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ABSTRACT emy consumption [5 ,  191. DVS techniques exploit an energy-delay 

Traditionally, dynamic voltage scaling (DVS) techniques have fo- 
cused on minimizing the processor energy consumption as opposed 
to the entire system energy consumption. The slowdown resulting 
from DVS can increase the energy consumption of components like 
memory and network interfaces. Furthermore, the leakage power 
consumotion is increasing with the scaline device technoloav and 

tradeoff that arises due to the quadratic relationship hetwien volt- 
age and power, whereas a linear relationship between voltage and 
delay (frequency). Note that DVS decreases the energy consump- 
tion at the cost of increased execution time. The longer execution 
time while decreasing the dynamic power consumption of the pro- 
cessor, can increase the energy contribution of other components 

~ . ~~~ . _. 
must also be taken into account. In this work, we consider energy 'Or the 'ollow'ng reasons: 

~~ 

efficient slowdown in a real-time task system. We present an algo- 
rithm to compute task slowdown factors based on the contribution 
of the processor leakage and standby energy consumption of the re- 
sources in the system. Our simulation experiments using randomly 
generated task sets show on an average 10% energy gains over tra- 
ditional dynamic voltage scaling. We further combine slowdown 
with procrastination scheduling which increases the average energy 
savings to 15%. We show that our scheduling approach minimizes 
the total static and dynamic energy consumption of the systemwide 
resources. 

Categories and  Subject Descriptnrs: D.4.1 [Operating System]: 
Process Management - scheduling. 
General Terms: Algorithms. 
Keywords: low power, DVS, resource standbyenergy, critical speed, 
real-time systems, EDF scheduling, procrastication. 

1. INTRODUCTION 

aging costs as well as to extend the limited battery life of portable 
embedded systems. The two primary ways to reduce power con- 
sumption in computing systems are: (1) resource shurdown, com- 
monly known as dynamic power management (DPM) and (2) re- 
source slowdown. also known as dynamic voltage scaling (DVS). 
Resources such as memory banks, disk drives, displays and net- 
work interfaces possess shutdown capability and DPM techniques 
have been proposed to minimize the power consumption of these 
resources [6, 9, 201. DVS is suppolted by recent processors and 
known to he more effective than DPM in reducing the processoren- 

System-level power management is important for reliability, pack- 
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o The standby leakage currents are increasing with the advances 
of CMOS technology and a five fold increase in the leakage 
power is predicted with each technology generation. Thus 
longer execution time implies more leakage energy. 

o If components such as memory and other VO interfaces need 
to be active (on state) along with the processor, slowdown 
can increase the total energy consumption of the system. 

e A minimum power consumption is associated with keeping 
the processor active. Some of the major contributors are the 
PLL circuitry, which drives up to 200mA current [XI and the 
I/O and analog components of the processor. Note that the 
power consumption of these components do not scale with 
DVS and longer execution time can increase the total energy 
consumption. 

Components such as memory hanks, flash drives, co-processors 
(DSP, FPU, codecs), FPGA components, analog interfaces and wired 
/wireless communication devices are pervasive in modem emhed- 
ded systems. Most of these resources support multiple shutdown- 
states for energy minimization. Due to the energy and delay costs 
of state transitions, the shutdown decisions have to be judiciously 
made to meet the system requirements. This results in the device 
operating in the standby state (on-state hut idle) where significant 
power is consumed. Memory modules are present in almost all 
computing systems with DRAMS and RDRAMs having standby 
current in the range of 3 0 d  to 1 2 0 d  [Z, 31. These devices have 
operating voltages in the range of 1.W to 3.3V, and can consume 
up to 0.36W of power. SRAM modules have still higher standby 
currents of the order of I 5 0 4  to 2 5 0 4 .  The standby power con- 
sumption of devices such as Rash drives and wireless interfaces is 
up to 0.5W [ I ]  and 1.4W [4] respectively. Other components like 
FPGAs, co-processors and codecs also consume significant power 
based on their functionality. The resource standby time is related to 
the program execution and can increase with DVS (slowdown). Es- 
pecially with compiler assisted DPM techniques 161, standby time 
increasesproportionally to the taskexecution time. Thus DVS tech- 
niques need to consider the standby power consumption of the pe- 
ripherals devices in the computation of slowdown factors to reduce 
the total energy consumption of the system. 
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Most of the works on DVS consider the energy consumption 
of the processor in isolation. Earlier works have addressed mini- 
mizing the dynamic power consumption of the processor [5 ,  191, 
whereas later works have focussed on leakage to minimize the total 
static and dynamic power consumption [17, 21, 12, I l l .  Slow- 
down tradeoffs in the computation and communication subsystems 
are considered in [14, 161. Recent works have also considered the 
combined processor and memory energy consumption. Fan er. al. 
[71 consider memory power consumption to show that excess slow- 
down can increase the total energy consumption. 

