
Discrete and continuous min-energy schedules
for variable voltage processors
Minming Li†, Andrew C. Yao‡§, and Frances F. Yao¶

†Department of Computer Sciences and Technology and ‡Center for Advanced Study, Tsinghua University, Beijing 100084, China; and ¶Department
of Computer Science, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China

Contributed by Andrew C. Yao, December 23, 2005

Current dynamic voltage scaling techniques allow the speed of
processors to be set dynamically to save energy consumption,
which is a major concern in microprocessor design. A theoretical
model for min-energy job scheduling was first proposed a decade
ago, and it was shown that for any convex energy function, the
min-energy schedule for a set of n jobs has a unique characteriza-
tion and is computable in O(n3) time. This algorithm has remained
as the most efficient known despite many investigations of this
model. In this work, we give an algorithm with running time O(n2

log n) for finding the min-energy schedule. In contrast to the
previous algorithm, which outputs optimal speed levels from high
to low iteratively, our algorithm is based on finding successive
approximations to the optimal schedule. At the core of the ap-
proximation is an efficient partitioning of the job set into high and
low speed subsets by any speed threshold, without computing the
exact speed function.

scheduling � energy efficiency � dynamic voltage scaling � optimization

Advances in processor, memory, and communication tech-
nologies have contributed to the tremendous growth of

portable electronic devices. Because such devices are typically
powered by batteries, energy efficiency has become a critical
issue. An important strategy to achieve energy saving is through
‘‘dynamic voltage scaling’’ (DVS) (or ‘‘speed scaling’’), which
enables a processor to operate at a range of voltages and
frequencies. Because energy consumption is at least a quadratic
function of the supply voltage (hence CPU frequency�speed), it
saves energy to execute jobs as slowly as possible while still
satisfying all timing constraints. The associated scheduling prob-
lem is referred to as min-energy DVS scheduling.

A theoretical study of speed scaling scheduling was initiated by
Yao, Demers, and Shenker (1). They formulated the DVS
scheduling problem and gave an O(n3) algorithm for computing
the optimal schedule.� No special restriction was put on the
power consumption function except convexity. To achieve op-
timality, it is assumed the processor speed may be set at any real
value. This model will be referred to as the ‘‘continuous’’ model.

In practice, variable voltage processors can run at only a finite
number of preset speed levels, although that number is increas-
ing fast. (For example, the new Foxon technology will soon
enable Intel server chips to run at 64 speed grades.) One can
capture the discrete nature of the speed scale with a correspond-
ing ‘‘discrete’’ scheduling model. It was observed in ref. 2 that an
optimal discrete schedule for a job set can be obtained simply as
follows: (i) construct the optimal continuous schedule, and (ii)
individually adjust the ‘‘ideal’’ speed of each job by mapping it
to the nearest higher and lower speed levels. The complexity of
such an algorithm is thus the same as the continuous algorithm.
Recently, it was shown in ref. 3 that the first step could be
bypassed in a more efficient O(dn log n) algorithm where d is the
number of speed levels. The algorithm works by directly parti-
tioning the job set into two subsets (referred to as a bipartition),
those requiring speed � s and � s, respectively, for any specific
speed level s.

In this work we present improved algorithms for both the
continuous and the discrete DVS scheduling problems. We first
derive a sharper characterization of job set bipartition than that
given in ref. 3, which leads to an effective O(n log n) partitioning
algorithm. Although the time complexity is the same as that
achieved in ref. 3, the new partitioning algorithm is much simpler
to implement. We then use it to construct the continuous optimal
schedule through successive approximations in an O(n2 log n)
algorithm. It is an improvement over the longstanding O(n3)
bound for the above problem.

Prior work directly related to the present work includes those
papers cited above and an efficient algorithm for the (continu-
ous) optimal schedule when job sets are structured as trees (4).
On-line algorithms have been studied in refs. 1, 4, and 5. For an
up-to-date survey on research in power�temperature manage-
ment, see ref. 6.

The remainder of the work is organized as follows. We give the
problem formulation and review some basic properties of the
optimal continuous schedule in Background. Bipartition of Jobs
by Speed Threshold describes an O(n log n) algorithm for job
partitioning by any speed level, which forms the core of our
scheduling algorithm. We then apply the partitioning algorithm
to construct optimal schedules in Scheduling Algorithms. Some
concluding remarks are given in Conclusion.

