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Abstract 

The energy usage of computer systems is becom- 
ing an important consideration, especially for battery- 
operated systems. Various methods for reducing en- 
ergy consumption have been investigated, both at the 
circuit level and at the operating systems level. In this 
paper, we propose a simple model of job scheduling 
aimed at capturing some key aspects of energy min- 
imization. In this model, each job is to be executed 
between its arrival time and deadline by a single pro- 
cessor with variable speed, under the assumption that 
energy usage per unit time, P ,  is a convex function of 
the processor speed s. We give an off-line algorithm 
that computes, for any set of jobs, a minimum-energy 
schedule. We then consider some on-line algorithms 
and their competitive performance for the power func- 
tion P ( s )  = s p  where p 3 2. It is shown that one 
natural heuristic, called the Average Rate heuristic, 
uses at most a constant times the minimum energy 
required. The analysis involves bounding the largest 
eigenvalue in matrices of a special type. 

1 Introduction 
Computers are rapidly becoming more widespread 

and more portable. For portable computers running 
on batteries, energy conservation is critically impor- 
tant. In a typical laptop computer, energy use is domi- 
nated by the backlit display and the disk. It is difficult 
to modulate the power consumption of these devices 
while they are operating, so energy saving techniques 
primarily involve turning them off after a period of no 
use. 

The new generation of very small portable comput- 
ers (PDAs) often have no disk at all, and lack the 
backlight that consumes much of the display-related 

power. For such devices, the power consumption of the 
CPU itself becomes significant. This fact is important 
because there are energy conservation techniques for 
CPUs that do considerably better than simply turn- 
ing off the device during its “idle loop”. In particular, 
CPU circuitry can be designed so that slower clock 
speeds use lower supply voltage, thus resulting in lower 
energy consumption per instruction (see [1,2,4,7] for 
various approaches). Such variable speed processors 
can operate reliably over a range of clock speeds. The 
power (i.e., energy per unit time) consumed by such a 
processor is a convex function of its execution speed, 
with the exact form dependent on the details of the 
technology. 

On a computer with a variable speed processor, the 
operating system can reduce the energy consumption 
by scheduling jobs appropriately. Scheduling to reduce 
power consumption was first discussed in [7], which 
described several scheduling heuristics and measured 
the energy savings on typical work loads. This work 
was later extended in [3]. 

In this paper, we provide a more formal analysis 
of the minimum-energy scheduling problem. We pro- 
pose a simple model in which each job is to be exe- 
cuted between its arrival time and deadline by a single 
variable-speed processor as described above. A precise 
definition of the model is given in Section 2. In Sec- 
tion 3,  we give an off-line algorithm that computes 
a minimum-energy schedule for any set of jobs, with 
no restriction on the power consumption function ex- 
cept convexity. We then consider on-line heuristics in 
Section 4, with special focus on what we call the Aver- 
age Rate heuristic (AVR). In Section 5, we prove that 
AVR has a constant competitive ratio, i.e., it uses at 
most a constant times the minimum energy required, 
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assuming a quadratic power function P(s)  = s2. Our 
analysis shows that the ratio lies between 4 and 8. In 
Section 6, we sketch a constant-ratio proof for the gen- 
eral case P ( s )  = s p  where p 2 2. There, the ratio is 
shown to be between pP and 2P-lpP. Finally, we close 
with a discussion of some simulation results and open 
problems. 

2 The Model 
Let [to,tl] be a fixed time interval. An instance of 

the scheduling problem is a set J of jobs to be executed 
during [to,t l] .  Associated with each job j E J are the 
following parameters: 

0 aj its arrival time, 
0 bj its deadline (b j  > a j ) ,  and 
0 Rj its required number of CPU cycles. 

We refer to [ a i ,  b j ]  as the interval of job j .  A sched- 
ule is a pair S = ( s , j o b )  of functions defined over 
[to,t11: 

0 s ( t )  2 0 is the processor speed at time t ;  
0 job(t) defines the job being executed at time t (or 
idle if s ( t )  = 0). 

