
A Scheduling Model for Reduced CPU Energy

Frances Yao Alan Demers Scott Shenker

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

{yao, demers, shenker}@parc.xerox.com

(extended abstract)

Abstract

The energy usage of computer systems is becom-
ing an important consideration, especially for battery-
operated systems. Various methods for reducing en-
ergy consumption have been investigated, both at the
circuit level and at the operating systems level. In this
paper, we propose a simple model of job scheduling
aimed at capturing some key aspects of energy min-
imization. In this model, each job is to be executed
between its arrival time and deadline by a single pro-
cessor with variable speed, under the assumption that
energy usage per unit time, P , is a convex function of
the processor speed s. We give an off-line algorithm
that computes, for any set of jobs, a minimum-energy
schedule. We then consider some on-line algorithms
and their competitive performance for the power func-
tion P (s) = s p where p 3 2. It is shown that one
natural heuristic, called the Average Rate heuristic,
uses at most a constant times the minimum energy
required. The analysis involves bounding the largest
eigenvalue in matrices of a special type.

1 Introduction
Computers are rapidly becoming more widespread

and more portable. For portable computers running
on batteries, energy conservation is critically impor-
tant. In a typical laptop computer, energy use is domi-
nated by the backlit display and the disk. It is difficult
to modulate the power consumption of these devices
while they are operating, so energy saving techniques
primarily involve turning them off after a period of no
use.

The new generation of very small portable comput-
ers (PDAs) often have no disk at all, and lack the
backlight that consumes much of the display-related

power. For such devices, the power consumption of the
CPU itself becomes significant. This fact is important
because there are energy conservation techniques for
CPUs that do considerably better than simply turn-
ing off the device during its “idle loop”. In particular,
CPU circuitry can be designed so that slower clock
speeds use lower supply voltage, thus resulting in lower
energy consumption per instruction (see [1,2,4,7] for
various approaches). Such variable speed processors
can operate reliably over a range of clock speeds. The
power (i.e., energy per unit time) consumed by such a
processor is a convex function of its execution speed,
with the exact form dependent on the details of the
technology.

On a computer with a variable speed processor, the
operating system can reduce the energy consumption
by scheduling jobs appropriately. Scheduling to reduce
power consumption was first discussed in [7], which
described several scheduling heuristics and measured
the energy savings on typical work loads. This work
was later extended in [3].

In this paper, we provide a more formal analysis
of the minimum-energy scheduling problem. We pro-
pose a simple model in which each job is to be exe-
cuted between its arrival time and deadline by a single
variable-speed processor as described above. A precise
definition of the model is given in Section 2. In Sec-
tion 3, we give an off-line algorithm that computes
a minimum-energy schedule for any set of jobs, with
no restriction on the power consumption function ex-
cept convexity. We then consider on-line heuristics in
Section 4, with special focus on what we call the Aver-
age Rate heuristic (AVR). In Section 5, we prove that
AVR has a constant competitive ratio, i.e., it uses at
most a constant times the minimum energy required,

374
0272-5428/95 $04.00 0 1995 IEEE

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 3, 2010 at 10:42 from IEEE Xplore. Restrictions apply.

mailto:shenker}@parc.xerox.com
Peter Hu

Peter Hu

Peter Hu

assuming a quadratic power function P(s) = s2. Our
analysis shows that the ratio lies between 4 and 8. In
Section 6, we sketch a constant-ratio proof for the gen-
eral case P (s) = s p where p 2 2. There, the ratio is
shown to be between pP and 2P-lpP. Finally, we close
with a discussion of some simulation results and open
problems.

2 The Model
Let [to,tl] be a fixed time interval. An instance of

the scheduling problem is a set J of jobs to be executed
during [to,t l] . Associated with each job j E J are the
following parameters:

0 aj its arrival time,
0 bj its deadline (b j > a j) , and
0 Rj its required number of CPU cycles.