Background
Each job jk in a job set J over [0, 1] is characterized by three
parameters: arrival time ak, deadline bk, and required number of
CPU cycles Rk. We also refer to [ak, bk] � [0, 1] as the interval
of jk and assume without loss of generality that ak � bk, and
�k[ak, bk] � [0, 1] (or J spans [0, 1]). A schedule S for J is a pair
of functions (s(t), job(t)) which defines, respectively, the pro-
cessor speed and the job being executed at time t. Both functions
are assumed to be piecewise continuous with finitely many
discontinuities. A feasible schedule must give each job its
required number of cycles between arrival time and deadline
(with perhaps intermittent execution). We assume that the
power P, or energy consumed per unit time, is a convex function
of the processor speed. The total energy consumed by a schedule
S is E(S) � �0

1 P(s(t))dt. The goal of the min-energy scheduling
problem is to find, for any given job set J, a feasible schedule that
minimizes E(S). We refer to this problem as the ‘‘DVS sched-
uling’’ (or sometimes ‘‘continuous DVS scheduling’’ to distin-
guish it from the discrete version below).

In the discrete version of the problem, we assume that the
processor can run at d clock speeds s1 � s2 � � � � � sd. The goal
is to find a minimum-energy schedule for a job set using only
these speeds. We may assume that, in each problem instance, the

Conflict of interest statement: No conflicts declared.

Abbreviations: DVS, dynamic voltage scaling; EDF, earliest deadline first.

§To whom correspondence should be addressed. E-mail: andrewcyao@tsinghua.edu.cn.

�The complexity of the algorithm was said to be further reducible in ref. 1, but that claim
has since been withdrawn.

© 2006 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0510886103 PNAS � March 14, 2006 � vol. 103 � no. 11 � 3983–3987

CO
M

PU
TE

R
SC

IE
N

CE
S

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 C
A

M
B

R
ID

G
E

 U
N

IV
E

R
SI

T
Y

 o
n

Ju
ne

 2
6,

 2
02

3
fr

om
 I

P
ad

dr
es

s
13

1.
11

1.
18

5.
17

6.

http://crossmark.crossref.org/dialog/?doi=10.1073%2Fpnas.0510886103&domain=pdf&date_stamp=2006-03-06
Peter Hu

Peter Hu

highest speed s1 is always fast enough to guarantee a feasible
schedule for the given jobs. We refer to this problem as ‘‘discrete
DVS scheduling.’’

For the continuous DVS scheduling problem, the optimal
schedule Sopt can be characterized using the notion of a ‘‘critical
interval’’ for J, which is an interval I in which a group of jobs must
be scheduled at maximum constant speed g(I) in any optimal
schedule for J. The algorithm proceeds by identifying such a
critical interval I, scheduling those ‘‘critical’’ jobs at speed g(I)
over I, then constructing a subproblem for the remaining jobs
and solving it recursively. The details are given below.

Definition 1: For any interval I � [0, 1], denote by JI the subset
of all jobs in J whose intervals are completely contained in I. The
intensity of an interval I is defined to be

g�I� � �
jk�JI

Rk��I � .

An interval I* achieving maximum g(I) over all possible
intervals I defines a critical interval for the current job set. It is
not hard to argue that the subset of jobs JI* can be feasibly
scheduled at speed g(I*) over I* by the earliest deadline first
(EDF) principle. That is, at any time t, a job that is available for
execution and having earliest deadline will be executed during [t,
t � �]. (Among jobs with the same deadline, the tie is broken by
some fixed rule, say by the ordering of job indices. We refer to
the resulting linear order as EDF order.) The interval I* is then
removed from [0, 1]; all remaining job intervals [ak, bk] are
updated to reflect the removal, and the algorithm recurses. The
complete algorithm is give in Algorithm 1. We note that the
optimal speed function sopt for a job set is in fact unique.

Let CI(i) � [0, 1] denote the ith critical interval of J, and JCI(i)
the set of jobs executed during CI(i). The following lemma is a
direct consequence of the way critical intervals are successively
selected.

Lemma 1. A job jk � J belongs to �i�1
m JCI(i) if and only if its interval

satisfies [ak, bk] � �i�1
m CI(i).

A special tool, called s-schedules, was introduced in ref. 3 that
can provide useful information regarding the optimal speed
function for J without explicitly computing it. Our algorithms will
also make use of s-schedules. For easy reference, we give the
relevant definitions and properties below.

