
2.3~

Dynamic Voltage Scaling for Systemwi
Minimization in Real-Time Embedded Systems

Ravindra Jejurikar Rajesh Gupta
Center for Embedded Computer Systems

University of California, lrvine
Irvine, CA 92697

Department of Computer Science
University of California, San Diego

La Jolla, CA 92093
jezzQcecs.uci.edu gupta@cs.ucsd.edu

ABSTRACT emy consumption [5 , 191. DVS techniques exploit an energy-delay

Traditionally, dynamic voltage scaling (DVS) techniques have fo-
cused on minimizing the processor energy consumption as opposed
to the entire system energy consumption. The slowdown resulting
from DVS can increase the energy consumption of components like
memory and network interfaces. Furthermore, the leakage power
consumotion is increasing with the scaline device technoloav and

tradeoff that arises due to the quadratic relationship hetwien volt-
age and power, whereas a linear relationship between voltage and
delay (frequency). Note that DVS decreases the energy consump-
tion at the cost of increased execution time. The longer execution
time while decreasing the dynamic power consumption of the pro-
cessor, can increase the energy contribution of other components

~ . ~~~ . _.
must also be taken into account. In this work, we consider energy 'Or the 'ollow'ng reasons:

~~

efficient slowdown in a real-time task system. We present an algo-
rithm to compute task slowdown factors based on the contribution
of the processor leakage and standby energy consumption of the re-
sources in the system. Our simulation experiments using randomly
generated task sets show on an average 10% energy gains over tra-
ditional dynamic voltage scaling. We further combine slowdown
with procrastination scheduling which increases the average energy
savings to 15%. We show that our scheduling approach minimizes
the total static and dynamic energy consumption of the systemwide
resources.

Categories and Subject Descriptnrs: D.4.1 [Operating System]:
Process Management - scheduling.
General Terms: Algorithms.
Keywords: low power, DVS, resource standbyenergy, critical speed,
real-time systems, EDF scheduling, procrastication.

1. INTRODUCTION

aging costs as well as to extend the limited battery life of portable
embedded systems. The two primary ways to reduce power con-
sumption in computing systems are: (1) resource shurdown, com-
monly known as dynamic power management (DPM) and (2) re-
source slowdown. also known as dynamic voltage scaling (DVS).
Resources such as memory banks, disk drives, displays and net-
work interfaces possess shutdown capability and DPM techniques
have been proposed to minimize the power consumption of these
resources [6, 9, 201. DVS is suppolted by recent processors and
known to he more effective than DPM in reducing the processoren-

System-level power management is important for reliability, pack-

Permission to make digital or hard copies of all 01 pan of this work for
personal or classroom use is granted without fee provided that copies are
not made or disvibuted for profit or commercial advantage and that copies
bearthis noticeand the full citation on the first page. To copy otherwise. to
rerrublish. to post on serversortoredistnbute to lists, requires prior specific ~.
pimission and/or a fee.
lSLFED'O4, August 9-1 1,2004, Newport Beach, California, USA.
Copyright2004 ACM 1-581 13-929-2/04/0008 ... $5.00.

o The standby leakage currents are increasing with the advances
of CMOS technology and a five fold increase in the leakage
power is predicted with each technology generation. Thus
longer execution time implies more leakage energy.

o If components such as memory and other VO interfaces need
to be active (on state) along with the processor, slowdown
can increase the total energy consumption of the system.

e A minimum power consumption is associated with keeping
the processor active. Some of the major contributors are the
PLL circuitry, which drives up to 200mA current [XI and the
I/O and analog components of the processor. Note that the
power consumption of these components do not scale with
DVS and longer execution time can increase the total energy
consumption.