We require that s ( t )  and job(t) be piecewise constant 
with finitely many discontinuities. A feasible schedule 
for an instance J is a schedule S that satisfies 

for all j E J (where S(z,y) is 1 if x = y and 0 oth- 
erwise). In other words, S must give each job j the 
required number of cyles between its arrival time and 
deadline (with perhaps intermittent execution). We 
assume that the power P ,  or energy consumed per 
unit time, is a convex function of the processor speed. 
The total energy consumed by a schedule S is’ 

E(S)  = P(s( t ) )dt .  

The goal of the scheduling problem is to find, for any 
given problem instance, a feasible schedule that mini- 
mizes E(S) .  

‘In the remainder of this paper, unless otherwise specified, 
all integrals are taken with respect to t ,  with t o  and tl  as lower 
and upper limits. We will use abbreviated notations whenever 
possible. 

3 The Minimum Energy Scheduler 
In this section, we consider the off-line version of the 

scheduling problem. We first give a charaterization of 
an energy-optimal schedule for any set of n jobs, which 
then leads naturally to an O(nlog2 n)  time algorithm 
for computing such schedules. 

The characterization will be based on the notion of 
a critical interval for J ,  which is an interval in which 
a group of jobs must be scheduled at maximum, con- 
stant speed in any optimal schedule for J. The algo- 
rithm proceeds by identifying such a critical interval 
for J ,  scheduling those ‘critical’ jobs, then construct- 
ing a subproblem for the remaining jobs and solving it 
recursively. The optimal s ( t )  is in fact unique, whereas 
job(t) is not always so. The details are given below. 

Definition. Define the intensity of an interval I = 

where the sum is taken over all jobs j with [u j ,  b j ]  2 

Clearly, g(I) is a lower bound on the average 
processing speed, S,”’ s(t)dt/(z’ - t.), that must be 
achieved by any feasible schedule over the interval 
[z,z’].  Thus, by convexity of the power function, a 
schedule using constant speed g(I) on [ z ,  z’] is neces- 
sarily optimal on that interval (in the sense that no 
other feasible schedule can use less power on that in- 
terval). 

Definition. Let I* = [ z ,  z‘] be an interval that max- 
imizes g(I). We call I* a critical interval for J ,  and 
the set of jobs J p  = { j 1 [ a i ,  b j ]  [ z ,  2’1) the critical 
group for J .  

Note that we can assume I* = [ai, b j ]  for some i, j. 
The following theorem shows that a critical interval 
will determine a segment of the optimal schedule. We 
omit the proof here. 

Theorem 1. Let I* be a critical interval for J .  If S 
is an optimal schedule for J ,  then the maximum speed 
of S is g(I*), and S runs at  that speed for the entire 
interval I*. 

(Moreover, S must execute every job of J p  completely 
within I*, and execute no other jobs during I* .) The- 
orem 1 immediately leads to the following algorithm, 
which finds an optimal schedule for J by computing a 
sequence of critical intervals iteratively. 

[z ,%‘I. 
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Algorithm [Optimal- Schedule] 

Repeat the following steps until J is empty: 

1. Identify a critical interval I* = [ z ,  z’] by computing 
s = maxg(I), and schedule the jobs of JI* at 
speed s over interval I* by the earlaest deadline 
policy (which is always feasible, see [6]); 

2. Modify the problem to reflect the deletion of jobs 
J p  and interval I* .  This involves: 
let J + J - Jr= ; 
reset any deadline bj t t if bj E [ z ,  t’], and 
bj t bj - (z’ - z )  if bj 2 z’; 
reset the arrival times similarly. 

Note that, after each iteration, the intensity g(I) of 
some intervals I may increase (because I has been 
(compressed’), which affects the evaluation of maxg(I) 
in the next round. A straightward implementation of 
the above algorithm requires O(n2) time for IJI = n. 
By using a suitable data structure, such as the segment 
tree, one can reduce the running time to O(n log2 n). 
We will skip the implementation details here. 