Definition 2: For any constant s, the s-schedule for J is an EDF
schedule that uses constant speed s in executing any jobs of J. In
general, s-schedules may have idle periods or unfinished jobs.

Definition 3: In a schedule S, a maximal subinterval of [0, 1]
devoted to executing the same job jk is called an execution
interval for jk (with respect to S). Denote by Ik(S) the union of

all execution intervals for jk with respect to S. Execution intervals
with respect to the s-schedule will be called s-execution intervals.

It is easy to see that the s-schedule for n jobs will contain at
most 2n s-execution intervals, because the end of each execution
interval (including an idle interval) corresponds to the moment
when either a job is finished or a new job arrives. Also, the
s-schedule can be computed in O(n log n) time by using a priority
queue to keep track of all jobs currently available, prioritized by
deadlines.

The next lemma says that monotone relations between two
speed functions for a job set J can induce certain monotone
relations between the corresponding EDF schedules. These
monotone properties will be useful when we study partitions of
a job set by some speed threshold in the next section.

Definition 4: Let S1 and S2 be two EDF schedules for J with
speed functions s1(t) and s2(t), respectively. We say S1 dominates
S2 if s1(t) � s2(t) for all t whenever S1 is not idle. We say S1
strictly dominates S2 if s1(t) � s2(t) for all t whenever S1 is not
idle.

Lemma 2 (3). Let J � { j1, . . . , jn} by EDF ordering. Suppose S1 and
S2 are two EDF schedules for J such that S1 dominates S2.

1. For any t and any job jk, the workload of jk executed by time t
under S1 is always no less than that under S2.

2. �k�1
i Ik(S1) � �k�1

i Ik(S2) for any i, 1 � i � n.
3. Suppose job jk is finished at time t0 under S2. Then under S1,

job jk will be finished no later than t0 and, if the dominance is
strict, be finished strictly earlier than t0.

4. If S2 is a feasible schedule for J, then so is S1.

Bipartition of Jobs by Speed Threshold
We describe a procedure that for any given speed threshold s, can
properly separate J into two subsets: those jobs using speeds
higher than s and those jobs using speeds lower than s, respec-
tively, in the optimal schedule. This procedure forms the core of
our min-energy scheduling algorithms. The basic ideas of such a
partition and a corresponding algorithm were give in ref. 3. Here
we will derive stronger characterizations, which then lead to a
simpler algorithm.

Definition 5: Given a job set J and any constant s, let J�s and
J�s denote the subsets of J consisting of jobs whose executing
speeds are � s and � s, respectively, in the (continuous) optimal
schedule of J. We refer to the partition �J�s, J�s	 as the
s-partition of J.

Let T�s � [0, 1] be the union of all critical intervals CI(i) with
execution speed � s. By Lemma 1, a job jk is in J�s if and only
if its interval [ak, bk] � T�s. Thus, J�s is uniquely determined by
T�s. We refer to �T�s, T�s	 where T�s � [0, 1]
 T�s as the
s-partition of J by time.

An example of J with nine jobs is given in Fig. 1 together with
its optimal speed function Sopt(t). The portion of Sopt(t) lying
above or exactly on the horizontal line Y � s projects to T�s on
the time axis. In general, T�s may consist of a number of
connected components.

We compute the partition �T�s, T�s	 by finding the individual
connected components of T�s and T�s, respectively. Label the
connected components of T�s in right-to-left order as �T1

�s,
T2

�s, . . .	, and label those of T�s similarly as �T1
�s, T2

�s, The
cardinalities of these two sets differ by at most one. For ease of
notation, we make their cardinalities equal by creating, if nec-
essary, an empty rightmost component for T�s of the form [1, 1],
and�or an empty leftmost component for T�s of the form [0, 0].
Hence, we can represent these connected components with a
sequence of 2p � 1 numbers of the form �0 � Bp�1 � Ap �
Bp � � � � � A1 � B1 � 1	, such that Ti

�s � [Ai, Bi] and Ti
�s �

[Bi�1, Ai], for 1 � i � p.
The following lemma allows us to view the s-schedule for J as

Algorithm 1. Basic Optimal Voltage Schedule (BOVS)

Input: job set J
Output: optimal voltage schedule S for J

repeat
Select I* � [z, z�] with g(I*) � max g(I)
Schedule ji � JI* at g(I*) over I* by EDF policy
J 4 J � JI*

for all jk � J do
if bk � [z, z�] then

bk 4 z
else if bk � z� then

bk 4 bk � (z� � z)
end if
Reset arrival times ak similarly

end for
until J is empty

3984 � www.pnas.org�cgi�doi�10.1073�pnas.0510886103 Li et al.

