
Leakage Aware Dynamic Voltage Scaling for Real-Time
Embedded Systems

Ravindra Jejurikar§

jezz@cecs.uci.edu
Cristiano Pereira¶

cpereira@cs.ucsd.edu
Rajesh Gupta¶

gupta@cs.ucsd.edu
§ Center for Embedded Computer Systems, University of California at Irvine, Irvine CA 92697
¶ Department of Computer Science, University of California at San Diego, La Jolla, CA 92093

ABSTRACT
A five-fold increase in leakage current is predicted with each tech-
nology generation. While Dynamic Voltage Scaling (DVS) is known
to reduce dynamic power consumption, it also causes increased
leakage energy drain by lengthening the interval over which a com-
putation is carried out. Therefore, for minimization of the total
energy, one needs to determine an operating point, called thecrit-
ical speed. We compute processor slowdown factors based on the
critical speed for energy minimization. Procrastination scheduling
attempts to maximize the duration of idle intervals by keeping the
processor in a sleep/shutdown state even if there are pending tasks,
within the constraints imposed by performance requirements. Our
simulation experiments show that the critical speed slowdown re-
sults in up to 5% energy gains over a leakage oblivious dynamic
voltage scaling. Procrastination scheduling scheme extends the
sleep intervals to up to 5 times, resulting in up to an additional
18% energy gains, while meeting all timing requirements.

Categories and Subject Descriptors:D.4.1 [Operating System]:
Process Management� scheduling.

General Terms: Algorithms.

Keywords: leakage power, critical speed, low power scheduling,
real-time systems, EDF scheduling, procrastication.

1. INTRODUCTION
Power management is of primary importance in the operation of

embedded systems, which can be attributed to longer battery life,
reliability and packaging costs. Power consumption of a device
is broadly classified into (1)Dynamicpower consumption which
arises due to switching activity in a circuit and (2)Static power
consumption which is present even when no logic operations are
performed. CMOS has emerged as a dominant technology because
of its low static power consumption. CMOS device scaling trend,
driven by the need for faster devices and higher transistor densi-
ties, shows a 30% decrease in the device dimensions with each
technology generation [5]. Constant electric field scaling allows
a proportional reduction in supply voltage for smaller devices. As

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’04,June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

supply voltage is reduced, the threshold voltage(Vth) must be pro-
portionately reduced to maintain the desired performance (gate de-
lay) improvements. This reduction of threshold voltage results in
an exponential increase in the subthreshold leakage current, leading
to larger standby current [6].

Leakage current in CMOS circuits contribute to a significant
portion of the total power consumption and has become a major
concern. The subthreshold leakage current is 0:01µA=µm for the
130nmand is projected to be 3µA=µmfor the 45nmtechnology [1].
A five fold increase in the leakage power is predicted with each
technology generation [5]. The static power consumption is com-
parable to the dynamic power dissipation and projected to surpass
it if measures are not taken to minimize leakage current [9].

To address the issue of leakage, efforts are being made at pro-
cess, circuit design and micro-architecture level. The exponential
relation of subthreshold leakage current to the threshold voltage has
led to threshold voltage scaling. Scaling the threshold voltage by
controlling thebody bias voltage has been proposed to minimize
leakage [24, 22]. Multi threshold CMOS (MTCMOS) [7] is a pop-
ular technique to reduce standby current. Other techniques such as
input vector control [15] and power supply gating [23] have also
been proposed. At higher levels of abstraction, recent works have
focused on minimizing the leakage of components such as cache.
Techniques like cache decay [11] and turning off cache lines [10]
are effective in reducing cache leakage. Clock gating techniques
are also used to control leakage in Systems on Chip (SoC). The
IBM PowerPC 405LP [8] implements clock gating at the IP core
and register level. The Intel PXA [12] family processors also sup-
port fine granularity clock gating to exploit the fact that not all sys-
tem transistors are used at the same time. The chip aggressively
shuts down elements of the processor which are idle by gating them
off or disabling their input. Processors support various shutdown
mode to minimize the idle power. For examples, the Transmeta
Crusoe [28] processor support various sleep modes (normal, au-
tohalt, quick start, deep sleep, off) for various types of workload.
These power states can be used to reduce the processor power con-
sumption when little or no CPU activity is needed.

