
SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 35, No. 3, pp. 658–671

AN EFFICIENT ALGORITHM FOR COMPUTING OPTIMAL
DISCRETE VOLTAGE SCHEDULES∗

MINMING LI† AND FRANCES F. YAO‡

Abstract. We consider the problem of job scheduling on a variable voltage processor with d
discrete voltage/speed levels. We give an algorithm which constructs a minimum energy schedule for
n jobs in O(dn logn) time. Previous approaches solve this problem by first computing the optimal
continuous solution in O(n3) time and then adjusting the speed to discrete levels. In our approach,
the optimal discrete solution is characterized and computed directly from the inputs. We also show
that O(n logn) time is required; hence the algorithm is optimal for fixed d.

Key words. scheduling, energy efficiency, variable voltage processor, discrete optimization

AMS subject classifications. 90B35, 90B80

DOI. 10.1137/050629434

1. Introduction. Advances in processor, memory, and communication technolo-
gies have enabled the development and widespread use of portable electronic devices.
As such devices are typically powered by batteries, energy efficiency has become an
important issue. With dynamic voltage scaling (DVS) techniques, processors are able
to operate at a range of voltages and frequencies. Since energy consumption is at
least a quadratic function of the supply voltage (hence CPU speed), it saves energy
to execute jobs as slowly as possible while still satisfying all timing constraints.

We refer to the associated scheduling problem as the min-energy DVS scheduling
problem (or DVS problem for short); the precise formulation will be given in section 2.
The problem is different from classical scheduling on fixed-speed processors, and it has
received much attention from both theoretical and engineering communities in recent
years. One of the earliest theoretical models for DVS was introduced in [1]. They
gave a characterization of the min-energy DVS schedule and an O(n3) algorithm1 for
computing it. No special assumption was made on the power consumption function
except convexity. This optimal schedule has been referenced widely, since it provides
a main benchmark for evaluating other scheduling algorithms in both theoretical and
simulation work.

In the min-energy DVS schedule mentioned above, the processor must be able to
run at any real-valued speed s in order to achieve optimality. In practice, variable
voltage processors run only at a finite number of speed levels chosen from specific
points on the power function curve. For example, the Intel SpeedStep technology [2]
currently used in Intel’s notebooks supports only 3 speed levels, although the new
Foxon technology will soon enable Intel server chips to run at as many as 64 speed

∗Received by the editors April 18, 2005; accepted for publication (in revised form) August 15,
2005; published electronically January 6, 2006. This work was supported in part by the Research
Grants Council of Hong Kong under grant CityU122105, the National Natural Science Foundation
of China under grants 60135010 and 60321002, and the Chinese National Key Foundation Research
& Development Plan (2004CB318108).

http://www.siam.org/journals/sicomp/35-3/62943.html
†Department of Computer Science and Technology, State Key Laboratory of Intelligent Technol-

ogy and Systems, Tsinghua University, Beijing, China (liminming98@mails.tsinghua.edu.cn).
‡Department of Computer Science, City University of Hong Kong, Hong Kong, China (csfyao@

cityu.edu.hk).
1The complexity of the algorithm was said to be further reducible in [1], but that claim has since

been withdrawn.

658

Peter Hu

Peter Hu

Peter Hu

OPTIMAL SCHEDULES FOR DISCRETE VARIABLE PROCESSOR 659

grades. Thus, an accurate model for min-energy scheduling should capture the dis-
crete, rather than continuous, nature of the available speed scale. This consideration
has motivated our present work.

In this paper we consider the discrete version of the DVS scheduling problem.
Denote by s1 > s2 > · · · > sd the clock speeds corresponding to d given discrete
voltage levels. The goal is to find, under the restriction that only these speeds are
available for job execution, a schedule that consumes as little energy as possible. (It is
assumed that the highest speed s1 is fast enough to guarantee a feasible schedule for
the given jobs.) This problem was considered in [3] for a single job (i.e., n = 1), where
they observed that minimum energy is achieved by using the immediate neighbors
si, si+1 of the ideal speed s in appropriate proportions. It was later extended in
[4] to give an optimal discrete schedule for n jobs, obtained by first computing the
optimal continuous DVS schedule and then individually adjusting the speed of each
job appropriately to adjacent levels as done in [3].