Components such as memory hanks, flash drives, co-processors
(DSP, FPU, codecs), FPGA components, analog interfaces and wired
/wireless communication devices are pervasive in modem emhed-
ded systems. Most of these resources support multiple shutdown-
states for energy minimization. Due to the energy and delay costs
of state transitions, the shutdown decisions have to be judiciously
made to meet the system requirements. This results in the device
operating in the standby state (on-state hut idle) where significant
power is consumed. Memory modules are present in almost all
computing systems with DRAMS and RDRAMs having standby
current in the range of 3 0 d to 1 2 0 d [Z, 31. These devices have
operating voltages in the range of 1.W to 3.3V, and can consume
up to 0.36W of power. SRAM modules have still higher standby
currents of the order of I 5 0 4 to 2 5 0 4 . The standby power con-
sumption of devices such as Rash drives and wireless interfaces is
up to 0.5W [I] and 1.4W [4] respectively. Other components like
FPGAs, co-processors and codecs also consume significant power
based on their functionality. The resource standby time is related to
the program execution and can increase with DVS (slowdown). Es-
pecially with compiler assisted DPM techniques 161, standby time
increasesproportionally to the taskexecution time. Thus DVS tech-
niques need to consider the standby power consumption of the pe-
ripherals devices in the computation of slowdown factors to reduce
the total energy consumption of the system.

78

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on August 05,2023 at 08:20:16 UTC from IEEE Xplore. Restrictions apply.

http://jezzQcecs.uci.edu
mailto:gupta@cs.ucsd.edu
Peter Hu

Peter Hu

Peter Hu

Peter Hu

Most of the works on DVS consider the energy consumption
of the processor in isolation. Earlier works have addressed mini-
mizing the dynamic power consumption of the processor [5 , 191,
whereas later works have focussed on leakage to minimize the total
static and dynamic power consumption [17, 21, 12, I l l . Slow-
down tradeoffs in the computation and communication subsystems
are considered in [14, 161. Recent works have also considered the
combined processor and memory energy consumption. Fan er. al.
[71 consider memory power consumption to show that excess slow-
down can increase the total energy consumption.

While most of the work on DVS is focussed on minimizing the
processor energy consumption, the resource standby energy is usu-
ally ignored. It is observed that devices like memory banks are in
the active state 30% - 90% of the task execution time 161. With
the steady increase in the amount of data which is often distributed,
the network and disk activity increases and so is the standby time
of these devices. We take into account the standby power con-
sumption of the resources used by tasks to compute energy efficient
task slowdown factors. Given the resource usage and the resource
standby time for the tasks, we propose an algorithm to compute task
slowdown factors to minimize the total energy consumption. Fur-
thermore, we combine task slowdown with procrastination schedul-
ing proposed in our earlier work [I 1, IO]. Procrastination is known
to reduce the energy consumption by minimizing the number of
processor odoff transitions as well as extending the sleep intervals
within the performance requirements of the system.

The rest of the paper is organized as follows. In Section 2, we
introduce the system model. Section 3 formulates the problem fol-
lowed by an algorithm to compute task slowdown factors. The ex-
perimental results are discussed in Section 4 and Section 5 con-
cludes the paper with future directions.

2. SYSTEM MODEL
A task set of n periodic real time tasks is represented as r =

171 ,... &}. A 3-tuple { q , D i l C i } is used to represent each task 7;.
where is the period of the task, Di is the relative deadline and Cj
is the wont case execution time (WCET) of the task at the maxi-
mum processor speed. In this work, we assume task deadlines to
he equal to the period (0; = Ti) and the tasks are scheduled by the
Earliest Deadline Fint (EDF) scheduling policy 1151. All tasks are
assumed to be independent and preemptive. The tasks are sched-
uled on a single processor system based on a preemptive scheduling
policy. We say a task isprocrastinated(or delayed) if the processor
remains idle despite the presence of the task in the processor ready
queue. The procrastination interval of a task is the time interval by
which a task is procrastinated.