Processor slowdown (through dynamic frequency/voltage scal-
ing) and shutdown (through clock gating and other means) are two
primary ways to reduce power consumption. Between slowdown
and shutdown, generally slowdown is preferred due to the quadratic
dependenceof power on voltage level, thus making shutdown a sec-
ondary strategy (e.g., shutdown periods are sought after applying
applicable slowdown strategies). However, energy savings based
on DVS come at the cost of increased execution time, which im-
plies greater leakage energy consumption. With the steep increase
in device leakage current with each technology generation, it is not
obvious whether to perform DVS or to execute the system at maxi-

Peter Hu

Peter Hu

Peter Hu

mum speed and shutdown. Thus we have to judiciously balance the
extent of slowdown and shutdown to minimize the total energy con-
sumption. As shown later, operating at the maximum or minimum
possible voltage (frequency) need not be the optimal point. Fur-
thermore, the additional time and energy cost of shutdown makes
the problem harder.

Previous works have addressed Dynamic Voltage Scaling (DVS)
based on performance requirements to minimize the dynamic power
consumption [26, 25, 27, 3, 4, 16]. While techniques to optimize
the total static and dynamic power consumption have been pro-
posed [17, 22], they are still based on the premise that the energy
savings are proportional to the extent of slowdown. Iraniet. al.
[13] consider the combined problem of DVS and shutdown and
propose a3-competitiveoff-line algorithm. Their result is based on
the assumption of a continuous voltage range and a convex power
consumption function. Leeet. al. propose an Leakage Control
EDF (LC-EDF) [19] scheduling algorithm to minimize the leakage
energy consumption in real-time systems. The algorithm computes
the time interval by which task executions can be procrastinated,
to extend the idle intervals. Note that their algorithm is based on
the assumption that all tasks are executed at the maximum speed,
which may not be energy efficient. In this work, we combine dy-
namic voltage scaling with procrastination to minimize the total
energy consumption. Our work differs from [19], in that we seek
to minimize total energy through use of procrastination intervals
and task slowdown factors. Further, our algorithm runs in constant
time and is simpler to implement than the linear time LC-EDF al-
gorithm. We also prove that the minimum idle period guaranteed
by our algorithm is always greater than or equal to that achieved
by LC-EDF, making our technique superior. Our contributions are
as follows: (1) based on the leakage characteristics of the 70nm
technology, we compute thecritical speedfor the system; (2) we
combine dynamic voltage scaling and procrastination to minimize
the total energy consumption; (3) we propose a novel algorithm
to compute maximum task procrastination intervals for a dynamic
priority system.

The rest of the paper is organized as follows: Section 2 and 3
discuss the leakage power model and the computation of the crit-
ical speed. In Section 4, we present the critical speed slowdown
followed by a procrastination scheduling algorithm under the EDF
scheduling policy. The experimental results are presented in Sec-
tion 5 and Section 6 concludes the paper with future directions.

2. POWER MODEL
In this section, we describe the power model used to compute the

static and dynamic components of power consumption of CMOS
circuits. The dynamic power consumption(PAC) of CMOS circuits
is given by,

PAC=Ce f fV
2
dd f (1)

whereVdd is the supply voltage,f is the operating frequency and
Ce f f is the effective switching capacitance. Dynamic voltage scal-
ing reduces the dynamic power consumption due to its quadratic
dependence on voltage.

Different leakage sources contribute to the total static power con-
sumption in a device [2]. The major contributors of leakage are the
subthreshold leakage and the reverse bias junction current which
can increase significantly with adaptive body biasing [22]. We use
the power model and the technology parameters described by Mar-
tin et. al. [22]. The threshold voltageVth, subthreshold current
Isubn, and cycle timetinv as a function of the supply voltageVdd and

Table 1: 70nmtechnology constants [22]
Const Value Const Value Const Value

K1 0:063 K6 5:26x10�12 Vth1 0:244
K2 0:153 K7 �0:144 I j 4:8x10�10

K3 5:38x10�7 Vdd0 1 Ce f f 0:43x10�9

K4 1:83 Vbs0 0 Ld 37
K5 4:19 α 1:5 Lg 4x106

the body bias voltageVbs are given below :

Vth =Vth1�K1 �Vdd�K2 �Vbs (2)

whereK1, K2 andVth1 are technology constants.