The following question naturally arises: Is it possible to find a direct approach
for solving the optimal discrete DVS scheduling problem without first computing
the optimal continuous schedule? We answer the question in the affirmative. For
n jobs with arbitrary arrival-time/deadline constraints and d given discrete supply
voltages (speeds), we give an algorithm that finds an optimal discrete DVS schedule
in O(dn log n) time. We also show that this complexity is optimal for any fixed d.
We remark that the O(n3) algorithm for finding the continuous DVS schedule (cf.
section 2) computes the highest speed, second highest speed, etc. for execution in a
strictly sequential manner and may use up to n different speeds in the final schedule.
Therefore it is unclear a priori how to find shortcuts to solve the discrete problem.
Our approach is different from that of [4], which is based on the continuous version
and therefore requires O(n3) time.

Our algorithm for optimal discrete DVS proceeds in two stages. In stage 1, the
jobs in J are partitioned into d disjoint groups J1, J2, . . . , Jd, where Ji consists of all
jobs whose execution speeds in the continuous optimal schedule Sopt lie between si
and si+1. We show that this multilevel partition can be obtained without determining
the exact optimal execution speed of each job. In stage 2, we proceed to construct an
optimal schedule for each group Ji using two speeds si and si+1. Both the separation
of each group Ji in stage 1, and the subsequent scheduling of Ji using two speed levels
in stage 2, can be accomplished in time O(n log n) per group. Hence this two-stage
algorithm yields an optimal discrete voltage schedule for J in total time O(dn log n).
The algorithm admits a simple implementation, although its proof of correctness and
complexity analysis are nontrivial. Aside from its theoretical value, we also expect our
algorithm to be useful in generating optimal discrete DVS schedules for simulation
purposes as in the continuous case.

We briefly mention some additional theoretical results on DVS, although they
are not directly related to the problem considered in this paper. In [1], two on-line
heuristics, average rate (AVR) and optimal available (OPA), were introduced for the
case that jobs arrive one at a time. AVR was shown to have a competitive ratio of
at most 8 in [1]; recently a tight competitive ratio of 4 was proven for OPA in [5].
For jobs with fixed priority, the scheduling problem was shown to be NP-hard, and
an FPTAS was given in [6]. In addition, [7] gave efficient algorithms for computing
the optimal schedule for job sets structured as trees. (The interested reader can find
further references in these papers.)

The remainder of the paper is organized as follows. We give the problem formu-

Peter Hu

Peter Hu

Peter Hu

660 MINMING LI AND FRANCES F. YAO

lation and review the optimal continuous schedule in section 2. Section 3 discusses
some mathematical properties associated with earliest deadline first (EDF) scheduling
under different speeds. Sections 4 and 5 give details of the two stages of the algo-
rithm as outlined above. The combined algorithm and a lower bound are presented
in section 6. Finally, some concluding remarks are given in section 7.

2. Problem formulation. Each job jk in a job set J over [0, 1] is characterized
by three parameters: arrival time ak, deadline bk, and required number of CPU cycles
Rk. A schedule S for J is a pair of functions (s(t), job(t)) defining the processor
speed and the job being executed at time t. Both functions are piecewise constant
with finitely many discontinuities. A feasible schedule must give each job its required
number of cycles between arrival time and deadline (with perhaps intermittent ex-
ecution). We assume that the power P , or energy consumed per unit time, is a
convex function of the processor speed. The total energy consumed by a schedule S

is E(S) =
∫ 1

0
P (s(t))dt. The goal of the min-energy scheduling problem is to find,

for any given job set J , a feasible schedule that minimizes E(S). We refer to this
problem as DVS scheduling (or sometimes continuous DVS scheduling to distinguish
it from the discrete version below).