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 C
A

M
B

R
ID

G
E

 U
N

IV
E

R
SI

T
Y

 o
n

Ju
ne

 2
6,

 2
02

3
fr

om
 I

P
ad

dr
es

s
13

1.
11

1.
18

5.
17

6.

Peter Hu

Peter Hu

Peter Hu

composed of two separate s-schedules: one for job set J�s over
T�s, and another for job set J�s over T�s. In comparing the
s-schedule with Sopt, we can thus compare them over two disjoint
regions for two disjoint job sets.

Lemma 3. In the s-schedule for J,

1. all jobs executed during T�s belong to J�s,
2. all jobs executed during T�s belong to J�s.

Proof: Statement 1 is obvious because all jobs belonging to J�s

have intervals disjoint from T�s, hence, will not be executed
during T�s. To prove statement 2, we consider any component
Ti

�s � [Ai, Bi] of T�s. All jobs jk of J�s with deadlines bk � Bi
will have been finished by time Ai under Sopt; thus by Lemma 2
they also will have been finished by time Ai under the s-schedule.
[Note that statement 1 allows us to compare the s-schedule with
Sopt for the same job set J�s.] Therefore, such jobs will not be
executed during Ti

�s. The same is also true for jobs of J�s with
deadlines �Bi. The latter claim can be proved by comparing the
s-schedule with Sopt for the job set Ji

�s consisting of jobs whose
intervals are contained in Ti

�s. Note that schedule Sopt executes
Ji

�s without idle time during Ti
�s. It follows from Lemma 2 that,

during Ti
�s the s-schedule also will execute Ji

�s without idle time
and hence will not execute any jobs with deadlines of �Bi. We
have proved the lemma.

We construct the s-partition by inductively finding the right-
most pair of components {T1

�s, T1
�s}, remove them from [0, 1],

and then repeat the process. It identifies T1
�s � [A1, B1] and

T1
�s � [B2, A1] by locating their boundary points B2, A1, and B1

through some special characteristics that we discuss in the
following.

Definition 6: In the s-schedule for J, we say a job deadline bi
is tight if job ji is either unfinished at time bi, or it is finished just
on time at bi. An idle execution interval in the s-schedule is called
a gap. Note that a gap must be of the form [t, a] where t � a and
t corresponds to the end of the final execution block of some job,
while a corresponds to a job arrival or a � 1. We also include
a special execution interval [0, 0] at the beginning of the
s-schedule and regard it as a gap.

Fig. 2 depicts the s-schedule for the sample job set J given in
Fig. 1. An s-execution interval indexed by k indicates that job jk
is being executed, except when k � 0, which indicates a gap (idle
interval). The tight deadlines are marked by arrows. By exam-
ining the s-partition of time �T�s, T�s	 for J, we notice that (i)
tight deadlines exist only in T�s, and (ii) each connected

component of T�s ends with a tight deadline. The following
lemma from ref. 3 states that these properties always hold for any
job set.

Lemma 4 (3).

1. Tight deadlines do not exist in T�s.
2. The right endpoint Bi of Ti

�s � [Ai, Bi] must be a tight deadline
for 2 � i � p.

Definition 7: Given a gap [t, a] in an s-schedule, we define the
expansion of [t, a] to be the smallest interval [b, a] � [t, a]
where b is a tight deadline (see Fig. 3). To ensure that the
expansion of a gap always exists, we adopt the convention that
0 is considered a tight deadline. In particular, the expansion of
the special gap [0, 0] is [0, 0] itself.

Lemma 5.

1. Gaps do not exist within T1
�s.

2. T1
�s � [B2, A1] must end with a gap.

3. T1
�s � [B2, A1] corresponds to the expansion of the rightmost

gap in the s-schedule.

Proof: Property 1 was already established in the proof of
Lemma 3. For property 2, we can compare the s-schedule with

Fig. 1. The s-partition for a sample J. The jobs are represented by their
intervals only and sorted according to deadline. Solid intervals represent jobs
belonging to J � s, while dashed intervals represent jobs belonging to J � s.