While most of the work on DVS is focussed on minimizing the 
processor energy consumption, the resource standby energy is usu- 
ally ignored. It is observed that devices like memory banks are in 
the active state 30% - 90% of the task execution time 161. With 
the steady increase in the amount of data which is often distributed, 
the network and disk activity increases and so is the standby time 
of these devices. We take into account the standby power con- 
sumption of the resources used by tasks to compute energy efficient 
task slowdown factors. Given the resource usage and the resource 
standby time for the tasks, we propose an algorithm to compute task 
slowdown factors to minimize the total energy consumption. Fur- 
thermore, we combine task slowdown with procrastination schedul- 
ing proposed in our earlier work [I 1, IO]. Procrastination is known 
to reduce the energy consumption by minimizing the number of 
processor odoff transitions as well as extending the sleep intervals 
within the performance requirements of the system. 

The rest of the paper is organized as follows. In Section 2, we 
introduce the system model. Section 3 formulates the problem fol- 
lowed by an algorithm to compute task slowdown factors. The ex- 
perimental results are discussed in Section 4 and Section 5 con- 
cludes the paper with future directions. 

2. SYSTEM MODEL 
A task set of n periodic real time tasks is represented as r = 

171 ,... &}. A 3-tuple { q , D i l C i }  is used to represent each task 7;. 
where is the period of the task, Di is the relative deadline and Cj 
is the wont case execution time (WCET) of the task at the maxi- 
mum processor speed. In this work, we assume task deadlines to 
he equal to the period (0; = Ti) and the tasks are scheduled by the 
Earliest Deadline Fint (EDF) scheduling policy 1151. All tasks are 
assumed to be independent and preemptive. The tasks are sched- 
uled on a single processor system based on a preemptive scheduling 
policy. We say a task isprocrastinated(or delayed) if the processor 
remains idle despite the presence of the task in the processor ready 
queue. The procrastination interval of a task is the time interval by 
which a task is procrastinated. 

Recent processors support variable voltage and frequency lev- 
els for energy efficient operation of the system. Let the available 
frequencies he { f i ,  ..., f?} in increasing order of frequency and the 
corresponding voltage levels be [ v i  l . . . ,vs}.  A slowdown facror 
(qi) is defined as the normalized operating frequency i.e. the ra- 
tio of the current frequency to the maximum frequency, fs, of the 
processor. The important point to note is when the frequency is 
changedto fk, the voltage level is also proportionately set to V X .  The 
power consumption of the processor at a slowdown of q is repre- 
sented as P ( C P U , q ) .  Since processois support discrete frequency 
levels, the slowdown factors are discrete points (i, ..., 1) in the 
range [0,1]. The slowdown factor assigned to task T; is represented 
by q;. When task is assigned a slowdown factor 9, the task 
slowdown factor is represented by qf to make the slowdown factor 
assignment explicit, when required. We assume that the overhead 
incurred in changing the processor speed is incorporated in the task 

execution time. This overhead, similar to the context switch over- 
head, is constant and can be incorporated in the worst case execu- 
tion time of a task. We note that the same assumption is made in 
previous works [5,  191. The processorsupports shutdown to reduce 
the leakage power consumption. The processor is said to he idle if 
it is not executing a task. In the idle state, the processor could be 
in the shutdown state (no leakage) or in the standby state (active + 
idle) where leakage power is dissipated. 

In addition to the processor, the system has a set of m resources 
% = [ R I ,  ..., R,} that model the peripheral devices. The resource 
is said to be in the standby state if it is on (active) but idle. The 
standby state power consumption of each resourcc R; is given by 
P(Ri)  and the shutdown power of the resource is assumed to be 
zero. The power consumed in performing the resource functional- 
ity is independent of the task slowdown and not considered in our 
analysis. Each task T ;  uses a subset of the resources in x, rep- 
resented by %". Despite the use of DPM policies, the resources 
are in a standby state for a significant portion of time. We assume 
that the device standby time for each task is expressed in number 
of processor cycles. Since the device activities are related to the 
program execution, the standby time is expected to be represented 
in terms of processor cycles. This is patticularly true for compiler 
directed DPM policies. Though the standby time can potentially 
vary with slowdown under OS directed DPM policies, we assume 
that the number of cycles a resource is in standby state is indepen- 
dent of slowdown. Let $ he the number of cycles resource Rj is 
in the standby state during the execution of 9.  If a task does not 
use resource R j ,  then $ = 0. In this work, we consider task level 
slowdown factors as opposed to intra-task slowdown. We com- 
pute task slowdown factors that minimize the total system energy 
consumption including the resource standby energy contribution. 
Note that we are not proposing DPM policies, but considering the 
standby energy in computing static slowdown factors. 