Isubn= K3eK4VddeK5Vbs (3)

whereK3, K4 andK5 are constant fitting parameters.

tinv =
LdK6

(Vdd�Vth)α (4)

The leakage power dissipation due to subthreshold leakage(Isubn)
and reverse bias junction current(I j) is given by,

PDC =VddIsubn+ jVbsjI j (5)

Equation 5 gives the leakage per device and the total leakage power
consumption isLg �PDC, whereLg is the number of devices in the
circuit. The technology constants for the 70nmtechnology are pre-
sented in Table 1, as given in [22]. The value forCe f f based on
the Transmeta Crusoe processor, scaled to 70nmtechnology based
on the technology scaling trends [5], is also given in the table. To
reduce the leakage substantially, we useVbs= �0:7V. The static
and dynamic power consumption, as the supply voltage is varied in
the range of 0:5V to 1:0V, is shown in Figure 1.

3. CRITICAL SPEED
In addition to the static anddynamic power consumption per de-

vice, there is an inherent power cost in keeping the processor on,
which is denoted byPon. Similar to device leakage power, cer-
tain processor components consume power even when the proces-
sor is idle. Some of the major contributors are (1) the PLL circuitry,
which drives up to 200mAcurrent [12, 28] and (2) the I/O subsys-
tem with a supply voltage,VIO, (2.5V to 3.3V) higher than the pro-
cessor core voltage and peak currents of 400mAduring I/O. Though
the current is comparatively lower when there is no I/O, the power
consumption adds to a significant portion of the idle power con-
sumption. The power consumption of these components will scale
with technology and architectural improvements and we assume
a conservative value ofPon= 0:1W. Considering the static(PDC),
dynamic(PAC) andPon components, the total processor power con-
sumption,P, is given by:

P= PAC+PDC+Pon (6)

The variation of the power consumption with supply voltage is
shown in Figure 1. The linear dependenceof static power consump-
tion on voltage and the quadratic dependence of dynamic power on
voltage is seen in the figure. Though the total power consumption
decreases asVdd is scaled, it does not imply energy savings. The
decrease in the operating frequency with voltage scaling increase
the static energy consumption, which can surpass the gains of dy-
namic voltage scaling. Thus the aggressiveness of voltage scaling
has to be based on leakage power characteristics. To evaluate the
effectiveness of dynamic voltage scaling, we compute the energy

Peter Hu

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ow

er

Vdd

PAC
PDC
Pon

Figure 1: Power consumption of70nm technology for Crusoe
processor:PDC is the leakage power,PAC is the dynamic power
and Pon is the intrinsic power consumption in on state

consumption per cycle, for different supply voltage values. The
contribution of the dynamic energy per cycle,EAC, is

EAC=Ce f fV
2
dd (7)

The leakage power per device is given by Equation 5. Since the
cycle time increases as voltage decreases, the leakage energy per
cycle,EDC, is given by

EDC = f�1 �Lg � (IsubnVdd+ jVbsjI j) (8)

where f�1 is the delay per cycle. The energy per cycle to keep the
system on isEon= f�1Pon and increases with lower frequencies.
The total static and dynamic energy consumption per cycle,Ecycle,
with varying supply voltage levels is as follows:

Ecycle= EAC+EDC+Eon (9)

Figure 2 shows the components of the energy consumption per cy-
cle for the 70nmtechnology. We see thatEcycle decreases asVdd is
scaled up to 0:7V, beyond which static energy consumption dom-
inates. The total energy consumption increases with further slow-
down and it is not energy efficient to slowdown beyondVdd= 0:7V.
Executing atVdd = 0:7V and shutting down the system is more en-
ergy efficient than executing at lower voltages levels. The operating
point that minimizes the energy consumption per cycle is called the
critical speed. From the figure, it is seen that the critical speed of
operation isVdd = 0:7V. Note that the critical speed can be com-
puted by evaluating the gradient of the energy function with respect
to Vdd. From the voltage frequency relation described in Equation
4, Vdd = 0:7V corresponds to a frequency of 1:26 GHz. The max-
imum frequency atVdd = 1:0V is 3:1 GHz, resulting in a critical
slowdown ofηcrit = 1:26=3:0= 0:41.