A job instance J and its corresponding optimal 
schedule S are shown in Figure 1. To keep the di- 
agram simple, there is only one job in each critical 
group. Job j is executed at speed sj over interval I;, 
which we represent by a shaded rectangle with base I; 
and height s3 . The original job j is shown as a rectan- 
gle with base Ij and height d j .  (These two rectangles 
coincide when sj is a local maximum, such as the case 
for j = 1 , 3  in the example.) Note that, by the way S 
is constructed, the interval I of any job belonging to 
the j-th critical group must satisfy 

i < j  

4 On-line Scheduling Heuristics 
Obviously there is a large space of possible heuris- 

tics for the online version of the minimum-energy 
scheduling problem. We will mention two simple 
heuristics that appear natural: 

0 Average Rate: Associated with each job j is its 
average-rate requirement or density 

We define a corresponding step function d j ( t )  = d j  for 
t E [ a j ,  b j ] ,  and d j ( t )  = 0 elsewhere. At any time t ,  

the Average Rate Heuristic (AVR) sets the processor 
speed at 

and use the earliest-deadline policy to choose among 
available jobs. It is easy to see that the strategy yields 
a feasible schedule. 

0 Optimal Available: After each arrival, recompute 
an optimal schedule for the problem instance consist- 
ing of the newly arrived job and the remaining por- 
tions of all other available jobs. (Thus, the recompu- 
tation is done for a set of jobs all having the same 
arrival time.) 

In the remainder of this paper, we will focus on the 
AVR heuristic and analyze its competitive ratio. Since 
the competitive ratio depends on the precise form of 
P(s ) ,  and because the competitive analysis is fairly 
complex, we first focus our attention on the case where 
P(s)  = s2.  This represents the simplest nontrivial 
version of the energy minimization problem. 

energy cost of an optimal schedule, and let 
Given a problem instance J ,  let OPT(J)  denote the 

AVR(J) = J (E dj(t))2dt (2) 
3 

denote the cost of the heuristic schedule. The compet- 
itive ratio of the heuristic is defined to be, as usual, 
the least upper bound of AVR(J)/OPT(J) over all J .  
We first look at how AVR performs in some specific 
cases. Let [to,tl] = [0,1], and (JI  = n in the following 
examples. 

Example 1. The ith job has interval [ O ,  l/ai-’]. All 
jobs have density di = 1/2, except d ,  = 1. (See Figure 

The optimal schedule for this example has constant 
speed s ( t )  = 1, and executes the jobs in the order 
Jn, . . . , J1, with total energy cost 1. By evaluating Eq. 
2, one finds that the energy used by AVR approaches 
2 as n -+ CO, resulting in AVR(J)/OPT(J) = 2. 

Example 2. The ith job has interval [O,i/n], and 
density di  = ( r ~ / i ) ~  where e 2 1. (See Figure 3.) 

2-1 

It can be verified that the jobs will form criti- 
cal groups in the order J 1 , .  . ., J,. When e = 1, 
the optimal schedule has constant speed 1 and AVR 
has cost 2 as n + 03, giving a ratio of 2 again. 
With a careful analysis, one can prove that the ratio 
AVR(J)/OPT(J) is maximized at 4 when e is chosen 
to be 312. 
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n 

Figure 1: A job instance and its optimal schedule. 

I 
0 U4 112 1 

Figure 2: A set of jobs for which AVR has ratio 2. 

Example 2, with e = 312,  is the worst example we 
have for the AVR heuristic: we also conjecture that 
4 is the exact value of its competitive ratio. In the 
next section, we prove a constant competitive ratio 
for the AVR heuristic. The constant we obtain is 4 
for a restricted class of instances (which includes the 
preceding examples), and 8 for the general case. 