We refer to [a i , b j] as the interval of job j . A sched-
ule is a pair S = (s , j o b) of functions defined over
[to,t11:

0 s (t) 2 0 is the processor speed at time t ;
0 job(t) defines the job being executed at time t (or
idle if s (t) = 0).

We require that s (t) and job(t) be piecewise constant
with finitely many discontinuities. A feasible schedule
for an instance J is a schedule S that satisfies

for all j E J (where S(z,y) is 1 if x = y and 0 oth-
erwise). In other words, S must give each job j the
required number of cyles between its arrival time and
deadline (with perhaps intermittent execution). We
assume that the power P , or energy consumed per
unit time, is a convex function of the processor speed.
The total energy consumed by a schedule S is’

E(S) = P(s(t))dt .

The goal of the scheduling problem is to find, for any
given problem instance, a feasible schedule that mini-
mizes E(S) .

‘In the remainder of this paper, unless otherwise specified,
all integrals are taken with respect to t , with t o and tl as lower
and upper limits. We will use abbreviated notations whenever
possible.

3 The Minimum Energy Scheduler
In this section, we consider the off-line version of the

scheduling problem. We first give a charaterization of
an energy-optimal schedule for any set of n jobs, which
then leads naturally to an O(nlog2 n) time algorithm
for computing such schedules.

The characterization will be based on the notion of
a critical interval for J , which is an interval in which
a group of jobs must be scheduled at maximum, con-
stant speed in any optimal schedule for J. The algo-
rithm proceeds by identifying such a critical interval
for J , scheduling those ‘critical’ jobs, then construct-
ing a subproblem for the remaining jobs and solving it
recursively. The optimal s (t) is in fact unique, whereas
job(t) is not always so. The details are given below.

Definition. Define the intensity of an interval I =

where the sum is taken over all jobs j with [u j , b j] 2

Clearly, g(I) is a lower bound on the average
processing speed, S,”’ s(t)dt/(z’ - t.), that must be
achieved by any feasible schedule over the interval
[z,z’]. Thus, by convexity of the power function, a
schedule using constant speed g(I) on [z , z’] is neces-
sarily optimal on that interval (in the sense that no
other feasible schedule can use less power on that in-
terval).

Definition. Let I* = [z , z‘] be an interval that max-
imizes g(I). We call I* a critical interval for J , and
the set of jobs J p = { j 1 [a i , b j] [z , 2’1) the critical
group for J .

Note that we can assume I* = [ai, b j] for some i, j.
The following theorem shows that a critical interval
will determine a segment of the optimal schedule. We
omit the proof here.

Theorem 1. Let I* be a critical interval for J . If S
is an optimal schedule for J , then the maximum speed
of S is g(I*), and S runs at that speed for the entire
interval I*.

(Moreover, S must execute every job of J p completely
within I*, and execute no other jobs during I* .) The-
orem 1 immediately leads to the following algorithm,
which finds an optimal schedule for J by computing a
sequence of critical intervals iteratively.

[z ,%‘I.

375

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 3, 2010 at 10:42 from IEEE Xplore. Restrictions apply.

Peter Hu

Peter Hu

Peter Hu

Peter Hu
discrete

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu
concave

Peter Hu
convex

Peter Hu

Algorithm [Optimal- Schedule]

Repeat the following steps until J is empty:

1. Identify a critical interval I* = [z , z’] by computing
s = maxg(I), and schedule the jobs of JI* at
speed s over interval I* by the earlaest deadline
policy (which is always feasible, see [6]);

2. Modify the problem to reflect the deletion of jobs
J p and interval I* . This involves:
let J + J - Jr= ;
reset any deadline bj t t if bj E [z , t’], and
bj t bj - (z’ - z) if bj 2 z’;
reset the arrival times similarly.

Note that, after each iteration, the intensity g(I) of
some intervals I may increase (because I has been
(compressed’), which affects the evaluation of maxg(I)
in the next round. A straightward implementation of
the above algorithm requires O(n2) time for IJI = n.
By using a suitable data structure, such as the segment
tree, one can reduce the running time to O(n log2 n).
We will skip the implementation details here.