4. REAL TIME SCHEDULING
In this section, we enhance real-time scheduling techniques with

the knowledge of critical speedηcrit , to minimize the total energy
consumption of the system. We begin with the description of the
system model.

4.1 System Model
In a classical real-time system model, tasks arrive periodically

and have deadlines. A task set ofn periodic real-time tasks is rep-
resented asΓ= fτ1; :::;τng. A taskτi is a 3-tuplefTi ;Di ;Cig, where
Ti is the period of the task,Di is the relative deadline andCi is the
worst case execution time (WCET) for the task at maximum speed.

0

1e-10

2e-10

3e-10

4e-10

5e-10

6e-10

7e-10

8e-10

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

E
ne

rg
y

pe
r

C
yc

le

Vdd

EAC
EDC
Eon

Etotal

Figure 2: Energy per Cycle for 70nm technology for the Cru-
soe processor:EAC is the switching energy,EDC is the leakage
energy andEon is the intrinsic energy to keep the processor on.

The tasks are scheduled on a single processor system based on a
preemptive scheduling policy. The processor utilization for the task
set,U = ∑n

i=1Ci=Ti � 1 is a necessary condition for the feasibility
of any schedule [20]. In this work, we assume task deadlines are
equal to the period (Di = Ti) and the tasks are scheduled by the
Earliest Deadline First (EDF) scheduling policy [20]. All tasks are
assumed to be independent and preemptive.

Recent processor [28, 12] support Dynamic voltage scaling (DVS)
to minimize the dynamic power consumption of a processor. A
task slowdown factor is the extent of slowdown that can be applied
while meeting specified performance requirements. Aslowdown
factor (ηi) can be viewed as the normalized operating frequency
and lies in the range [0,1]. At a given instance, it is the ratio of the
assigned frequency to the maximum processor frequency.

4.2 Slowdown and Critical Speed
Note that the task slowdown can be computed with any known

dynamic voltage scaling algorithm. We update the computed task
slowdown factors based on the processor critical speed,ηcrit . Since
executing below the critical speed consumes more time and energy,
we set the minimum value for the slowdown factor as the critical
speed. We update a task slowdown factor to the critical speed if it
is smaller thanηcrit . The algorithm is as follows:

8i
i = 1; :::;n i f (ηi < ηcrit) ηi ηcrit (10)

Since we are only increasing slowdown factors of a given feasible
task set, the feasibility of the task set is maintained.

4.3 Shutdown Overhead
In previous works, the overhead of processor shutdown/wakeup

has been either neglected or only the actual time and energy over-
head incurred within the processor is considered. However, a pro-
cessor shutdown and wakeup has a higher overhead than the in-
herent energy/delay cost of turning on the processor, as specified
in datasheets. The processor loses the register and cache contents,
when switched to the deepest sleep mode. Thus prior to shutdown,
all registers must be saved and the dirty data cache lines must be
flushed to main memory, resulting in an additional overhead. On
wakeup, components such as data and instruction caches, data and
instruction translation look aside buffers (TLBs) and branch target
buffers (BTBs) have to be initialized, resulting in cold start misses
in case of caches and TLBs, and branch mispredictions in case of
the BTBs. This results in extra memory accesses and hence addi-

tional energy consumption. The exact cost will vary based on the
processor architecture and the application.

Due to the cost of shutdown, a shutdown decision should be
made wisely. An unforeseen shutdown can result in extra energy
and/or missing task deadlines. Based on the idle power consump-
tion, we can compute the minimum idle period, referred to as the
idle thresholdintervaltthreshold, to break even with the wakeup en-
ergy overhead. It is not energy efficient to shutdown when the idle
intervals are shorter thantthreshold. The threshold interval depends
on the idle state power consumption and the shutdown overhead.
Let Pidle be the power consumption in the idle state, in addition to
the power consumption in the shutdown state. Giventshutdownand
Eshutdownare the time and energy overhead incurred due to shut-
down (the overhead of shutdown as well as wakeup), thentthreshold
is given by:

Pidle � tthreshold= Eshutdown

Thus longer idle interval are required to increase the changes of
shutdown and reduce the idle energy consumption. We present a
procrastination scheduling scheme to achieve this goal.