5 Analysis of AVR 
Throughout the analysis, we will assume that some 

speed function s * ( t )  is given, and consider only those 
job instances J which can be optimally scheduled by 
some S = ( s * ( t ) ,  job( t ) )  running at speed s*( t ) .  We 
call ( J ,  S) a candidate instance for s* (or simply an 
instance for s*). We also refer to J as a candidate in- 
stance, if S is either unimportant or understood from 
the context. 

We will carry out the analysis of AVR in two 
In Section 5.1, we reduce the candidate in- parts. 

Ji I 
I 

I 
I 

0 l/n 2 n  i In 1 

Figure 3: A set of jobs for which AVR has ratio 4. 

stances to certain canonical forms. That is, we show 
that, for the purpose of obtaining an upper bound to 
AVR( J)/OPT(J), it suffices to consider candidate in- 
stances ( J ,  S) that satisfy certain special constraints. 
We then analyze the worst case ratio that is achievable 
under these constraints. 

5.1 Canonical Forms 

We first show that one can assume (J ,S)  to be a 
“bitonic” instance; that is, the execution of each job 
j E J by S is either consistently “ahead of0 the av- 
erage rate, or consistently “behind” the average rate. 
Recall that, the function s*(t )S( job(t ) ,  j) specifies the 
execution speed of job j, which we will denote by s J ( t ) .  
Thus, 

b ,  
s3 ( t )d t  = l, dj ( t ) d t  = Rj . 
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Let (J, S) be a candidate instance for s*(t ) .  We say 
( J ,  S) is a bitonic instance, if every job j E J satisfies 
one of the following two inequalities: 

l: sj*(t)dt 2 1: dj(t)dt for a, 5 t 5 b j ,  (3) 

or 
t 1: sj*(t)dt 5 1, dj(t)dt for aj 5 t 5 b j .  (4) 

We refer to j that satisfies Eq. 3 or Eq. 4 as a type-A 
or type-B job, respectively. (If j satisfies both inequal- 
ities, we assign its type arbitrarily.) If all jobs in J are 
of the same type, we call ( J , S )  a monotonic instance 
for s*. 

We will show that, for the competitive analysis of 
AVR, the following restrictions may be placed on a 
candidate instance ( J ,  S) : 

[bitonicity] each job of J is either of type A or of 
type B;  

tion interval; 
[non-preemption] each job of J has a single execu- 

[alignment] each Ij is aligned with execution- 
interval boundaries; 

[nesting] the Ij’s are properly nested. 

A candidate instance ( J , S )  satisfying the above re- 
strictions is called a canonical instance. 

Lemma 5.1 (Bitonicity) Given an instance ( J ,  S )  
f o r s * ,  there exists a bitonic candidate instance (J’,S’) 
fors*  such that A V R ( J )  =AVR(J’). 

Proof. For a job j E J ,  let { t i )  be the points where 
the function A(t) = Jt,(sT(t) - d j ( t ) )  changes from 
nonzero to zero or vice versa. Split j into several new 
jobs (all having the same density as j )  by dividing 
[ a j ,  b j ]  into subintervals a t  these points t i .  Modify S 
accordingly so that the resulting (7,s‘) is still a can- 
didate instance for s * .  Clearly, (J’, s‘) is bitonic and 
AVR(J) =AVR( J’). 0 

For the job instance shown in Figure 1, a single 
cut on Jg transforms it into a bitonic instance. How- 
ever, bitonicity does not preclude preemptive exeuc- 
tion; that is, some job may have more than one execu- 
tion intervals. This situation can make the analysis of 

AVR complicated. Therefore, we would like to further 
reduce the problem to non-preemptive cases only. For 
this purpose and, indeed, for the derivation of proper- 
ties 3) and 4) below, we shall refer to a function F ( J )  
that closely approximates AVR( J )  than to AVR(J) 
itself. We first motivate the definition of F ( J )  with 
some preliminary discussions. 

