
ule that lexicographically minimizes the vector of

starting times, the cost of the schedule L is strictly
greater than the cost of S (because L is lexico-
graphically better than S). Hence, the idle period
before [s, e) on S is larger than L (it can be infinite)
while the idle period after [s, e) on S is smaller than
L. So, when moving from S to R, the cost asso-
ciated to the right idle interval is decreased while
the cost associated to the left idle interval does not
change. Hence the schedule R strictly improves on
S. Contradiction.

Thanks to Proposition 2, we know that there is
an optimal schedule in which start and completion
times belong to the set Θ.

Θ =
⋃
i

{ri − n, ..., ri + n} ∪ {di − n, ..., di + n}

Note that there is a quadratic number of time
points in the set Θ.

3 Decomposition

To simplify the presentation, we define the relative
cost of a schedule over an interval [s, e) as the
cost of a schedule built as follows: schedule a fake
job in [s − 1, s), follow the initial schedule from
a to b and finally schedule a fake job in [e, e + 1).
Informally speaking, these two jobs are used to take
into account idle intervals right after s and right
before e.

In the following, we assume that jobs are sorted
in non decreasing order of deadlines, i.e., d1 ≤
d2... ≤ dn.

We are now ready to define a state of the
dynamic program. For any integer k ≤ n, let
Fk(s, e) be the minimal relative cost over the
interval [s, e) among all schedules of the jobs {i ≤
k, s ≤ ri < e} such that

1. the machine is idle before s and after e,

2. starting times and completion times are in Θ.

If no such schedule exists, Fk(s, e) = ∞.
Note that the optimum of our initial problem is

exactly Fn(minΘ−L,max Θ+L)−2L (the “−2L”
is there to take into account the fake jobs that
always create two interruptions with cost L that
must not be taken into account). We also have

365

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu



F0(s, e) = min(L, e− s). The following proposition
shows how to recursively compute Fk(s, e) (see
Figure 1) .

Proposition 3.1. If job k > 0 is such that rk /∈
[s, e) then Fk(s, e) = Fk−1(s, e). If rk ∈ [s, e) then
Fk(s, e) equals F ′ where

F ′ = min
t,t+1∈Θ,s≤t<e

Fk−1(s, t) + Fk−1(t + 1, e)

 

s-1 e 

k 

t 

 

Fk-1(s, t) 

 
Fk-1(t + 1, e) 

Fk (s, e) 

 

Figure 1: Decomposition Scheme

Proof. We first prove that Fk(s, e) ≤ F ′. If F ′ = ∞
this is obviously true. Now consider a schedule
S that realizes Fk−1(s, t) and a schedule E that
realizes Fk−1(t + 1, e). We build a schedule as
follows: from time s to t, follow S, schedule k
in [t, t + 1), from time t + 1 to e, follow E . The
cost of this schedule is exactly F ′ Moreover, it
contains all jobs in {i ≤ k, s ≤ ri < e}, the
machine is idle before s and after e, and starting
times and completion times of jobs belong to Θ. So
Fk(s, e) ≤ F ′.
We now prove that Fk(s, e) ≥ F ′. If Fk(s, e) = ∞
then our claim holds. Now, assume it is finite.
As k ∈ {i ≤ k, s ≤ ri < e}, job k is scheduled
in all schedules that realize Fk(s, e). Among such
schedules, let X denote one in which the starting
time of job k is maximal. We claim that all jobs
in {i ≤ k, s ≤ ri < e} that are released before
or at t are completed at t. If this were not the
case, we could exchange such a job with k and
thus we would have a feasible schedule with the
same cost as before. This would contradict the
fact that the starting time of k is maximal. So the
restriction S of X to [s, t) is a schedule that meets
all constraints related to Fk−1(s, t). Hence its cost
is greater than Fk−1(s, t). Similarly, the restriction

E of X to [t + 1, e) is a schedule that meets all
constraints related to Fk−1(t + 1, e). To conclude
the proof, note that the cost of X is the sum of the
costs of S and E .

The relevant values for s and e are exactly those
in Θ. The values of Fk(s, e) are stored in a multi-
dimensional array of size O(n5) (n possible values
for k, n2 possible values both for s and e). Our
algorithm works as follows:

• In the initialisation phase, F0(s, e) is set to
min(L, e− s) for any values s, e in Θ (s ≤ e).

• We then iterate from k = 1 to k = n. Each
time, Fk is computed for all the possible values
of the parameters thanks to Proposition 3.1,
and to the values of Fk−1 computed at the
previous step.

The initialisation phase runs in O(n4) because the
size of Θ is upper bounded by O(n2). Afterwards,
for each value of k, O(n4) values of Fk(s, e) have
to be computed. For each of them, a maximum
among O(n2) terms is computed (because there
are O(n2) possible values for tk ∈ Θ). This leads
to an overall time complexity of O(n7). A rough
analysis of the space complexity leads to an O(n5)
bound but since, at each step of the outer loop
on k, one only needs the values of F computed
at the previous step (k − 1), the algorithm can be
implemented with 2 arrays of O(n4) size: one for
the current values of F and one for the previous
values of F . (To build the optimal schedule, all
values of Fk(s, e) have to be kept; hence the initial
O(n5) bound applies.)

4 Conclusion and Open Problems

A natural generalization of our problem is to con-
sider the situation in which task i has an arbi-
trary processing time pi ∈ N and where preemp-
tion is allowed. Each task can be decomposed in
pi unit execution time tasks (with the same time
windows as for the initial task) and thus, we have
a straightforward pseudopolynomial time running
in O((

∑
pi)7) for this problem. This also leads

to a simple FPTAS for general processing times.
We still do not know whether this problem can be

366



solved in strongly polynomial time. A straightfor-
ward adaptation of our algorithm seems unlikely as
the set of time point Θ to consider is not polyno-
mially bounded any more.

Acknowledgments

The author would like to thank Maxim Sviridenko
who introduced this problem during the work-
shop on “Models and Algorithms for Planing and
Scheduling” (may 2005, Siena).

References

[1] Philippe Baptiste. Scheduling equal-length jobs
on identical parallel machines. Discrete Applied
Mathematics, 103, 2000.

[2] Philippe Chretienne. On the no-wait single ma-
chine scheduling problem. In Proceeding of the 7th
Conference on Models and Algorithms for Plan-
ning and Scheduling, pages 76–79, June 2005.

[3] Sandy Irani and Anna Karlin. Approximation Al-
gorithms for NP-complete Problems, chapter On-
line Computation, pages 521–559. PWS Publish-
ing Company, 1997.

[4] Sandy Irani and Kirk Pruhs. Algorithmic prob-
lems in power management. volume 36, pages 63–
76, New York, NY, USA, 2005. ACM Press.

[5] Sandy Irani, Sandeep Shukla, and Rajesh Gupta.
Algorithms for power savings. In Proceedings
of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 37–46, 2003.

367