In the discrete version of the problem, we assume d discrete voltage levels are
given, enabling the processor to run at d clock speeds s1 > s2 > · · · > sd. The
goal is to find a min-energy schedule for a job set using only these speeds. We may
assume that, in each problem instance, the highest speed s1 is always fast enough to
guarantee a feasible schedule for the given jobs. We refer to this problem as discrete
DVS scheduling.

For the continuous DVS scheduling problem, the optimal schedule Sopt can be
characterized based on the notion of a critical interval for J , which is an interval
I in which a group of jobs must be scheduled at maximum constant speed g(I) in
any optimal schedule for J . The algorithm proceeds by identifying such a critical
interval I, scheduling those “critical” jobs at speed g(I) over I and then constructing
a subproblem for the remaining jobs and solving it recursively. The optimal s(t) is in
fact unique, whereas job(t) is not always so. The details are given below.

Definition 2.1. Define the intensity of an interval I = [z, z′] to be

g(I) =

∑
Rj

z′ − z
,

where the sum is taken over all jobs j� with [a�, b�] ⊆ [z, z′].

The interval [c, d] achieving the maximum g(I) will be the critical interval chosen
for the current job set. All jobs j� ∈ J satisfying [a�, b�] ⊆ [c, d] can be feasibly
scheduled at speed g([c, d]) by the EDF principle. The interval [c, d] is then removed
from [0, 1]; all remaining intervals [aj , bj] are updated (compressed) accordingly, and
the algorithm recurses. The complete algorithm is given in Algorithm 1.

Let CIi ⊆ [0, 1] be the ith critical interval of J . Denote by Csi the execution
speed during CIi and by CJi those jobs executed in CIi. We take note of a basic
property of critical intervals which will be useful in later discussions.

Lemma 2.2. A job j� ∈ J belongs to
⋃i

k=1 CJk if and only if the interval [a�, b�]

of j� satisfies [a�, b�] ⊆
⋃i

k=1 CIk.

Proof. The “if” direction is straightforward. For the “only if” part, it can be
proven by induction on i that j� ∈ CJi implies [a�, b�] ⊆

⋃i
k=1 CIk, based on the way

critical intervals are successively chosen.

Peter Hu

OPTIMAL SCHEDULES FOR DISCRETE VARIABLE PROCESSOR 661

Algorithm 1 OS (Optimal Schedule)

Input: a job set J
Output: Optimal Voltage Schedule S

repeat
Select I∗ = [z, z′] with s = max g(I)
Schedule ji ∈ JI∗ at s over I∗ by Earliest Deadline First policy
J ← J − JI∗

for all jk ∈ J do
if bk ∈ [z, z′] then

bk ← z
else if bk ≥ z′ then
bk ← bk − (z′ − z)

end if
Reset arrival times similarly

end for
until J is empty

3. EDF with variable speeds. The EDF principle defines an ordering on the
jobs according to their deadlines. At any time t, among jobs jk that are available for
execution, that is, jk satisfying t ∈ [ak, bk) and jk not yet finished by t, it is the job
with minimum bk that will be executed during [t, t + ε]. EDF is a natural scheduling
principle, and many optimal schedules (such as the continuous min-energy schedule
described above) in fact conform to it. All schedules considered in the remainder of
this paper are EDF schedules. Hence we assume the jobs in J = {j1, . . . , jn} are
indexed by their deadlines.

We introduce an important tool for solving the discrete DVS scheduling problem:
an EDF schedule that runs at some constant speed s (except for periods of idleness).

Definition 3.1. An s-schedule for J is a schedule which conforms to the EDF
principle and uses constant speed s in executing any job of J .

As long as there are unfinished jobs available at time t, an s-schedule will select
a job by the EDF principle and execute it at speed s. An s-schedule may contain
periods of idleness when there are no jobs available for execution. An s-schedule may
also yield an unfeasible schedule for J since the speed constraint may leave some jobs
unfinished by their deadlines.