A job instance J and its corresponding optimal
schedule S are shown in Figure 1. To keep the di-
agram simple, there is only one job in each critical
group. Job j is executed at speed sj over interval I;,
which we represent by a shaded rectangle with base I;
and height s3 . The original job j is shown as a rectan-
gle with base Ij and height d j . (These two rectangles
coincide when sj is a local maximum, such as the case
for j = 1 , 3 in the example.) Note that, by the way S
is constructed, the interval I of any job belonging to
the j-th critical group must satisfy

i < j

4 On-line Scheduling Heuristics
Obviously there is a large space of possible heuris-

tics for the online version of the minimum-energy
scheduling problem. We will mention two simple
heuristics that appear natural:

0 Average Rate: Associated with each job j is its
average-rate requirement or density

We define a corresponding step function d j (t) = d j for
t E [a j , b j] , and d j (t) = 0 elsewhere. At any time t ,

the Average Rate Heuristic (AVR) sets the processor
speed at

and use the earliest-deadline policy to choose among
available jobs. It is easy to see that the strategy yields
a feasible schedule.

0 Optimal Available: After each arrival, recompute
an optimal schedule for the problem instance consist-
ing of the newly arrived job and the remaining por-
tions of all other available jobs. (Thus, the recompu-
tation is done for a set of jobs all having the same
arrival time.)

In the remainder of this paper, we will focus on the
AVR heuristic and analyze its competitive ratio. Since
the competitive ratio depends on the precise form of
P(s) , and because the competitive analysis is fairly
complex, we first focus our attention on the case where
P(s) = s2. This represents the simplest nontrivial
version of the energy minimization problem.

energy cost of an optimal schedule, and let
Given a problem instance J , let OPT(J) denote the

AVR(J) = J (E dj(t))2dt (2)
3

denote the cost of the heuristic schedule. The compet-
itive ratio of the heuristic is defined to be, as usual,
the least upper bound of AVR(J)/OPT(J) over all J .
We first look at how AVR performs in some specific
cases. Let [to,tl] = [0,1], and (JI = n in the following
examples.

Example 1. The ith job has interval [O , l/ai-’]. All
jobs have density di = 1/2, except d , = 1. (See Figure

The optimal schedule for this example has constant
speed s (t) = 1, and executes the jobs in the order
Jn, . . . , J1, with total energy cost 1. By evaluating Eq.
2, one finds that the energy used by AVR approaches
2 as n -+ CO, resulting in AVR(J)/OPT(J) = 2.

Example 2. The ith job has interval [O,i/n], and
density di = (r ~ / i) ~ where e 2 1. (See Figure 3.)

2-1

It can be verified that the jobs will form criti-
cal groups in the order J 1 , . . ., J,. When e = 1,
the optimal schedule has constant speed 1 and AVR
has cost 2 as n + 03, giving a ratio of 2 again.
With a careful analysis, one can prove that the ratio
AVR(J)/OPT(J) is maximized at 4 when e is chosen
to be 312.

376

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 3, 2010 at 10:42 from IEEE Xplore. Restrictions apply.

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

n

Figure 1: A job instance and its optimal schedule.

I
0 U4 112 1

Figure 2: A set of jobs for which AVR has ratio 2.

Example 2, with e = 312, is the worst example we
have for the AVR heuristic: we also conjecture that
4 is the exact value of its competitive ratio. In the
next section, we prove a constant competitive ratio
for the AVR heuristic. The constant we obtain is 4
for a restricted class of instances (which includes the
preceding examples), and 8 for the general case.

5 Analysis of AVR
Throughout the analysis, we will assume that some

speed function s * (t) is given, and consider only those
job instances J which can be optimally scheduled by
some S = (s * (t) , job(t)) running at speed s*(t) . We
call (J , S) a candidate instance for s* (or simply an
instance for s*). We also refer to J as a candidate in-
stance, if S is either unimportant or understood from
the context.