Write a bitonic instance as J = J A  U J B ,  where JA 
(respectively, J B )  consists of all the type-A (type-B) 
jobs. Our analysis will deal with the two subsets J A  
and J B  separately and then combine the results. De- 
fine S A ( t )  = CiEJA d i ( t ) ,  and s i ( t )  = CiEJa sr( t ) .  
Furthermore, let AVRA(J) and OPTA(J)  denote the 
costs of AVR and OPT respectively that are at- 
tributable to J A .  That is, 

and OPTA(J)  = (~1)~. 
AVRA(J) = /(sal2 s 
Define SB, s;3, AVRB and OPTB similarly. Then, 

OPT(J )  = OPTA(J)  + OPTB(J),  
AVR(J) 5 ~(AVRA(J)  + AVRB(J)) (5) 

because of the inequality ( h  + g ) 2  5 2(h2 + g2). 

We will focus on the ratio of AVRA(J)/OPTA(J) 
in the remainder of this section. Hence all jobs con- 
sidered are assumed to be in JA even without explicit 
mentioning. We first define a linear order for the jobs 
in JA and relabel them as J1,  J2,  . . . accordingly . The 
linear order is consisitent with execution speed (i.e., 
the ordering of critical groups); hence i < j if si* > s5. 
Among jobs in the same critical group, we order them 
by their arrival times aj (which is equal to U ; ) :  i < j 
iff ai > aj . (For jobs in J B ,  a linear order will be 
defined similarly, except that within the same critical 
group, we define i < j iff b, < b j . )  A useful property 
of such an ordering for JA is the followling: 

Lemma 5.2 Let i, j be two jobs in JA with i < j .  
Then J I j  di  5 JIj sf .  

Proof. The lemma is trivially true if Ii n Ij = 0, hence 
we assume Ii n Ij # 0. We claim that we must have 
a; > aj. If this were not true, then by the way the 
linear order is defined, i must belong to a higher-speed 
critical group than j. However, by Eq. 1, the entire 
interval of Ii would have been scheduled, making it 
impossible to execute job j right on arrival. Thus we 
have ai > aj .  Now, the lemma follows from the type- 
A property of job i, in view of the fact that integration 
over Ij covers an initial portion of i ’ s  interval. 0 
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Let FA(J) = 2 f j  , where 

Then, it follows from Lemma 5.2 that 

AVRA(J) I2CJd id j  5 2cd,(x/ s;) 
i<j  j isj ‘ j  

= F A ( J ) .  (7) 

We now prove that, to maximize FA(J), we need 
only consider non-preemptive instances ( J ,  S) (that is, 
every job has a single execution interval). Incidentally, 
it is clear that the reduction in Lemma 5.1 satisfies 
FA(J)  = FA(J’) .  

Lemma 5.3 (Non-preemption) Given a bitonic 
instance ( J , S )  for s*, there exists a bitonic instance 
(J ‘ ,  S’) for s* such that (J‘ ,  S’) is non-preemptive and 
F A ( J ‘ )  2 F A ( J ) .  

Proof. Suppose some job j E J has k disjoint execu- 
tion intervals. We will show that j can be split into 
two jobs j’ and j”, with k - 1 and 1 execution inter- 
vals respectively, such that f j  5 f j i  + f j l l  while s* is 
unaffected. Non-preemption can then be achieved by 
induction on k. Let I = [a, b] be the interval for j ,  and 
suppose its k-th execution interval starts at to E [a, b]. 
Write I’ = [a, t o ]  and I” = [ t o ,  b]. Let j’ and j ”  be two 
jobs with requirement R‘ = SI,, d; and R” = SI,, d; re- 
spectively. Thus Rj = R’ + R“. Let the interval of 
j” be I”. To define the interval for j ’ ,  we consider 
the average value of s*( t )  over I‘ and over I”; that is, 
consider 

% * ( I t )  = (E/ s i ) / ( to  - a )  and 
isj I’ 