3. LOW POWER SCHEDULING 
We want to compute task slowdown factors that minimize the 

energy consumption of the entire system. The total energy con- 
sumption when task 7; is executed at a speed q is given by : 

Based on the the EDF scheduling policy, a task-set of n independent 
periodic tasks is feasible at a slowdown factor of q; for task T; if the 
utilization under slowdown is no more than unity. The number of 
executions of each task is inversely propottional to the task period 
and the optimization problem can he stated as: 

I C ;  
subjecrro:  C - - < l  

;=, Ili r, - (3) 

Note that the slowest speed need not be the optimal slowdown fac- 
tor when the contributions of the processor leakage power and the 
resource standby power are considered. The slowdown factor for a 
task that minimizes its total energy consumption, called the critical 
speed for the task, is important in energy minimization. 
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3.1 Slowdown Algorithm 
While we do not know the time complexity of problem to com- 

pute the optimal task slowdown factors, we present a heuristic algo- 
rithm to compute energy efficient slowdown factors. The proposed 
heuristic is motivated by the algorithm in [IS]. The algorithm con- 
sists of two phases : (1) computing the critical speed for each task; 
and (2) increasing the task slowdown factors if the task set is not 
feasible. We compute the energy consumption of each task at all 
possible discrete slowdown factors and the slowdown factor that 
minimizes the task energy is the critical speed. Due to different re- 
source usages of task, the critical speed can differ with each task. 
If the task-set is infeasible, the second step increases the execution 
speed of tasks to achieve feasibility. A heuristic to select a task 
whose speed is increased is described next. The candidate tasks 
for speedup are the tasks that do not have the maximum speed. 
Given qf is the current slowdown of a candidate task T?, the next 
higher slowdown factor is represented by q)+'. Among all candi- 
date tasks, we increase the slowdown of a task that results in the 
minimum energy increase per unit time. For each candidate task 
Ti, we compute the increase in energy consumption, AEj, and the 
time gained by the speedup, Ati, where AEj = E,(qf+') - Ei(qf) 
and Afj = Cj( 4 - A). The slowdown factor (speed) of the can- 

didate task with the minimum value of % is increased. The same 
heuristic is used in [I81 to increase the task slowdown factor. The 
pseudo-code is presented in Algorithm I .  

'li '1, 

Algorithm 1 Computing Slowdown Factors 
1 : Compute the critical speed for each task  
2: Initialize qi to critical speed of q; 
3: while ( not feasible) do 
4: Let r, he task satisfying: 
5 :  (a) q, is not the maximum speed; 
6: (b) 2 is minimum; 
7: Increase speed of task 7,; 
8: end while 
9: reNrn slowdown factors qi; 

4. EXPERIMENTAL SETUP 
We implemented the different scheduling techniques in a discrete 

event simulator. To evaluate the effectiveness of our scheduling 
techniques, we consider several task sets, each containing up to 20 
randomly generated tasks. We note that such randomly generated 
tasks are a common validation methodology in previous works [13, 
51. Based on real life task sets, tasks are assigned a random period 
in the range [IO ms.120 ms]. An initial utilization ui of each task is 
uniformly assigned in the range [0.05,0.51. The worst case execu- 
tion time (WCET) for each task at the maximum processor speed 
is set to U : .  E .  The execution time of each task is scaled to ensure 
a processor utilization less than one, thereby making the task set 
feasible. All tasks are assumed to execute up to their WCET. 