Recent processors support variable voltage and frequency lev-
els for energy efficient operation of the system. Let the available
frequencies he { f i , ..., f?} in increasing order of frequency and the
corresponding voltage levels be [v i l . . . ,vs}. A slowdown facror
(qi) is defined as the normalized operating frequency i.e. the ra-
tio of the current frequency to the maximum frequency, fs, of the
processor. The important point to note is when the frequency is
changedto fk, the voltage level is also proportionately set to V X . The
power consumption of the processor at a slowdown of q is repre-
sented as P (C P U , q) . Since processois support discrete frequency
levels, the slowdown factors are discrete points (i, ..., 1) in the
range [0,1]. The slowdown factor assigned to task T; is represented
by q;. When task is assigned a slowdown factor 9, the task
slowdown factor is represented by qf to make the slowdown factor
assignment explicit, when required. We assume that the overhead
incurred in changing the processor speed is incorporated in the task

execution time. This overhead, similar to the context switch over-
head, is constant and can be incorporated in the worst case execu-
tion time of a task. We note that the same assumption is made in
previous works [5, 191. The processorsupports shutdown to reduce
the leakage power consumption. The processor is said to he idle if
it is not executing a task. In the idle state, the processor could be
in the shutdown state (no leakage) or in the standby state (active +
idle) where leakage power is dissipated.

In addition to the processor, the system has a set of m resources
% = [R I , ..., R,} that model the peripheral devices. The resource
is said to be in the standby state if it is on (active) but idle. The
standby state power consumption of each resourcc R; is given by
P(Ri) and the shutdown power of the resource is assumed to be
zero. The power consumed in performing the resource functional-
ity is independent of the task slowdown and not considered in our
analysis. Each task T ; uses a subset of the resources in x, rep-
resented by %". Despite the use of DPM policies, the resources
are in a standby state for a significant portion of time. We assume
that the device standby time for each task is expressed in number
of processor cycles. Since the device activities are related to the
program execution, the standby time is expected to be represented
in terms of processor cycles. This is patticularly true for compiler
directed DPM policies. Though the standby time can potentially
vary with slowdown under OS directed DPM policies, we assume
that the number of cycles a resource is in standby state is indepen-
dent of slowdown. Let $ he the number of cycles resource Rj is
in the standby state during the execution of 9. If a task does not
use resource R j , then $ = 0. In this work, we consider task level
slowdown factors as opposed to intra-task slowdown. We com-
pute task slowdown factors that minimize the total system energy
consumption including the resource standby energy contribution.
Note that we are not proposing DPM policies, but considering the
standby energy in computing static slowdown factors.

3. LOW POWER SCHEDULING
We want to compute task slowdown factors that minimize the

energy consumption of the entire system. The total energy con-
sumption when task 7; is executed at a speed q is given by :

Based on the the EDF scheduling policy, a task-set of n independent
periodic tasks is feasible at a slowdown factor of q; for task T; if the
utilization under slowdown is no more than unity. The number of
executions of each task is inversely propottional to the task period
and the optimization problem can he stated as:

I C ;
subjecrro: C - - < l

;=, Ili r, - (3)

Note that the slowest speed need not be the optimal slowdown fac-
tor when the contributions of the processor leakage power and the
resource standby power are considered. The slowdown factor for a
task that minimizes its total energy consumption, called the critical
speed for the task, is important in energy minimization.

79

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on August 05,2023 at 08:20:16 UTC from IEEE Xplore. Restrictions apply.