S*(I”) = (E/ s f ) / ( b - t o ) .  
i<j I” 

We choose the interval of j’ to be I if S* (1’) 5 S* (I”), 
and to be I’ if s*(I’) > S*(I”). In the former case, 
the joint density of the two jobs d’(t) + d”(t) is larger 
over I” than over 1’, hence fj, + fj i i  2 fj.  In the 
latter case, d‘(t), the joint density over I’, is larger 
than d”(t), the joint density over I”, because 

by the definition of type-A jobs. Hence fji + f j i i  2 fj 

is again true in this case. Finally, it is clear that the 
new job instance, with j replaced by { j ’ ,  j ” } ,  is still a 

cl candidate instance for s* ( t ) .  

In a non-preemptive, bitonic instance for s* , the ex- 
ecution interval I; = [a;, bJ] of any job j occurs either 
at the beginning of [aj, bj] (for type-A jobs), or at its 
end (for type-B jobs). In other words, if we specify a 
schedule S = (s* ( t ) ,  job( t ) )  together with a bipartition 
y : { 1 , 2 , .  . ., n}  I+ { A ,  B } ,  then any non-preemptive, 
bitonic instance J for s*,  whose partition J = J A  U JB 
coincides with y, must satisfy the following: 

1. For j o b  j E J ,  its requirement is R j  = SI: s*. 

2. For j E JA, its interval is of the form [a;, xj] where 

3. F o r k  E J B ,  its interval is of the form [yk, b;]  where 

x j  2 b;, and a; > a; > . . ‘ .  

Y k  5 a i ,  and br < b; < . . ‘ .  

An instance J satisfying the above is said to be 
consistent with (S,y). We would like to maximize 
F A ( J )  over all such instances for a given (S, 7 ) .  Note 
that, there are additional constraints (such as Eq. 1) 
which the variables x j  and y; must satisfy, in order for 
J to be feasibly scheduled by S. However, any upper 
bound derived for F A ( J )  under constraints 1)-3) only 
will certainly be a valid upper bound. 

The next lemma shows that, in maximizing 
FA(J) = 2 fj , one can assume that each job in- 
terval Ij is aligned with execution-interval boundaries 
in S. (In fact, the right endpoint x j  must coincide 
with b; for some k E JA). We write f j (x j )  to indicate 
the dependency of f j  on x j .  

Lemma 5.4 (Alignment) Among all instances con- 
sistent with ( S ,  y), the function FA is maximized when 
each Ij, j E JA, is aligned with execution-interval 
boundaries in S. 

Proof. Write 

As in the proof of Lemma 5.3, we view f j (x j )  as the 
product of Rj with s*(I j )  (the average value of s* over 
interval I j (xj)) .  Since s* is constant over any execu- 
tion interval, S*(Ij) attains its maximum when x j  is 
at a boundary point of some execution interval. 0 
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Lemma 5.5 (Nesting) Among all instances consw 
tent with (S,y),  the function FA is maximized when 
the intervals I j ,  j E J A ,  are properly nested: IinIj # 0 
and i < j implies Ii E I j .  

Proof. Assume IinIj # 0 and i < j, but I ,  and Ij are 
not nested. By the proof of Lemma 5.2, we must have 
a; > aj we can write Ij = p q  and Ii = q r  for suitable 
subintervals p, q and r. The interpretation associated 
with fj(zj) in Eq. 9 implies S* (q )  2 S * ( p ) ,  for other- 
wise Ij = p would give fj(zj) an even larger value. 
Similarly, we must have S*(r) 2 S*(q) .  But then 
8* (pqr) 2 S* ( p q )  = fj ( x i ) ,  hence we can maximize f j  

by letting Ij = p q r  instead, resulting in Ii 2 I j .  We 
repeat the process for each pair of intersecting inter- 
vals. Since the process causes the number of distinct 
endpoints to decrease, it will eventually terminate. 0 

In summary, by combining the preceding lemmas 
with Eq. 5 ,  7, we have established the following re- 
duction to canonical instances. 