We will carry out the analysis of AVR in two
In Section 5.1, we reduce the candidate in- parts.

Ji I
I

I
I

0 l/n 2 n i In 1

Figure 3: A set of jobs for which AVR has ratio 4.

stances to certain canonical forms. That is, we show
that, for the purpose of obtaining an upper bound to
AVR(J)/OPT(J), it suffices to consider candidate in-
stances (J , S) that satisfy certain special constraints.
We then analyze the worst case ratio that is achievable
under these constraints.

5.1 Canonical Forms

We first show that one can assume (J ,S) to be a
“bitonic” instance; that is, the execution of each job
j E J by S is either consistently “ahead of0 the av-
erage rate, or consistently “behind” the average rate.
Recall that, the function s*(t)S(job(t) , j) specifies the
execution speed of job j, which we will denote by s J (t) .
Thus,

b ,
s3 (t)d t = l, dj (t) d t = Rj .

377

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 3, 2010 at 10:42 from IEEE Xplore. Restrictions apply.

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu
Job Instance

Peter Hu
Optimal Schedule

Peter Hu

Peter Hu

Peter Hu

Peter Hu
Coincide with
above schedule

Peter Hu
Local Max

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Let (J, S) be a candidate instance for s*(t) . We say
(J , S) is a bitonic instance, if every job j E J satisfies
one of the following two inequalities:

l: sj*(t)dt 2 1: dj(t)dt for a, 5 t 5 b j , (3)

or
t 1: sj*(t)dt 5 1, dj(t)dt for aj 5 t 5 b j . (4)

We refer to j that satisfies Eq. 3 or Eq. 4 as a type-A
or type-B job, respectively. (If j satisfies both inequal-
ities, we assign its type arbitrarily.) If all jobs in J are
of the same type, we call (J , S) a monotonic instance
for s*.

We will show that, for the competitive analysis of
AVR, the following restrictions may be placed on a
candidate instance (J , S) :

[bitonicity] each job of J is either of type A or of
type B;

tion interval;
[non-preemption] each job of J has a single execu-

[alignment] each Ij is aligned with execution-
interval boundaries;

[nesting] the Ij’s are properly nested.

A candidate instance (J , S) satisfying the above re-
strictions is called a canonical instance.

Lemma 5.1 (Bitonicity) Given an instance (J , S)
f o r s * , there exists a bitonic candidate instance (J’,S’)
fors* such that A V R (J) =AVR(J’).

Proof. For a job j E J , let { t i) be the points where
the function A(t) = Jt,(sT(t) - d j (t)) changes from
nonzero to zero or vice versa. Split j into several new
jobs (all having the same density as j) by dividing
[a j , b j] into subintervals a t these points t i . Modify S
accordingly so that the resulting (7,s‘) is still a can-
didate instance for s * . Clearly, (J’, s‘) is bitonic and
AVR(J) =AVR(J’). 0

For the job instance shown in Figure 1, a single
cut on Jg transforms it into a bitonic instance. How-
ever, bitonicity does not preclude preemptive exeuc-
tion; that is, some job may have more than one execu-
tion intervals. This situation can make the analysis of

AVR complicated. Therefore, we would like to further
reduce the problem to non-preemptive cases only. For
this purpose and, indeed, for the derivation of proper-
ties 3) and 4) below, we shall refer to a function F (J)
that closely approximates AVR(J) than to AVR(J)
itself. We first motivate the definition of F (J) with
some preliminary discussions.

Write a bitonic instance as J = J A U J B , where JA
(respectively, J B) consists of all the type-A (type-B)
jobs. Our analysis will deal with the two subsets J A
and J B separately and then combine the results. De-
fine S A (t) = CiEJA d i (t) , and s i (t) = CiEJa sr(t) .
Furthermore, let AVRA(J) and OPTA(J) denote the
costs of AVR and OPT respectively that are at-
tributable to J A . That is,

and OPTA(J) = (~1)~.
AVRA(J) = /(sal2 s
Define SB, s;3, AVRB and OPTB similarly. Then,

OPT(J) = OPTA(J) + OPTB(J),
AVR(J) 5 ~(AVRA(J) + AVRB(J)) (5)

because of the inequality (h + g) 2 5 2(h2 + g2).