Fig. 2. The s-execution intervals for the same J in Fig. 1 are illustrated. Index
k indicates that job jk is being executed, whereas index 0 indicates a gap (idle
time). Arrows point to tight deadlines.

Fig. 3. Gap expansion. The indicated gap will be expanded into [b, a], a
connected component of T � s.

Li et al. PNAS � March 14, 2006 � vol. 103 � no. 11 � 3985

CO
M

PU
TE

R
SC

IE
N

CE
S

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 C
A

M
B

R
ID

G
E

 U
N

IV
E

R
SI

T
Y

 o
n

Ju
ne

 2
6,

 2
02

3
fr

om
 I

P
ad

dr
es

s
13

1.
11

1.
18

5.
17

6.

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Sopt over T�s by considering only those jobs in J�s, based on
Lemma 3. Because the s-schedule strictly dominates Sopt over
T�s, Lemma 2 implies that the last job executed by the s-schedule
within T1

�s must be finished strictly earlier than by Sopt. Hence,
there must be a gap at the end of T1

�s. Property 3 then follows
from property 2 and the second property of Lemma 4.

Note that Lemma 5 asserts the existence of gaps in T1
�s, but

not in Ti
�s, for i � 2. It is because the s-schedule may keep itself

fully occupied during Ti
�s for i � 2 by executing jobs of J�s ahead

of the Sopt schedule. Thus, in the initial s-schedule, only the first
component T1

�s of T�s is sure to contain gaps.
Lemma 6 below provides the basis for an inductive approach to

construct the s-partition by finding one pair of connected compo-
nents {Ti

�s, Ti
�s} at a time, then deleting certain associated subsets

of jobs (defined below) {Ji
�s, Ji

�s} from J. This step is repeated for
1 � i � p. Lemma 7 shows that the required updates to the
s-schedule (the main data structure used by the algorithm) to reflect
the removal of jobs are quite straightforward.

Definition 8: Let Ji
�s denote the subset of all jobs in J whose

intervals are completely contained in Ti
�s. Let Ji

�s denote the
subset of all jobs in J whose intervals have nonempty intersec-
tions with Ti

�s but have empty intersections with each of
{T1

�s, . . . , Ti
1
�s }.

Lemma 6. Let J� � J
 J1
�s
 J1

�s. The s-partition of job set J� is
consistent with the s-partition of job set J. That is, a job in J� has
speed � s in the optimal schedule for J� if and only it has speed �
s in the optimal schedule for J.

Proof: We claim that (i) the optimal speed function of J�
coincides with the optimal speed function of J for all jobs in
J2

�s, . . . , Ji
1
�s , and (ii) all jobs in J�s
 J1

�s have speeds � s in
the optimal speed function of J�. First, the deletion from J of all
jobs in J1

�s (whose intervals are contained in T1
�s) will not affect

the optimal speed for any job in the remaining Ji
�s (whose

intervals are contained in Ti
�s which is disjoint from T1

�s), by the
way the intensity function g(I) is defined. Second, the deletion
of jobs in J1

�s clearly will not change the optimal speed for any
job in J�s. Thus, (i) is true. To prove (ii), consider the speeds m1

and m2, defined as the highest speeds used by any job of J�s

J1

�s in the optimal schedules for J and for J�, respectively. By
definition, m1 � s. Then, by examining the way the highest
intensity g(I*) is selected for jobs in J�s
 J1

�s, and using similar
arguments as for (i), it is easy to see that m2 � m1 � s. We have
proved (ii) and hence the lemma.

Lemma 7. Let J � { j1, . . . , jn} by EDF ordering. For any m � n,
the s-schedule for the job set J� � { j1, . . . , jm} can be obtained
from the s-schedule of J by simply changing the execution intervals
of each job in { jm�1, . . . , jn} into idle intervals (i.e., gaps).

The above lemma is easy to prove by induction on m. Finally,
the s-partition can be obtained by combining the subsets that
have been identified.

Lemma 8.

1. J�s � �i�1
p Ji

�s.
2. J�s � �i�1

p Ji
�s.

Proof: By Lemma 1, a job jk � J�s if and only if its interval [ak,
bk] � T�s, or equivalently, if and only if [ak, bk] � Ti

�s for one
of the connected components Ti

�s of T�s. This fact proves
property 1. For property 2, note that jk � J�s if and only if its
interval [ak, bk] � T�s � �, hence if and only if jk � Ji

�s for some
i, 1 � i � p.