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu
cycles

Peter Hu

Peter Hu

3.1 Slowdown Algorithm
While we do not know the time complexity of problem to com-

pute the optimal task slowdown factors, we present a heuristic algo-
rithm to compute energy efficient slowdown factors. The proposed
heuristic is motivated by the algorithm in [IS]. The algorithm con-
sists of two phases : (1) computing the critical speed for each task;
and (2) increasing the task slowdown factors if the task set is not
feasible. We compute the energy consumption of each task at all
possible discrete slowdown factors and the slowdown factor that
minimizes the task energy is the critical speed. Due to different re-
source usages of task, the critical speed can differ with each task.
If the task-set is infeasible, the second step increases the execution
speed of tasks to achieve feasibility. A heuristic to select a task
whose speed is increased is described next. The candidate tasks
for speedup are the tasks that do not have the maximum speed.
Given qf is the current slowdown of a candidate task T?, the next
higher slowdown factor is represented by q)+'. Among all candi-
date tasks, we increase the slowdown of a task that results in the
minimum energy increase per unit time. For each candidate task
Ti, we compute the increase in energy consumption, AEj, and the
time gained by the speedup, Ati, where AEj = E,(qf+') - Ei(qf)
and Afj = Cj(4 - A). The slowdown factor (speed) of the can-

didate task with the minimum value of % is increased. The same
heuristic is used in [I81 to increase the task slowdown factor. The
pseudo-code is presented in Algorithm I .

'li '1,

Algorithm 1 Computing Slowdown Factors
1 : Compute the critical speed for each task
2: Initialize qi to critical speed of q;
3: while (not feasible) do
4: Let r, he task satisfying:
5 : (a) q, is not the maximum speed;
6: (b) 2 is minimum;
7: Increase speed of task 7,;
8: end while
9: reNrn slowdown factors qi;

4. EXPERIMENTAL SETUP
We implemented the different scheduling techniques in a discrete

event simulator. To evaluate the effectiveness of our scheduling
techniques, we consider several task sets, each containing up to 20
randomly generated tasks. We note that such randomly generated
tasks are a common validation methodology in previous works [13,
51. Based on real life task sets, tasks are assigned a random period
in the range [IO ms.120 ms]. An initial utilization ui of each task is
uniformly assigned in the range [0.05,0.51. The worst case execu-
tion time (WCET) for each task at the maximum processor speed
is set to U : . E . The execution time of each task is scaled to ensure
a processor utilization less than one, thereby making the task set
feasible. All tasks are assumed to execute up to their WCET.

The tasks are scheduledon a single processorsystem. We use the
processor power model presented in our earlier work [I I], which
captures both dynamic and static power consumption. The proces-
sor is assumed to support discrete voltage levels in steps of 0.05V
in the range 0.W to 1 .OV. From the power model, it is seen that
the operating point that minimizes the processor energy is at Vdd =
0.7V. which corresponds to a slowdown factor of q = 0.41. The
idle power consumption is 0.24W and the energy cost of wakeup
is assumed to he 483~5, as discussed in [I I]. This makes shut-
down energy efficient only when the idle interval is greater than

€new consumption normalized to ~ D D V S
1.2

No Dynamic Voltage Scaling (no-DVS) -
Traditional Dynamic Voltage Scalin (DVS

cntical speed,ovs (c%.Dvsj 1 1 ~ :
Cntical Speed DVS win Procrastination (CS-DVS-P) - ~ c- ',.,

1.1 -.,,

z

0.6 I
10 20 30 40 50 60 70 60 go ion

Yo processor utilization at maximum sped (U)

Figure 1: Energy consumption normalized to no-DVS

2.01ms. which is the threshold idle interval f,hrerhold for shutdown.
In addition to the processor, the system has three resources with
standby power consumption of 0.2W, 0.4W and 1.OW. These are
typical standby power consumption for memory, flash drives and
802.1 1 wireless interfaces and represent these resources. The typ-
ical standby time for the resources as a percentage of the task exe-
cution time is assumed to he in the range [20%, 60%], [IO%, 25%]
and [5%, 20961 respectively. While the usage of network interfaces
vary based on the applications, we assume conservative standby
time. Note that our techniques will result in increased gains with
larger resource standby intervals. Each task is assumed to use min-
imum one (memory) and maximum all resources and the standby
time is uniformly assigned in the corresponding ranges. The wire-
less interface (I .OW standby power) is assigned to a task only if the
task uses all resources.