We will focus on the ratio of AVRA(J)/OPTA(J)
in the remainder of this section. Hence all jobs con-
sidered are assumed to be in JA even without explicit
mentioning. We first define a linear order for the jobs
in JA and relabel them as J1, J2, . . . accordingly . The
linear order is consisitent with execution speed (i.e.,
the ordering of critical groups); hence i < j if si* > s5.
Among jobs in the same critical group, we order them
by their arrival times aj (which is equal to U ;) : i < j
iff ai > aj . (For jobs in J B , a linear order will be
defined similarly, except that within the same critical
group, we define i < j iff b, < b j .) A useful property
of such an ordering for JA is the followling:

Lemma 5.2 Let i, j be two jobs in JA with i < j .
Then J I j di 5 JIj sf .

Proof. The lemma is trivially true if Ii n Ij = 0, hence
we assume Ii n Ij # 0. We claim that we must have
a; > aj. If this were not true, then by the way the
linear order is defined, i must belong to a higher-speed
critical group than j. However, by Eq. 1, the entire
interval of Ii would have been scheduled, making it
impossible to execute job j right on arrival. Thus we
have ai > aj . Now, the lemma follows from the type-
A property of job i, in view of the fact that integration
over Ij covers an initial portion of i ’ s interval. 0

378

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 3, 2010 at 10:42 from IEEE Xplore. Restrictions apply.

Let FA(J) = 2 f j , where

Then, it follows from Lemma 5.2 that

AVRA(J) I2CJd id j 5 2cd,(x/ s;)
i<j j isj ‘ j

= F A (J) . (7)

We now prove that, to maximize FA(J), we need
only consider non-preemptive instances (J , S) (that is,
every job has a single execution interval). Incidentally,
it is clear that the reduction in Lemma 5.1 satisfies
FA(J) = FA(J’) .

Lemma 5.3 (Non-preemption) Given a bitonic
instance (J , S) for s*, there exists a bitonic instance
(J ‘ , S’) for s* such that (J‘ , S’) is non-preemptive and
F A (J ‘) 2 F A (J) .

Proof. Suppose some job j E J has k disjoint execu-
tion intervals. We will show that j can be split into
two jobs j’ and j”, with k - 1 and 1 execution inter-
vals respectively, such that f j 5 f j i + f j l l while s* is
unaffected. Non-preemption can then be achieved by
induction on k. Let I = [a, b] be the interval for j , and
suppose its k-th execution interval starts at to E [a, b].
Write I’ = [a, t o] and I” = [t o , b]. Let j’ and j ” be two
jobs with requirement R‘ = SI,, d; and R” = SI,, d; re-
spectively. Thus Rj = R’ + R“. Let the interval of
j” be I”. To define the interval for j ’ , we consider
the average value of s*(t) over I‘ and over I”; that is,
consider

% * (I t) = (E/ s i) / (to - a) and
isj I’

S*(I”) = (E/ s f) / (b - t o) .
i<j I”

We choose the interval of j’ to be I if S* (1’) 5 S* (I”),
and to be I’ if s*(I’) > S*(I”). In the former case,
the joint density of the two jobs d’(t) + d”(t) is larger
over I” than over 1’, hence fj, + fj i i 2 fj. In the
latter case, d‘(t), the joint density over I’, is larger
than d”(t), the joint density over I”, because

by the definition of type-A jobs. Hence fji + f j i i 2 fj

is again true in this case. Finally, it is clear that the
new job instance, with j replaced by { j ’ , j ” } , is still a

cl candidate instance for s* (t) .