Definition 3.2. In any schedule S, a maximal subinterval of [0, 1] devoted to
executing the same job jk is called an execution interval (for jk with respect to S).
Denote by Ik(S) the collection of all execution intervals for jk with respect to S. With
respect to the s-schedule for J , any execution interval will be called an s-execution
interval, and the collection of all s-execution intervals for job jk will be denoted by
Isk.

Notice that for any EDF schedule S, it is always true that Ii(S) ⊆ [ai, bi] −
∪i−1
k=1Ik(S). For a given J , we observe some interesting monotone relations that exist

among the EDF schedules of J with respect to different speed functions. These
relations will be exploited by our algorithms later. They may also be of independent
interest in studying other types of scheduling problems.

Lemma 3.3. Let S1 and S2 be two EDF schedules whose speed functions satisfy
s1(t) > s2(t) for all t whenever S1 is not idle.

(1) For any t and any job jk, the workload of jk executed by time t under S1 is

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu
Comparison between two s-schedules with different speeds.

662 MINMING LI AND FRANCES F. YAO

always no less than that under S2.
(2) ∪i

k=1Ik(S1) ⊆ ∪i
k=1Ik(S2) for any i, 1 ≤ i ≤ n.

(3) Any job of J that can be finished under S2 is always finished strictly earlier
under S1.

(4) If S2 is a feasible schedule for J , then so is S1.
Proof. We prove (1) and (2) by induction on i. When i = 1, since both S1 and S2

start executing j1 at time a1, it is easy to see that induction hypotheses (1) and (2)
are both true. Assume that they hold for jobs j1, . . . , ji−1; we will prove (1) and (2)
for ji. The time V1 available for executing ji under S1 is V1 = [ai, bi] − ∪i−1

k=1Ik(S1),
which satisfies V1 ⊇ V2 for the corresponding available time under S2 because of
induction hypothesis (2). This together with the assumption s1(t) > s2(t) proves (1);
that is, the execution of ji by S1 will always be ahead of that by S2. Assuming that
S2 finishes ji at time t, then we have Ii(S1) ⊆ [ai, t] ⊆ ∪i

k=1Ik(S2) from which (2)
follows inductively.

Note that as a special case, Lemma 3.3 holds when we substitute s1-schedule and
s2-schedule, with s1 > s2, for S1 and S2, respectively.

Lemma 3.4. The s-schedule for J contains at most 2n s-execution intervals and
can be computed in O(n log n) time if the arrival times and deadlines are already
sorted.

Proof. The end of an execution interval corresponds to the moment when either
a job is finished or a new job arrives. There can be at most 2n such endpoints, and
hence at most 2n s-execution intervals. If the arrival times and deadlines are already
sorted, then generating one s-execution interval costs O(log n) time, and the entire
schedule can be computed in O(n log n) time. This completes the proof.

4. Partition of jobs by speed level. We will consider the first stage of the
algorithm for optimal discrete DVS in this section. Clearly, to get an O(dn log n)-
time partition of J into d groups corresponding to d speed levels, it suffices to give
an O(n log n) algorithm which can properly separate J into two groups according to
any given speed s.

Definition 4.1. Given a job set J and any speed s, let J≥s and J<s denote the
subset of J consisting of jobs whose executing speeds are ≥ s and < s, respectively, in
the (continuous) optimal schedule of J . We refer to the partition 〈J≥s, J<s〉 as the
s-partition of J .

Let T≥s ⊆ [0, 1] be the union of all critical intervals CIi with Csi ≥ s. By
Lemma 2.2, a job i is in J≥s if and only if its interval [ai, bi] ⊆ T≥s. Thus J≥s

is uniquely determined by T≥s, and we can focus on computing T≥s instead. Let
T<s = [0, 1] − T≥s, and we refer to 〈T≥s, T<s〉 as the s-partition of time for J .

An example of J with 11 jobs is given in Figure 1, together with the optimal speed
function Sopt(t). The portion of Sopt(t) lying above the horizontal line Y = s projects
to T≥s on the time axis. In general, T≥s may consist of a number of connected
components.

In the remainder of this section, we will show that certain features existing in the
s-schedule of J can be used for identifying connected components of T<s. This then
leads to an efficient algorithm for computing the s-partition of time 〈T≥s, T<s〉.