Experiments were performed on various task sets and the average
results are presented. We compare the energy consumption of the
following techniques:

No DVS (no-DVS): where all tasks are executed at maximum
processor speed.

e Traditional Dynamic Voltage Scaling (DVS) : where tasks
are assigned the minimum possible slowdown factor.

Critical Speed DVS (CS-DVS): where task slowdown factors
are computed by Algorithm 1, presented in Section 3.

Critical Speed DVS with Procrastination (CS-DVS-P): This
is the Critical Speed DVS (CS-DVS) slowdown along with
the procrastination scheduling policy described in [I I].

Under scheduling with no procrastination, the processor is shut-
down if the processor is idle and the next task arrival is later than
the threshold idle interval (t,hresho,d). With procrastination, the up-
coming idle time and the minimum procrastination interval are con-
sidered to make a shutdown decision. Thus procrastination en-
ables longer shutdown intervals and reduces the leakage energy
consumption.

Figure I shows the energy consumption of the techniques nor-
malized to no-DVS scheme. The processor utilization at maximum
speed, U, is shown along the X-axis with the normalized energy
consumption along the Y-axis. With the resource standby time
in the specified range, the resources consume around 10% of the
total energy in our experimental setup. Traditional DVS scheme
does not consider the resource standby time and no-DVS and DVS
schemes have similar energy consumption at higher values of U
(80% to 100%). With the processor consuming the majority of the

80

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on August 05,2023 at 08:20:16 UTC from IEEE Xplore. Restrictions apply.

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

energy, DVS leads to energy gains at U drops below 80%. At lower
utilization however, traditional DVS scheme results in increased
processor leakage as well as longer resource standby time and con-
sumes more energy. As U drops below 40%, the energy consumed
by DVS increases and even surpasses no-DVS at very low values
of U . On the other hand, CS-DVS computes task slowdown factors
considering the resource standby power consumption and saves on
an average I O % energy over traditional DVS. The CS-DVS tech-
nique executes each task no slower than its critical speed and shuts
down the system to minimize energy consumption. However, if the
idle intervals are not sufficient to shutdown, significant energy sav-
ings cannot be achieved (over DVS) as seen at a utilization of 30%
and 40%. We see that the procrastination scheme results in more
energy saving from this point. As the utilization lowers, executing
tasks by the CS-DVS scheme results in idle intervals in the system
and the shutdown overhead contributes to a significant portion of
the total energy. The procrastination scheme (CS-DVS-Pj clusters
task executions thereby increasing the sleep intervals and achieves
more energy savings. CS-DVS-P minimizes the idle energy con-
sumption to result on an average 15% energy savings over the DVS
scheme.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a task slowdown algorithm that

considers the contributions of resource standby energy as well as
processor leakage to minimize the total energy consumption in a
system. We show that detailed power models of the resources
are important in computing energy efficient operating points. In-
corporating the resource usage patterns and their power models is
increasingly important as systems become diverse with more re-
sources conuibuting to the total energy consumption. Our exper-
imental results show that computing the critical execution speeds
for tasks results on an average 10% energy savings. The procrasti-
nation scheme increases the average energy savings to 15% by ex-
tending the sleep intervals thereby controlling leakage energy con-
sumption. Such a scheduling framework which has the view of the
entire system results in an energy efficient operation while meet-
ing all timing requirements. We plan to extend these techniques to
scheduling multiple resources with DVS capability and their effects
on system-wide DPM policies.

Acknowledgments
The authors acknowledge support from National Science Foun-
dation (Award CCR-0098335) and from Semiconductor Research
Corporation (Contract 2001-HJ-899). We would like to thank the
reviewers for their useful comments.

6. REFERENCES
[I] Memtech SSD Corporation. hrrp://www.memtech.com.
[2] Micron Technology, Inc. htrp://www.micron.com.
[3] Ramhus Inc. hrrp://www.mmbus.com.
[4] Atheros Communications. Power consumption and energy

efficiency comparisons of wlan products. In Arheros Whire
Papers (hnp://www.arheros.com/pr/papers.htmlJ, May 2003.