4.4 Procrastination Algorithm
We pre-compute a maximum procrastination interval,Zi , for each

taskτi in the system. The computation ofZi , the time interval by
which taskτi can be delayed while guaranteeing all task deadlines,
is given by Theorem 1. The procrastination algorithm ensures that
no taskτi is procrastinated by more thanZi time units. The procras-
tination scheme is described in Algorithm 1. It is assumed that the
power managerwhich handles task procrastination is implemented
as a controller. When the processor enters the sleep/shutdown state,
it hands over the control to the power manager (controller), which
handles all the interrupts and task arrivals while the processor is
shutdown. The controller has a timer to keep track of time and
wake the processor after a specified time period. When the proces-
sor enters the sleep state and the first taskτi arrives, the timer is
set toZi . The timer counts down every clock cycle. If another task
arrives before the counter expires, the counter is adjusted based on
the new task arrival. Let the arrived task beτ j , then the timer is
updated to the minimum of the current timer value andZj . This en-
sures that no taskτk in the system is procrastinated by more thanZk
time units after its arrival. When the counter counts down to zero
(expires), the processor is woken up and the scheduler dispatches
the highest priority task in the system. All tasks are scheduled at
their assigned slowdown factor based on their priority.

THEOREM 1. Given tasks are ordered in non-decreasing order
of their period, the procrastination algorithm guarantees all task
deadlines if the procrastination interval Zi of each taskτi satisfies:

8i
i = 1; :::;n

Zi

Ti
+

i

∑
k=1

1
ηk

Ck

Tk
� 1 (11)

8k<i Zk� Zi (12)

PROOF. The details of the proof are present in [14].

We also compute the minimum idle period guaranteed by the
procrastination algorithm. This idle period helps make better shut-
down decisions.

COROLLARY 1. The minimum idle period guaranteed by the
procrastination algorithm is is given as,

Zmin=min1�i�n

(
Zi = (1�

i

∑
k=1

1
ηk

Ck

Tk
)Ti

)
(13)

Algorithm 1 Procrastination Algorithm
1: On arrival of a new job Ji :
2: if (processor is in sleep state)then
3: if (Timer is not active)then
4: timer Zi ; fInitialize timerg
5: else
6: timer min(timer;Zi);
7: end if
8: end if

9: On expiration of Timer (timer= 0):
10: Wakeup Processor;
11: Scheduler schedules highest priority task;
12: Deactivate timer;

13: Timer Operation:
14: timer – –;fCounts down every clock cycleg

We also analytically compare our algorithm to the LC-EDF [19]
algorithm. Since the LC-EDF algorithm assumes all tasks execute
at maximum speed, the result is based on the assumption that all
tasks are executed at the maximum speed. Note that the results also
extend to task procrastination with slowdown. We prove that our
proposed algorithm guarantees more procrastination than LC-EDF
if tasks are executed at maximum speed.

THEOREM 2. Given, tasks are executed at maximum speed, the
minimum delay interval guaranteed by the procrastination algo-
rithm is greater than or equal to that guaranteed by LC-EDF.

PROOF. The proof of the result is presented in [14].

5. EXPERIMENTAL SETUP
We have implemented the proposed scheduling techniques in

a discrete event simulator. To evaluate the effectiveness of our
scheduling techniques, we consider several task sets, each contain-
ing up to 20 randomly generated tasks. We note that such randomly
generated tasks is a common validation methodology in previous
works [4, 19, 27]. Based on real life task sets [21], tasks were as-
signed a random period and WCET in the range [10 ms,125 ms]
and [0.5 ms, 10 ms] respectively. All tasks are assumed to exe-
cute up to their WCET. Each task is assigned a slowdown factor
equal to the utilization at maximum speed, which is the optimal
slowdown under EDF scheduling policy, to minimize the dynamic
energy consumption [4]. We compared the energy consumption of
the following techniques:

� No DVS (no-DVS): where all tasks are executed at maximum
processor speed.