Definition 4.2. In the s-schedule for J , we say a deadline bi is tight if job ji is
either unfinished at time bi or is finished just on time at bi. An idle interval g = [t, t′]
in the s-schedule is called a gap.

Figure 2 depicts the s-schedule for the sample job set J considered in Figure 1.
All tight deadlines and gaps have been marked along the time axis. By overlaying the

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

OPTIMAL SCHEDULES FOR DISCRETE VARIABLE PROCESSOR 663

Speed

Time
T

Sopt

s

j 1

j 2

j 3

j 4

j 5

j 6

j 7

j 8

j 9

j 10

j 11

Fig. 1. The s-partition for a sample J. The jobs are represented by their intervals only and
indexed according to deadline. Solid intervals represent jobs belonging to J≥s, while dashed intervals
represent jobs belonging to J<s.

Speed

s

Time
T

1 2 5 3 4 5 6 11 10 7 8 9 10

Fig. 2. The s-execution intervals for the same J in Figure 1 are illustrated, where the number
indicates which job is being executed. Shaded blocks correspond to gaps (idle time), while arrows
point to tight deadlines.

s-partition of time 〈T≥s, T<s〉 for J , we notice that (1) tight deadlines exist only in
T≥s, and (2) each connected component of T≥s ends with a tight deadline. We prove
below that these properties always hold for any job set.

Lemma 4.3. (1) Tight deadlines in an s-schedule can exist only in T≥s.

(2) The rightmost point of each connected component of T≥s must be a tight
deadline.

Proof. As observed before, the only jobs available for execution during T<s are
those from J<s. Furthermore, by property (3) of Lemma 3.3, all jobs of J<s will
be finished strictly before their deadlines under the s-schedule, thus yielding no tight

Peter Hu

664 MINMING LI AND FRANCES F. YAO

deadlines in T<s. This proves property (1). For property (2), we argue that it is a
consequence of property (1) in Lemma 3.3. Let bi be the end of a connected component
of T≥s. Job ji, being the last executed job of a critical interval, is finished exactly on
time under Sopt (which runs at speed at least s throughout T≥s). Therefore, job ji
must have a tight deadline under the s-schedule.

Property (2) of Lemma 4.3 gives a necessary condition for identifying the right
boundary of each connected component of T≥s. The corresponding left boundary of
such a component can also be identified through left-right symmetry of the scheduling
problem with respect to time.

Definition 4.4. Given a job set J , the reverse job set Jrev consists of jobs with
the same workload but time intervals [1− bi, 1− ai]. The s-schedule for Jrev is called
the reverse s-schedule for J . We call an arrival time ai (for the original job set J)
tight if 1 − ai corresponds to a tight deadline in the reverse s-schedule for J .

One may also view the reverse s-schedule as a schedule which runs backwards:
starting from time 1 and executing jobs of J by the latest arrival time first principle at
constant speed s whenever possible. Lemma 4.5 is the symmetric analogue of Lemma
4.3.

Lemma 4.5. (1) Tight arrival times in an s-schedule can exist only in T≥s.

(2) The leftmost point of each connected component of T≥s must be a tight arrival
time.

Lemmas 4.3 and 4.5 are not sufficient by themselves to enable an efficient sepa-
ration of T≥s from T<s. Fortunately, we have an additional useful property related
to T<s. Observe that in Figure 2 all gaps of the s-schedule fall within T<s. This is
in fact true in general, and, furthermore, a gap must exist in T<s as we prove next.

Lemma 4.6. Gaps in an s-schedule can exist only in T<s; furthermore, a gap
must exist in T<s.

Proof. Suppose a gap in an s-schedule occurs at some time t ∈ T≥s; that is, all
jobs J(t) in J whose intervals overlap t have been finished. In particular, no jobs
belonging to J(t)

⋂
J≥s are available. Since the schedule sopt runs at higher speed

than s over T≥s in executing J≥s, it must also finish all jobs of J(t)
⋂
J≥s before

time t by Lemma 3.3. In other words, sopt would have a gap at time t which is not
possible. This proves that gaps can exist only in T<s. For the second part, we note
that the total workload of J<s, which is executed over T<s, is less than s · |T<s|;
hence a gap must exist.