Determining optimal processor speeds for periodic real-time
tasks with different power characteristics. In Proceedingsof
EuroMicro Conferenceon Real-Time Sysrems, Jun. 2001.

[SI H. Aydin, R. Melhem, D. Mosst, and P. M. Alvarez.

[61 V. Delaluz, M. Kandemir, N. Vijaykrishnan,
A. Sivasubramaniam, and M. h i n . Hardware and software
techniques for controlling dram power modes. IEEE
Transacrionson Compurers,50(1I):l154-1173,2001.

[7] X. Fan, C. Ellis, and A. Leheck. The synergy between
power-aware memory systems and processor voltage. In
Workshopon Power-Aware Compuring Sysrems. Dec. 2003.

[SI Intel XScale Processor. Intel Inc.
(hrrp://d//developer.inreel.co~d~~i~~inre~sculeJ.

[9] S. Irani, S. Shukla, and R. Gupta. Online strategies for
dynamic power management in systems with multiple
power-saving states. Trans. on Embedded Computing Sys.,
2(3):325-346,2003,

[IO] R. Jejurikar and R. Gupta. Procrastination scheduling in
fixed priority real-time systems. In Proceedings ofknguage
Compilers and Tools for EmbeddedSystems, Jun. 2004.

dynamic voltage scaling for real-time embedded systems. In
Proceedings of rhe Design Auramarion Conference, Jun.
2004.

and adaptive body biasing for heterogeneous distributed
real-time embedded systems. In Proceedings of lnrernarional
Conferenceon Computer Aided Design, Nov. 2003.

[I31 Y. Lee, K. P. Reddy, and C. M. Krishna. Scheduling
techniques for reducing leakage power in hard real-time
systems. In EcuroMicro Con5 on Real Time Systems, Jun.
2003.

speed selection for embedded systems with networked
voltage-scalable processors. In Proceedings pf Inrernarional
Symposium on Hardware/Sofnyare Codesign, Nov. 2002.

[15] 1. W. S . Liu. Real-Time Sysrems. Prentice-Hall, 2000.
[I61 J. Luo, N. Jha, and L. S. Peh. Simultaneous dynamic voltage

scaling of processors and communication links in real-time
distributed embedded systems. In Proceedings of Design
Automation and Tesr in Europe, Mar. 2003.

[17] S. Mattin, K. Flautner, T. Mudge, and D. Blaauw. Combined
dynamic voltage scaling and adaptive body biasing for lower
power microprocessors under dynamic workloads. In
Proceedings oflnrernarional Conference on Computer Aided
Design. Nov. 2002.

[IS] C. Rusu, R. Melhem, and D. Mosse. Maximizing the system
value while satisfying time and energy constraints. In
Proceedings of IEEE Real-Time Systems Symposium, Dec.
2002.

real-time embedded systems on variable speed processors. In
Proceedings of Inrernarional Conference on Computer Aided
Design, pages 365-368, Nov. 2000.

Dynamic power management for portable systems. In
Proceedingsof the 6th annual inrernurional conferenceon
Mobile computing and networking, pages I 1-19.2000.

[21] W. Zhang, M. Kandemir, N. Vijaykrishnan, M. J . Irwin, and
V. De. Compiler support for reducing leakage energy
consumption. In Proceedings of Design Automation and Tesr
in Europe, Mar. 2003.

[I I] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware

1121 N. K. J. L. Yan, 1. Luo. Combined dynamic voltage scaling

[I41 J. Liu, P. H. Chou, and N. Bagherzadeh.Communication

[I91 Y. Shin, K. Choi, and T. Sakurai. Power optimization of

[20] T. Simunic, L. Benini, P. Glynn, and G. De Micheli.

81

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on August 05,2023 at 08:20:16 UTC from IEEE Xplore. Restrictions apply.

http://hrrp://www.memtech.com
http://htrp://www.micron.com
http://hrrp://www.mmbus.com