In a non-preemptive, bitonic instance for s* , the ex-
ecution interval I; = [a;, bJ] of any job j occurs either
at the beginning of [aj, bj] (for type-A jobs), or at its
end (for type-B jobs). In other words, if we specify a
schedule S = (s* (t) , job(t)) together with a bipartition
y : { 1 , 2 , . . ., n} I+ { A , B } , then any non-preemptive,
bitonic instance J for s*, whose partition J = J A U JB
coincides with y, must satisfy the following:

1. For j o b j E J , its requirement is R j = SI: s*.

2. For j E JA, its interval is of the form [a;, xj] where

3. F o r k E J B , its interval is of the form [yk, b;] where

x j 2 b;, and a; > a; > . . ‘ .

Y k 5 a i , and br < b; < . . ‘ .

An instance J satisfying the above is said to be
consistent with (S,y). We would like to maximize
F A (J) over all such instances for a given (S, 7) . Note
that, there are additional constraints (such as Eq. 1)
which the variables x j and y; must satisfy, in order for
J to be feasibly scheduled by S. However, any upper
bound derived for F A (J) under constraints 1)-3) only
will certainly be a valid upper bound.

The next lemma shows that, in maximizing
FA(J) = 2 fj , one can assume that each job in-
terval Ij is aligned with execution-interval boundaries
in S. (In fact, the right endpoint x j must coincide
with b; for some k E JA). We write f j (x j) to indicate
the dependency of f j on x j .

Lemma 5.4 (Alignment) Among all instances con-
sistent with (S , y), the function FA is maximized when
each Ij, j E JA, is aligned with execution-interval
boundaries in S.

Proof. Write

As in the proof of Lemma 5.3, we view f j (x j) as the
product of Rj with s*(I j) (the average value of s* over
interval I j (xj)) . Since s* is constant over any execu-
tion interval, S*(Ij) attains its maximum when x j is
at a boundary point of some execution interval. 0

379

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 3, 2010 at 10:42 from IEEE Xplore. Restrictions apply.

Lemma 5.5 (Nesting) Among all instances consw
tent with (S,y), the function FA is maximized when
the intervals I j , j E J A , are properly nested: IinIj # 0
and i < j implies Ii E I j .

Proof. Assume IinIj # 0 and i < j, but I , and Ij are
not nested. By the proof of Lemma 5.2, we must have
a; > aj we can write Ij = p q and Ii = q r for suitable
subintervals p, q and r. The interpretation associated
with fj(zj) in Eq. 9 implies S* (q) 2 S * (p) , for other-
wise Ij = p would give fj(zj) an even larger value.
Similarly, we must have S*(r) 2 S*(q) . But then
8* (pqr) 2 S* (p q) = fj (x i) , hence we can maximize f j

by letting Ij = p q r instead, resulting in Ii 2 I j . We
repeat the process for each pair of intersecting inter-
vals. Since the process causes the number of distinct
endpoints to decrease, it will eventually terminate. 0

In summary, by combining the preceding lemmas
with Eq. 5 , 7, we have established the following re-
duction to canonical instances.

Lemma 5.6 (Reduction) Let J be a job instance
optimized by s*. Then there exists a schedule S =
(s*, job) and a bipartition y such that

AVR(J) 5 2 lim sup{ FA (J’) + FB (J ’) } , (10)
J’

where the lim sup is taken over all canonical instances
J’ consistent with (S , 7).

5.2 Competitive Ratio

Lemma 5.6 reduces the analysis of AVR to the max-
imization of FA, FB over all canonical instances con-
sistent with any (S, y). We will show that the latter
problem can be represented in terms of the eigenval-
ues of a matrix determined by (S, y). We then prove
a uniform bound on the largest eigenvalue of all such
matrices.

Let J = J A U J B be a canonical instance with IJA I =
n. Define

&, , - 1 if I: I j ,
- { 0 otherwise.

Thus, the b ; j ’ s specify the intervals of the jobs in
J A by decomposing each Ij over the disjoint intervals
{I: , . . . , I:}. Note that the nesting property implies
the following inequality for the S i j ’s:

Lemma 5.7 For any canonical znstance J = J A U
J B , we have FA(J) 5 4 OPTA(J) and F B (J) 5
4 OPTB(J).