The detailed algorithm for generating the s-partition is given
in Algorithm 2.

Theorem 1. Algorithm 2 finds the s-partition �J�s, J�s	 for a job set
J in O(n log n) time.

Proof: The algorithm uses the characterizations given in Lem-
mas 4 and 5 to locate the boundary points Bi�1, Ai, and Bi for
components Ti

�s and Ti
�s. It then identifies the jobs belonging to

Ji
�s or to Ji

�s, and removes them from J. Lemma 6 guarantees that
the above process can be carried out inductively to find all
components Ti

�s and Ti
�s. The desired s-partition is obtained by

taking unions according to Lemma 8. We now analyze the time
complexity of the algorithm. Generating the initial s-schedule
takes O(n log n) time. The remaining computation can be done
in O(n) time with appropriate data structures. One can use a
linked list to represent the s-schedule, and linked sublists to
represent the s-execution intervals for every job. Each execution
interval and each job interval are examined only a constant
number of times, because all pointers used in the algorithm make
a single pass from right to left. Therefore, the total running time
of the algorithm is O(n log n).

Scheduling Algorithms
We now apply Algorithm Bipartition to the computation of
optimal schedules. We will discuss the continuous case and the
discrete case separately in the following two subsections.

Continuous Case. For a job set J, define the ‘‘support’’ T of J to be
the union of all job intervals in J. Define avr(J), the ‘‘average
rate’’ of J to be the total workload of J divided by �T�. We will
use avr(J) as the speed threshold to perform a bipartition on J,
which, according to the next lemma, produces two nonempty
subsets unless Sopt(t) is constant for J.

Lemma 9. Let s � avr(J). Then T�s � � if J � �. Furthermore, the
following three conditions are equivalent.

Algorithm 2. Bipartition

Input: speed s, and job set J
Output: s-partition �J�s, J�s	 of J

Sort jobs into j1, . . . , jn by EDF ordering
Generate the s-schedule for J
i 4 0
M 4 n
b0 4 0
B1 4 1
repeat

i 4 i � 1
take the rightmost gap [t, a] and find the expansion [b, a] of [t, a]
Ai 4 a (this defines component Ti

�s � [Ai, Bi])
Bi�1 4 b (this defines component Ti

�s � [Bi�1, Ai])
while bM � Ai do
if aM � Ai then

add jM to Ji
�s

else
add jM to Ji

�s

end if
remove jM from J
M 4 M � 1

end while
while bM � Bi�1 do

add jM to Ji
�s

remove jM from J
M 4 M � 1

end while
until M � 0
J�s 4 J1

�s � � � � � Ji
�s

J�s 4 J1
�s � � � � � Ji

�s

Return �J�s, J�s	

3986 � www.pnas.org�cgi�doi�10.1073�pnas.0510886103 Li et al.

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 C
A

M
B

R
ID

G
E

 U
N

IV
E

R
SI

T
Y

 o
n

Ju
ne

 2
6,

 2
02

3
fr

om
 I

P
ad

dr
es

s
13

1.
11

1.
18

5.
17

6.

Peter Hu

1. T�s � �.
2. T�s � T.
3. Sopt (J) � s over T.

Proof: Conditions 1 and 2 are obviously equivalent as T�s �
T�s � T. Since �T Sopt dt � �T s dt � Rk, we have �T�s

(Sopt
 s)dt � �T�s (s
 Sopt)dt. If condition 1 is true then �T�s

(s
 Sopt)dt � 0, which implies �T�s (Sopt
 s)dt � 0, hence Sopt
(J) � s over T�s (� T) and condition 3 is true. Conversely,
condition 3 implies condition 1 by the definition of T�s. We have
proved that conditions 1 and 3 are equivalent.

Theorem 2. Algorithm 3 computes a (continuous) optimal voltage
schedule for a job set J in O(n2 log n) time.

Proof: The correctness of Algorithm 3 follows from Theorem
1 and Lemma 9. The process of repeated partitions can be
represented by a binary tree where each internal node v corre-
sponds to a bipartition. After initially sorting the job arrivals and
deadlines, the cost of the bipartition at each node v is O(n log
n) in the size of the subtree at v by Theorem 1. The sum over all
internal nodes is O(P log n) where P is the total path lengths of
the tree and is at most O(n2). Hence, the time complexity of the
algorithm is O(n2 log n).