Lemma 5.6 (Reduction) Let J be a job instance 
optimized by s*. Then there exists a schedule S = 
(s*, job) and a bipartition y such that 

AVR( J )  5 2 lim sup{ FA (J’ )  + FB ( J ’ ) } ,  (10) 
J’ 

where the lim sup is taken over all canonical instances 
J’ consistent with ( S ,  7). 

5.2 Competitive Ratio 

Lemma 5.6 reduces the analysis of AVR to the max- 
imization of FA,  FB over all canonical instances con- 
sistent with any (S, y). We will show that the latter 
problem can be represented in terms of the eigenval- 
ues of a matrix determined by (S, y). We then prove 
a uniform bound on the largest eigenvalue of all such 
matrices. 

Let J = J A U J B  be a canonical instance with IJA I = 
n. Define 

&, ,  - 1 if I: I j ,  
- { 0 otherwise. 

Thus, the b ; j ’ s  specify the intervals of the jobs in 
J A  by decomposing each Ij over the disjoint intervals 
{I: ,  . . . , I:}. Note that the nesting property implies 
the following inequality for the S i j  ’s: 

Lemma 5.7 For any canonical znstance J = J A  U 
J B ,  we have FA(J) 5 4 OPTA(J)  and F B ( J )  5 
4 OPTB(J).  

Proof. It suffices to prove the inequality for J A ;  hence 
all jobs considered here are assumed to be in J A .  We 
first compress the t-axis by deleting all execution in- 
tervals for type-B jobs. (This can only shorten Ij for 
some j E J A  , hence increase FA ( J )  by Eq. 6.) For sim- 
plicity, assume all execution intervals for JA have unit 
length, i.e., = 1. (This restriction can be easily 
removed with the use of suitable normalizing factors; 
see remark after Eq. 15.) We thus have s; = Rj,  and 

Also, we can write 

Define a matrix M ( J A )  (or M for short) by 

In general, we call a matrix M of the above form a 
tree-induced matrix if it is induced by a set of prop- 
erly nested intervals ( I j }  with lIj - ui<j & \  = 1. For 
example, the matrix 

1 0 1/3 1/4 
0 1 1/3 1/4 

is induced by an instance of four intervals with lengths 
IIlI = 1121 = 1, 1131 = 3, 1141 = 4, and nesting relations 
I, 14 for i = 1 , 2 .  Note that M has all column 
sums MzJ equal to 1. Also, by dividing both 
sides of Eq. 11 by I I3 I I Ik 1 ,  we obtain the same nesting 
relations for the Maj’s as for the Sz3’s: 

13 

M,,M,k 5 MsjM,k for i 5 j 5 IC. (14) 

Let r denote the vector ( R I , .  . . , Rn) where n = I J A ~ .  
We have 

J 

= 2 (rMrt) 
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by Eq. 12 and 13. (When II:l # 1, Eq. 15 is still 
valid if we just multiply the j-th column of M by lI;l, 
and divide the j-th component of r by J I T J i . )  Hence, 
the proof of Lemma 5.7 will be complete if we show 
that rMrt 5 211r112. This is a consequence of the fol- 
lowing Lemma. 

Let M *  be the symmetrized form of M :  that is, 
M* = ( M + M t ) / 2 .  Note that vMvt = vM*vt for all 
V .  

Lemma 5.8 If M is a tree-induced matrix, then the 
largest eigenvalue of M* is at most 2. 