Proof. It suffices to prove the inequality for J A ; hence
all jobs considered here are assumed to be in J A . We
first compress the t-axis by deleting all execution in-
tervals for type-B jobs. (This can only shorten Ij for
some j E J A , hence increase FA (J) by Eq. 6.) For sim-
plicity, assume all execution intervals for JA have unit
length, i.e., = 1. (This restriction can be easily
removed with the use of suitable normalizing factors;
see remark after Eq. 15.) We thus have s; = Rj, and

Also, we can write

Define a matrix M (J A) (or M for short) by

In general, we call a matrix M of the above form a
tree-induced matrix if it is induced by a set of prop-
erly nested intervals (I j } with lIj - ui<j & \ = 1. For
example, the matrix

1 0 1/3 1/4
0 1 1/3 1/4

is induced by an instance of four intervals with lengths
IIlI = 1121 = 1, 1131 = 3, 1141 = 4, and nesting relations
I, 14 for i = 1 , 2 . Note that M has all column
sums MzJ equal to 1. Also, by dividing both
sides of Eq. 11 by I I3 I I Ik 1 , we obtain the same nesting
relations for the Maj’s as for the Sz3’s:

13

M,,M,k 5 MsjM,k for i 5 j 5 IC. (14)

Let r denote the vector (R I , . . . , Rn) where n = I J A ~ .
We have

J

= 2 (rMrt)

380

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 3, 2010 at 10:42 from IEEE Xplore. Restrictions apply.

by Eq. 12 and 13. (When II:l # 1, Eq. 15 is still
valid if we just multiply the j-th column of M by lI;l,
and divide the j-th component of r by J I T J i .) Hence,
the proof of Lemma 5.7 will be complete if we show
that rMrt 5 211r112. This is a consequence of the fol-
lowing Lemma.

Let M * be the symmetrized form of M : that is,
M* = (M + M t) / 2 . Note that vMvt = vM*vt for all
V .

Lemma 5.8 If M is a tree-induced matrix, then the
largest eigenvalue of M* is at most 2.

Proof. For any v = (V I , . . , , vn), let w = Mvt =
(201,. . ., wn); thus wi = E. . Mijvj. It suffices to 3 22
show that

llW1l2 I 2(” . w > . (16)

Indeed, by Cauchy’s inequality, (v . w) 5 IIvIIIIwII.
This together with Eq. 16 gives (v . w) = vMvt 5
~ J J v ~) ~ , which is what we want. We now prove Eq. 16
by making use of the nesting property of the Mij’s as
given by Eq. 14.

i

i 32’
k z t

i k2jZi

0

The worst case of Lemma 5.8 occurs when the tree-
induced matrix is Mij = l/j for i 5 j , in which case
v = (vi) = (I/&) is asymptotically an eigenvector
with eigenvalue approaching 2. This case corresponds
exactly to the job instance given in Example 2 with
e = 3/2.

We now complete the proof of the following theo-
rem.

Theorem 2. For the power function P (s) = s2, the
Average Rate Heuristic has competitive ratio r where
4 < r < 8 .

Proof. The low bound follows from Example 2. The
upper bound is an immediate consequence of Lemma
5.6 and 5.7. 0

6 Higher-Order Power Functions
The approach we used to analyze AVR for the

power function P (s) = s2 generalizes readily to the
case P(s) = sp when p 2 2. The details will be left
to the complete paper. As an illustration of the tech-
niques used, we prove below the analog of Lemma 5.8.
It is obtained by first extending Eq. 17 to p norms,
and then using Holder’s inequality (a generalization
of Cauchy’s inequality).

Lemma 6.1 Let M be a tree-znduced matrix, and
w = Mvt. Then JJwJJp 5 pJJvll, for any integerp 2 2.

Proof. We first generalize Eq. 17, again making
use of the nesting property of the Mij’s and the fact E. .Mij = 1.