� Traditional Dynamic Voltage Scaling (DVS) : where tasks
are assigned the minimum possible slowdown factor.

� Critical Speed DVS (CS-DVS): where all tasks are assigned
a slowdown greater than or equal to the processor critical
speed.

� Critical Speed DVS with Procrastination (CS-DVS-P): This
is CS-DVS with the procrastination scheduling scheme.

We use the processor power model described in Section 2, where
the processor critical speed isηcrit = 0:41. We assume that the
processor supports discrete voltage levels in steps of 0:05V in the
range 0:5V to 1:0V. These voltage levels correspond to discrete

slowdown factors and each computed slowdown factor is mapped
to the smallest discrete level greater than or equal to it. In all the
scheduling schemes except CS-DVS-P, the processor wakes up on
the arrival of a task in the system. The idle interval in these tech-
niques is assumed to be the time period before the next task arrival
in the system. CS-DVS-P adds the minimum guaranteed procras-
tination interval to estimate the minimum idle interval. The pro-
cessor is shutdown if the idle period is greater thantthreshold, the
minimum idle period to result in energy savings.

5.1 Shutdown Overhead
In this section, we estimate the energy overhead of shutdown,

taking into account the on-chip cache. Typical embedded proces-
sors have a cache size between 32KB and 128KB and we assume
that the processor has a 32KB I-cache and a 32KBD-cache. We as-
sume 20% lines of the data cache to be dirty before shutdown which
results in 6554 memory writes. With an energy cost of 13nJ [18]
per memory write, the cost of flushing the data cache is computed
as 85µJ. We assume the energy and latency of saving the regis-
ters to be negligible. On wakeup, there is an additional cost due to
cache miss. Note that the locality of reference changes when a task
resumes execution which has its own cache miss penalty. However,
resuming execution after shutdown has an additional overhead due
to the fact that these structures are empty after a shutdown. We as-
sume the additional cache miss rate to be 10% of the cache size, in
both I-cache and D-cache. We ignore the overhead resulting from
TLBs and BTBs. Thus, the total overhead of bringing the proces-
sor to active mode is 6554 cache misses. A cost of 15nJ [18] per
memory access, results in 98µJenergy overhead. Adding the cache
energy overhead to the actual charging of circuit logic, which we
assume to be 300µJ, the total cost is 85+98+300= 483µJ . Since
the idle power consumption is 240mW, the threshold idle interval,
tthreshold is 2ms. We assume a sleep state power of 50µW, which
can account for the power consumption in the sleep state and that
of the power manager (controller).

5.2 Experimental Results
The comparison of the energy consumption of the techniques is

shown in Figure 3, as a function of the processor utilization at max-
imum speed. When the processor is maximally stressed for compu-
tation, there are no opportunities for energy reduction. As the pro-
cessor utilization decreases, slowdown results in energy savings.
no-DVS consumes the maximum energy and the energy consump-
tion of all techniques is normalized to no-DVS. It is seen that all the
techniques perform almost identical up to the critical speed. When
the task slowdown factors fall below the critical speed, DVS tech-
nique starts consuming more energy due to the dominance of leak-
age. At lower speeds the energy consumed by DVS approaches
close to that of no-DVS. The CS-DVS technique executes at the
critical speed and shuts down the system to minimize energy. How-
ever if the idle intervals are not sufficient to shutdown, it can con-
sume more energy that the DVS technique, as seen at utilization
of 20% and 30%. CS-DVS leads to up to 5% energy gains over
DVS and an average of 20% energy savings compared to no-DVS.
The CS-DVS-P minimizes idle energy by maximizing the sleep in-
tervals and reducing the shutdown overhead. We see that the CS-
DVS-P results up to an additional 18% gains over CS-DVS at 10%
utilization.