Finally, we collect the properties that will be used by the partition algorithm in
the following theorem. We first give a definition.

Definition 4.7. Given a gap [x, y] in an s-schedule, we define the expansion
of [x, y] to be the smallest interval [b, a] satisfying (1) [b, a] ⊇ [x, y], and (2) b and a
are tight deadline and tight arrival time, respectively, of the s-schedule. (Note: we
adopt the convention that 0 is considered a tight deadline, while 1 is considered a tight
arrival time.) See Figure 3.

Theorem 4.8. (1) A gap always exists in an s-schedule if T<s �= ∅.
(2) The expansion [b, a] of a gap [x, y] defines the connected component in T<s

containing [x, y].

Proof. Property (1) comes from Lemma 4.6, while property (2) follows from
Lemmas 4.3 and 4.5.

Notice that although Theorem 4.8 guarantees that one can always find a gap and
then use it to identify a connected component C of T<s (provided T<s �= ∅), it is not
true that all connected components of T<s must contain gaps and can be identified

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu
By contradiction

Peter Hu

Peter Hu

Peter Hu

OPTIMAL SCHEDULES FOR DISCRETE VARIABLE PROCESSOR 665

Speed

s

Time
T

b a

gap

x y

Fig. 3. Gap expansion: the indicated gap will be expanded into [b, a], a connected component
of T<s.

simultaneously. However, once a component C is found, by deleting the s-execution
intervals of all jobs whose interval [ai, bi] intersects with C, gaps can surely be found
(provided T<s − C �= ∅), and the process can continue. This is true because, by
reasoning similar to that of Lemma 4.6, the total workload of the remaining jobs in
J<s over T<s − C is less than s · |T<s − C|; hence a gap must exist.

The detailed algorithm for generating the s-partition is given in Algorithm 2
below.

Theorem 4.9. Algorithm 2 finds the s-partition 〈J≥s, J<s〉 for a job set J in
O(n log n) time.

Proof. The correctness of the algorithm is based on Theorem 4.8 and the dis-
cussions following the theorem. For the complexity part, sorting and generating s-
schedules take O(n log n) time. We now analyze individual steps inside the for loop.
For step 1, finding the expansion of a gap takes only O(log n) time by binary search;
with at most n expansions (to find at most n connected components) the total cost is
O(n log n). Step 2 can be done, with standard data structures such as interval trees, in
time O(log n)+|J<s

new|, which amounts to total time O(n log n) since
∑

|J<s
new| = O(n).

It remains to consider steps 7 and 8. Since each individual gap is added to and deleted
from the sorted list Gaps only once, and since there are at most 2n s-execution inter-
vals (hence gaps), the cost is at most O(n log n). This shows that the total running
time of Algorithm 2 is O(n log n).

We next use Algorithm 2 as a subroutine to obtain Algorithm 3.

Theorem 4.10. Algorithm 3 partitions job set J into d subsets corresponding to
d speed levels in time O(dn log n).

5. Two-level schedule. After Algorithm 3 completes the multilevel partition
of J into subsets J1, . . . , Jd, we can proceed to schedule the jobs in each subset Ji
with two appropriate speed levels si and si+1. We will present a two-level scheduling
algorithm whose complexity is O(n log n) for a set of n jobs. For this purpose, it
suffices to describe how to schedule the subset J1 with two available speeds s1 and

Peter Hu

Peter Hu

666 MINMING LI AND FRANCES F. YAO

Algorithm 2 Bipartition

Input: job set J and speed s
Output: s-partition of J

Sort arrival times and deadlines
Generate the s-schedule and reverse s-schedule for J
J≥s ← J
J<s ← ∅
T≥s ← [0, 1]
T<s ← ∅
Gaps = sorted list of gaps in s-schedule
while Gaps �= ∅ do