Discrete Case. By applying Algorithm 2 repeatedly, one can
partition J into d subsets corresponding to d speed levels in time
O(dn log n). We then schedule the jobs in each subset Ji with
speed levels si and si�1 by applying a two-level scheduling
algorithm given in ref. 3. The latter algorithm, when given a set
J of n jobs and two speed levels s � s� that are known to satisfy
s � sopt (t) � s� for all t, can compute the optimal schedule for
J with discrete speed levels s and s� in O(n log n) time. We
incorporate these two steps in a single loop as shown in
Algorithm 4. Algorithm 4 is simpler than the discrete scheduling

algorithm given in ref. 3, although the time complexity O(dn log
n) is the same. We also remark that an �(n log n) lower bound
in the algebraic decision tree model was proven in ref. 3 for the
discrete DVS scheduling problem. Hence, Algorithm 4 has
optimal complexity if d is considered a fixed constant.

Conclusion
In this work we considered the problem of job scheduling on a
variable voltage processor to minimize overall energy consump-
tion. For the continuous case where the processor can run at any
speed, we give a min-energy scheduling algorithm with time
complexity O(n2 log n). This result improves over the best
previous bound of O(n3). For the discrete case with d preset
speed levels, we obtain a simpler algorithm than that given in ref.
3, with the same time complexity O(dn log n). The basis of both
algorithms is an efficient method to partition a job set, by any
speed level, into high-speed and low-speed subsets. This strategy,
quite natural for the discrete problem, turned out to be also
effective for the continuous case by enabling successive approx-
imations to the optimum. Our results may provide some insights
into the min-energy scheduling problem. They also should be
useful in generating optimal schedules as benchmarks for eval-
uating heuristic algorithms. We propose as an open problem to
investigate whether the O(n2 log n) time complexity could be
further improved.

This work was supported in part by Research Grants Council of Hong
Kong Grant CityU 122105; National Natural Science Foundation of
China Grant 60135010, 60321002, and 60553001; and Chinese National
Key Foundation Research and Development Plan Grant 2004CB318108.

1. Yao, F., Demers, A. & Shenker, S. (1995) in Proceedings of the 36th IEEE
Conference on the Foundations of Computer Science (FOCS) (IEEE, New
York), pp. 374–382.

2. Kwon, W. & Kim, T. (2005) ACM Trans. Embedded Computing Systems 4, 211–230.
3. Li, M. & Yao, F. F. (2005) SIAM J. Computing 35, 658–671.
4. Li, M., Liu, J. B. & Yao, F. F. (2005) in Proceedings of the Eleventh International

Computing and Combinatorics Conference, ed. Wang, L. (Springer, Berlin), pp.
283–296.

5. Bansal, N., Kimbrel, T. & Pruhs, K. (2004) in Proceedings of the 45th Annual
IEEE Conference on the Foundations of Computer Science (FOCS) (IEEE, New
York), pp. 520–529.

6. Irani, S. & Pruhs, K. (2005) ACM SIGACT News, 36, 63–76.

Algorithm 3. Partitioned Optimal Voltage Schedule (POVS)

Input: job set J
Output: (Continuous) optimal voltage schedule Sopt for J

if J � � then
return

end if
s 4 avr(J)
�J�s, J�s	 4 Bipartition (J, s)
if T�s � � then

return the s-schedule over T
else

return the union of schedules POVS(J�s, T�s) and POVS(J�s, T�s)
end if

Algorithm 4. Discrete Optimal Voltage Schedule (DOVS)

Input:
job set J
speed levels: s1 � s2 � . . . � sd � sd � 1 � 0
Output:
Discrete Optimal Voltage Schedule for J

for i � 1 to d do
Obtain J�si � 1 from J using Algorithm 2
Ji 4 J�si � 1

Schedule jobs in Ji using two-level scheduling algorithm given in
ref. 3 with speeds si and si � 1

J 4 J � Ji

Update J as in Algorithm 1
end for
The union of the schedules gives the optimal Discrete DVS schedule

for J

Li et al. PNAS � March 14, 2006 � vol. 103 � no. 11 � 3987

CO
M

PU
TE

R
SC

IE
N

CE
S

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 C
A

M
B

R
ID

G
E

 U
N

IV
E

R
SI

T
Y

 o
n

Ju
ne

 2
6,

 2
02

3
fr

om
 I

P
ad

dr
es

s
13

1.
11

1.
18

5.
17

6.