2 13

By Holder’s inequality for p norms (see [4]), u1 . u z 5
I I ~ i l l p ~ l I ~ 2 1 l ~ ~ if l/pi + l/pz = I . Letting u1 = v ,
u z = (wjp-’), pi = p and p2 = p / (p - l), we have

= IlvllP(llwllP)p-l~ (19)

Lemma 6.1 thus follows from Eq. 18 and 19. 0

381

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 3, 2010 at 10:42 from IEEE Xplore. Restrictions apply.

However, the penalty factor we pay for analyzing
J A and J B separately becomes 2P-1 since (f + g)P 5
2P-l(f P + g P) . (The worst case of the inequality occurs
when f =g.)

Theorem 3. Let p 2 2 be any real number. For the
power function P (s) = sp, the Average Rate Heuristic
has a competitive ratio rp satisfying pJ’ 5 rp 5 2p-lpP.

7 Conclusion
As portable computing devices proliferate, we ex-

pect that the energy usage of computer systems will
become an increasingly important problem. In this
paper we have introduced a simplified model of vari-
able speed processors and analyzed how the schedul-
ing of jobs affects the overall power consumption. We
have shown that the Average Rate heuristic has a con-
stant competitive ratio for power function P(s) = s p .

While our bound pP for the monotone case is tight,
the general bound (i.e., for the bitonic case) involves
a multiplicative factor of 2P-l. Based on simulation
results, we conjecture that the true competitive ratio
is p P .

For the heuristic Optimal-Available mentioned in
Section 4 , simulations also suggest that it has a com-
petitive ratio of 4 for the p = 2 case, although we have
not yet been able to prove any constant bound. Other
heuristics, including some that appear to have better
competitive ratios, will be discussed in the full paper.

One can show, by considering a simple two-job case,
that there is a lower bound of 10/9 on the competi-
tive ratios of all one-line scheduling algorithms. This
bound can be improved slightly by using more sophis-
ticated adversary strategies, and by considering three
jobs, etc. It would be interesting to find a systematic
approach for proving stronger lower bounds for this
problem.

Finally, simulations of randomly generated in-
stances (and simple probablistic arguments) suggest
that the number of critical intervals grows rather
slowly with n. This and other average case phenomena
have yet to be investigated more fully.

Acknowledgements
We would like to thank Anant Sahai for performing

extensive simulations on the various heuristics, which
led to valuable insights to this problem and, in partic-
ular, uncovered the example with competitive ratio 4
described in this paper. We would also like to thank
Dan Greene and Nabil Kahale for helpful discussions.

References
W. Athas, J . Koller, and L. Svenson. An energy-
efficient CMOS line driver using adiabatic switch-
ing. 1994 IEEE Fourth Great Lakes Symposaum
on VLSI. University of Washington, 1993.

A. Chandrakasan, S. Sheng, and R. Broderson.
Low-power CMOS digital design. JSSC. 27 (4)
473-484, 1992.

K. Govil, E. Chan, and H. Wasserman. Compar-
ing algorithms for dynamic speed-setting of a low-
power CPU. preprint.

G. H. Hardy, Y. E. Littlewood, and G. P6lya.
Inepualzties, 1934.

M Horowitz. Self-clocked structures for low power
systems. Computer Systems Laboratory, Stan-
ford University, ARPA semi-annual report , De-
cember 1993.

C. Liu and J . Layland. Scheduling algorithms for
multiprogramming in a hard real-time environ-
ment. CACM 20 (l), 46-61, 1973.

M Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. Proc. Sym-
poszum on Operatzng Systems Design and Imple-
mentatzon, pp. 13-23, 1994.

S. Younis and T. Knight. Practical implemen-
tation of charge recovering asymptotically zero
power CMOS. 1993 Symposium on Integrated
Systems, University of Washington, 1993.

382

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 3, 2010 at 10:42 from IEEE Xplore. Restrictions apply.

Peter Hu

Peter Hu