The tasks are scheduledon a single processorsystem. We use the 
processor power model presented in our earlier work [ I  I], which 
captures both dynamic and static power consumption. The proces- 
sor is assumed to support discrete voltage levels in steps of 0.05V 
in the range 0.W to 1 .OV. From the power model, it is seen that 
the operating point that minimizes the processor energy is at Vdd = 
0.7V. which corresponds to a slowdown factor of q = 0.41. The 
idle power consumption is 0.24W and the energy cost of wakeup 
is assumed to he 483~5, as discussed in [I  I]. This makes shut- 
down energy efficient only when the idle interval is greater than 
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Figure 1: Energy consumption normalized to no-DVS 

2.01ms. which is the threshold idle interval f,hrerhold for shutdown. 
In addition to the processor, the system has three resources with 
standby power consumption of 0.2W, 0.4W and 1.OW. These are 
typical standby power consumption for memory, flash drives and 
802.1 1 wireless interfaces and represent these resources. The typ- 
ical standby time for the resources as a percentage of the task exe- 
cution time is assumed to he in the range [20%, 60%], [IO%, 25%] 
and [5%, 20961 respectively. While the usage of network interfaces 
vary based on the applications, we assume conservative standby 
time. Note that our techniques will result in increased gains with 
larger resource standby intervals. Each task is assumed to use min- 
imum one (memory) and maximum all resources and the standby 
time is uniformly assigned in the corresponding ranges. The wire- 
less interface ( I  .OW standby power) is assigned to a task only if the 
task uses all resources. 

Experiments were performed on various task sets and the average 
results are presented. We compare the energy consumption of the 
following techniques: 

No DVS (no-DVS): where all tasks are executed at maximum 
processor speed. 

e Traditional Dynamic Voltage Scaling (DVS) : where tasks 
are assigned the minimum possible slowdown factor. 

Critical Speed DVS (CS-DVS): where task slowdown factors 
are computed by Algorithm 1, presented in Section 3. 

Critical Speed DVS with Procrastination (CS-DVS-P): This 
is the Critical Speed DVS (CS-DVS) slowdown along with 
the procrastination scheduling policy described in [ I  I]. 

Under scheduling with no procrastination, the processor is shut- 
down if the processor is idle and the next task arrival is later than 
the threshold idle interval (t,hresho,d). With procrastination, the up- 
coming idle time and the minimum procrastination interval are con- 
sidered to make a shutdown decision. Thus procrastination en- 
ables longer shutdown intervals and reduces the leakage energy 
consumption. 

Figure I shows the energy consumption of the techniques nor- 
malized to no-DVS scheme. The processor utilization at maximum 
speed, U, is shown along the X-axis with the normalized energy 
consumption along the Y-axis. With the resource standby time 
in the specified range, the resources consume around 10% of the 
total energy in our experimental setup. Traditional DVS scheme 
does not consider the resource standby time and no-DVS and DVS 
schemes have similar energy consumption at higher values of U 
(80% to 100%). With the processor consuming the majority of the 
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energy, DVS leads to energy gains at U drops below 80%. At lower 
utilization however, traditional DVS scheme results in increased 
processor leakage as well as longer resource standby time and con- 
sumes more energy. As U drops below 40%, the energy consumed 
by DVS increases and even surpasses no-DVS at very low values 
of U .  On the other hand, CS-DVS computes task slowdown factors 
considering the resource standby power consumption and saves on 
an average I O %  energy over traditional DVS. The CS-DVS tech- 
nique executes each task no slower than its critical speed and shuts 
down the system to minimize energy consumption. However, if the 
idle intervals are not sufficient to shutdown, significant energy sav- 
ings cannot be achieved (over DVS) as seen at a utilization of 30% 
and 40%. We see that the procrastination scheme results in more 
energy saving from this point. As the utilization lowers, executing 
tasks by the CS-DVS scheme results in idle intervals in the system 
and the shutdown overhead contributes to a significant portion of 
the total energy. The procrastination scheme (CS-DVS-Pj clusters 
task executions thereby increasing the sleep intervals and achieves 
more energy savings. CS-DVS-P minimizes the idle energy con- 
sumption to result on an average 15% energy savings over the DVS 
scheme. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented a task slowdown algorithm that 

considers the contributions of resource standby energy as well as 
processor leakage to minimize the total energy consumption in a 
system. We show that detailed power models of the resources 
are important in computing energy efficient operating points. In- 
corporating the resource usage patterns and their power models is 
increasingly important as systems become diverse with more re- 
sources conuibuting to the total energy consumption. Our exper- 
imental results show that computing the critical execution speeds 
for tasks results on an average 10% energy savings. The procrasti- 
nation scheme increases the average energy savings to 15% by ex- 
tending the sleep intervals thereby controlling leakage energy con- 
sumption. Such a scheduling framework which has the view of the 
entire system results in an energy efficient operation while meet- 
ing all timing requirements. We plan to extend these techniques to 
scheduling multiple resources with DVS capability and their effects 
on system-wide DPM policies. 
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