Figure 4 compares CS-DVS-P to CS-DVS. Figure 4(a) shows the
number of wakeups and the idle energy comparison of CS-DVS-P
normalized to CS-DVS. Note that, since the slowdown factors are
mapped to discrete voltage/frequency levels, there are idle inter-
vals at higher utilization as well. These idle period can be used

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 E

ne
rg

y

% processor utilization at maximum speed

Energy consumption normalized to no-DVS

no-DVS
 DVS

CS-DVS
CS-DVS-P

Figure 3: Energy consumption normalized to no-DVS, based
on the EDF scheduling policy.

in dynamic reclamation [4] for more energy gains. However, we
use these idle intervals for processor shutdown to compare the ben-
efits of our procrastination scheme. At higher utilization, the in-
herent idle intervals are short and there is less chance for a shut-
down. However, procrastination extends the idle periods and re-
sults in energy savings through shutdown. As seen in Figure 4(a),
the number of shutdowns are higher at higher utilization which re-
sults in reduced idle energy consumption. At lower utilization, the
relative number of wake-ups compared to CS-DVS decrease con-
siderably. Note that the idle energy consumption of CS-DVS-P is
always lower than that of CS-DVS. The number of wakeups are re-
duced to as much as 25% percent thereby reducing the shutdown
overhead. We see from the figure that the idle energy consumption
also reduces proportionately.

Figure 4(b) compares the relative increase of the sleep time in-
tervals of CS-DVS-P over CS-DVS. We see that the average sleep
interval is increased by 4 to 5 times. This extended sleep interval
is beneficial as it allows for a shutdown of other peripheral devices
that are idle. I/O devices such as memory have a time overhead of
10msto wake up from deep sleep states. Procrastination increases
the opportunity to shutdown more devices to minimize the total
system energy. The figure also compares the average idle inter-
val (intervals when no task is executing i.e. an idle or sleep state).
We see that the average idle interval increases up to 7 times. This
suggests that CS-DVS has relatively more idle intervals where it
does not shutdown the processor resulting in leakage energy con-
sumption. CS-DVS-P increasing the opportunity to shutdown by
clustering task executions, thereby saving energy.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented scheduling techniques that con-

sider leakage energy contribution to minimize the total energy con-
sumption in a system. We show that executing tasks at the maxi-
mum or minimum processor speed need not be the optimal oper-
ating point. While operating at the minimum speed can increase
the leakage energy contribution, we show that executing tasks at
the critical speed and shutting down the processor is more energy
efficient. This results in up to 5% energy gains. Furthermore, ex-
tending the sleep intervals by our procrastination scheme increases
the energy savings to up to 18%. We show that a combined ap-
proach of slowdown and procrastination is important for an energy
efficient operation of the system. The techniques are simple, energy
efficient and can be easily implemented. We plan to extend these
techniques for energy efficient scheduling of all system resources.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 #

 w
ak

eu
ps

 a
nd

 id
le

 e
ne

rg
y

% processor utilization at maximum speed

Comparison of gains of CS-DVS-P normalized to CS-DVS

wakeups
Idle Energy

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 ti

m
e

in
te

rv
al

% processor utilization at maximum speed

Comparison of gains of CS-DVS-P normalized to CS-DVS

Idle interval
Sleep Interval

Figure 4: (a) Comparison of # wakeups and idle energy of CS-DVS-P normalized to CS-DVS (b) Comparison of average sleep and
idle interval of CS-DVS-P normalized to CS-DVS

7. REFERENCES
[1] International Technology Roadmap for Semiconductors 2002

http://public.itrs.net.
[2] Berkeley Predictive Technology Models and BSIM4

http://www-device.eeecs.berkeley.edu/research.html.
[3] H. Aydin, R. Melhem, D. Moss´e, and P. M. Alvarez.

Determining optimal processor speeds for periodic real-time
tasks with different power characteristics. InProceedings of
EuroMicro Conference on Real-Time Systems, 2001.

[4] H. Aydin, R. Melhem, D. Moss´e, and P. M. Alvarez.
Dynamic and aggressive scheduling techniques for
power-aware real-time systems. InProceedings of IEEE
Real-Time Systems Symposium, December 2001.