Proof. For any v = ( V I  , . . , , vn),  let w = Mvt = 
(201,.  . ., wn); thus wi = E. . Mijvj.  It suffices to 3 22 
show that 

llW1l2 I 2(” . w > .  (16) 

Indeed, by Cauchy’s inequality, ( v  . w )  5 IIvIIIIwII. 
This together with Eq. 16 gives ( v  . w )  = vMvt 5 
~ J J v ~ ) ~ ,  which is what we want. We now prove Eq. 16 
by making use of the nesting property of the Mij’s as 
given by Eq. 14. 

i 

i 32’ 
k z t  

i k2jZi 

0 

The worst case of Lemma 5.8 occurs when the tree- 
induced matrix is Mij = l/j for i 5 j ,  in which case 
v = (vi) = (I/&) is asymptotically an eigenvector 
with eigenvalue approaching 2. This case corresponds 
exactly to the job instance given in Example 2 with 
e = 3/2. 

We now complete the proof of the following theo- 
rem. 

Theorem 2. For the power function P ( s )  = s2, the 
Average Rate Heuristic has competitive ratio r where 
4 < r < 8 .  

Proof. The low bound follows from Example 2. The 
upper bound is an immediate consequence of Lemma 
5.6 and 5.7.  0 

6 Higher-Order Power Functions 
The approach we used to  analyze AVR for the 

power function P ( s )  = s2 generalizes readily to  the 
case P(s )  = sp when p 2 2. The details will be left 
to  the complete paper. As an illustration of the tech- 
niques used, we prove below the analog of Lemma 5.8.  
It is obtained by first extending Eq. 17 to p norms, 
and then using Holder’s inequality (a generalization 
of Cauchy’s inequality). 

Lemma 6.1 Let M be a tree-znduced matrix, and 
w = Mvt. Then JJwJJp 5 pJJvll, for any integerp 2 2. 

Proof. We first generalize Eq. 17, again making 
use of the nesting property of the Mij’s and the fact E. .Mij  = 1. 

2 13 

By Holder’s inequality for p norms (see [4]), u1 . u z  5 
I I ~ i l l p ~ l I ~ 2 1 l ~ ~  if l/pi + l/pz = I .  Letting u1 = v ,  
u z  = (wjp-’), pi = p and p2 = p / ( p  - l),  we have 

= IlvllP(llwllP)p-l~ (19) 

Lemma 6.1 thus follows from Eq. 18 and 19. 0 
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However, the penalty factor we pay for analyzing 
J A  and J B  separately becomes 2P-1 since ( f  + g)P 5 
2P-l( f P + g P ) .  (The worst case of the inequality occurs 
when f =g.) 

Theorem 3. Let p 2 2 be any real number. For the 
power function P ( s )  = sp,  the Average Rate Heuristic 
has a competitive ratio rp satisfying pJ’ 5 rp 5 2p-lpP. 

7 Conclusion 
As portable computing devices proliferate, we ex- 

pect that the energy usage of computer systems will 
become an increasingly important problem. In this 
paper we have introduced a simplified model of vari- 
able speed processors and analyzed how the schedul- 
ing of jobs affects the overall power consumption. We 
have shown that the Average Rate heuristic has a con- 
stant competitive ratio for power function P(s)  = s p .  

While our bound pP for the monotone case is tight, 
the general bound (i.e., for the bitonic case) involves 
a multiplicative factor of 2P-l. Based on simulation 
results, we conjecture that the true competitive ratio 
is p P .  

For the heuristic Optimal-Available mentioned in 
Section 4 ,  simulations also suggest that it has a com- 
petitive ratio of 4 for the p = 2 case, although we have 
not yet been able to prove any constant bound. Other 
heuristics, including some that appear to have better 
competitive ratios, will be discussed in the full paper. 

One can show, by considering a simple two-job case, 
that there is a lower bound of 10/9 on the competi- 
tive ratios of all one-line scheduling algorithms. This 
bound can be improved slightly by using more sophis- 
ticated adversary strategies, and by considering three 
jobs, etc. It would be interesting to find a systematic 
approach for proving stronger lower bounds for this 
problem. 

Finally, simulations of randomly generated in- 
stances (and simple probablistic arguments) suggest 
that the number of critical intervals grows rather 
slowly with n. This and other average case phenomena 
have yet to be investigated more fully. 
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