[5] S. Borkar. Design challenges of technology scaling. InIEEE
Micro, pages 23–29, Aug 1999.

[6] J. A. Butts and G. S. Sohi. A static power model for
architects. InIntl. Symposium on Microarchitecture, 2000.

[7] B. H. Calhoun, F. A. Honore, and A. Chandrakasan. Design
methodology for fine-grained leakage control in mtcmos. In
Proceedings of International Symposium on Low Power
Electronics and Design, pages 104–109, 2003.

[8] G. Carpenter. Low power soc for ibm’s powerpc information
appliance platform. Inhttp://www.research.ibm.com/arl.

[9] D. Duarte, N. Vijaykrishnan, M. J. Irwin, and Y.-F. Tsai.
Impact of technology scaling and packaging on dynamic
voltage scaling techniques. In15th Annual IEEE
International ASIC/SOC Conference, September 2002.

[10] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: Simple techniques for reducing leakage
power. InProceedings of International Symposium on
Computer Architecture, June 2002.

[11] Z. Hu, S. Kaxiras, and M. Martonosi. Let caches decay:
Reducing leakage energy via exploitation of cache
generational behavior. InACM Transactions on Computer
Systems, May 2002.

[12] Intel PXA250/210 Processor. Intel Inc.(www.intel.com).
[13] S. Irani, S. Shukla, and R. Gupta. Algorithms for power

savings. InProceedings of Symposium on Discrete
Algorithms, Jan. 2003.

[14] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware
dynamic voltage scaling for real-time embedded systems. In
CECS Technical Report #03-35, UC Irvine, Dec. 2003.

[15] M. Johnson, D. Somasekhar, and K. Roy. Models and
algorithms for bounds on leakage in cmos circuits. InIEEE

Transactions on CAD, pages 714–725, 1999.
[16] C. M. Krishna and Y. H. Lee. Voltage clock scaling adaptive

scheduling techniques for low power in hard real-time
systems. InProceedings of Real-Time Technology and
Applications Symposium, May 2000.

[17] N. K. J. L. Yan, J. Luo. Combined dynamic voltage scaling
and adaptive body biasing for heterogeneous distributed
real-time embedded systems. InProceedings of International
Conference on Computer Aided Design, Nov. 2003.

[18] H. G. Lee and N. Chang. Energy-aware memory allocation in
heterogeneous non-volatile memory systems. InISLPED,
pages 420–423, 2003.

[19] Y. Lee, K. P. Reddy, and C. M. Krishna. Scheduling
techniques for reducing leakage power in hard real-time
systems. InEcuroMicro Conf. on Real Time Systems, 2003.

[20] J. W. S. Liu.Real-Time Systems. Prentice-Hall, 2000.
[21] C. Locke, D. Vogel, and T. Mesler. Building a predictable

avionics platform in ada: a case study. InProceedings IEEE
Real-Time Systems Symposium, 1991.

[22] S. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined
dynamic voltage scaling and adaptive body biasing for lower
power microprocessors under dynamic workloads. InProc.
of Intl. Conference on Computer Aided Design, 2002.

[23] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu,
and J. Yamada. 1-v power supply highspeed digital circuit
technology with multithreshold- voltage cmos. InIEEE
Journal of Solid- State Circuits, pages 847– 854, 1995.

[24] C. Neau and K. Roy. Optimal body bias selection for leakage
improvement and process compensation over different
technology generations. InProceedings of International
Symposium on Low Power Electronics and Design, 2003.

[25] J. Pouwelse, K. Langendoen, and H. Sips. Energy priority
scheduling for variable voltage processors. InProceedings of
the 2001 International Symposium on Low Power Electronics
and Design, pages 28–33, 2001.

[26] G. Quan and X. Hu. Minimum energy fixed-priority
scheduling for variable voltage processors. InProceedings of
Design Automation and Test in Europe, March 2002.

[27] Y. Shin, K. Choi, and T. Sakurai. Power optimization of
real-time embedded systems on variable speed processors. In
Proceedings of International Conference on Computer Aided
Design, pages 365–368, 2000.

[28] Transmeta Crusoe Processor. Transmeta Inc.
(http://www.transmeta.com/technology).