1. Choose any gap [x, y] from Gaps. Find the expansion [b, a] of [x, y].
2. J<s

new = {all jobs in J≥s whose interval [aj , bj] intersects with [b, a] }
3. J≥s ← J≥s − J<s

new

4. J<s ← J<s ∪ J<s
new

5. T≥s ← T≥s − [b, a]
6. T<s ← T<s ∪ [b, a]
7. Gaps = Gaps ∪ { s-execution intervals of jobs in J<s

new}
8. Delete all gaps that are contained in [b, a]

end while
Return J<s and J≥s

Algorithm 3 Multilevel Partition

Input:
job set J and speed s1 > · · · > sd > sd+1 = 0
Output:
Partition of J into J1, . . . , Jd corresponding to speed levels

for i = 1 to d do
Obtain J≥si+1 from J using Algorithm 2
Ji ← J≥si+1

J ← J − Ji
Update J as in Algorithm 1

end for

s2, where s1 > s2 > 0. We will schedule each connected component of J1 separately.
Thus, the two-level scheduler deals only with “eligible” input job sets, i.e., those with
a continuous optimal schedule speed sopt(t) satisfying s1 ≥ sopt(t) ≥ s2 for all t.
(Clearly, this condition is satisfied by each connected component of J1 = J≥s2 output
from Algorithm 3.) We give an alternative and equivalent definition of “eligibility” in
the following. This definition does not make reference to sopt(t), and hence is more
useful for the purpose of deriving a two-level schedule directly.

Definition 5.1. For a job set J over [0, 1], a two-level schedule with speeds s1

and s2 (or (s1, s2)-schedule for short) for J is a feasible schedule s(t) for J , which is
piecewise constant over [0, 1] with either s(t) = s1 or s(t) = s2 for any t.

In other words, an (s1, s2)-schedule for J is a schedule using only speeds s1 and
s2 which finishes every job and leaves no idle time.

Lemma 5.2. For a job set J over [0, 1], an (s1, s2)-schedule exists if and only if
(1) the s1-schedule for J is a feasible schedule, and

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

OPTIMAL SCHEDULES FOR DISCRETE VARIABLE PROCESSOR 667

(2) the s2-schedule for J contains no idle time in [0, 1].
Proof. The “only if” direction is easy to see. Suppose a two-level schedule s(t)

exists with s1 ≥ s(t) ≥ s2 for all t ∈ [0, 1]. It follows from Lemma 3.3 that with speed
s1 the processor can finish all jobs just as with speed s(t), while with speed s2 the
processor will not finish any job earlier than with speed s(t), and hence will never
be idle. This proves (1) and (2). For the “if” direction, suppose (1) and (2) both
hold. Because the s1-schedule generates a feasible schedule, the optimal continuous
schedule sopt(t) must satisfy sopt(t) ≤ s1 for all t ∈ [0, 1]. On the other hand, (2)
implies J = J≥s2 by Lemma 4.6; that is, sopt(t) ≥ s2 for all t ∈ [0, 1]. Using the result
in [4], we can first calculate the continuous optimal schedule sopt(t) for J and then
adjust the execution speed s of each job to be a combination of s1 or s2 in the right
proportion to achieve the same average speed s. This results in a two-level schedule
for J with speeds s1 and s2.

In view of the preceding lemma, we give the following definition of eligibility for
input job sets to two-level scheduling.

Definition 5.3. A job set J over [0, 1] is said to be eligible for (s1, s2)-scheduling
if

(1) the s1-schedule for J is a feasible schedule, and
(2) the s2-schedule for J contains no idle time in [0, 1].
We will consider only eligible job sets in discussing two-level scheduling in the

remainder of this section. An (s1, s2)-schedule for J is said to be optimal if it consumes
minimum energy among all (s1, s2)-schedules for J .

Lemma 5.4. All (s1, s2)-schedules for an eligible job set J consume the same
amount of energy, and hence are optimal.

Proof. The energy consumption is determined by the total amount of time the
processor runs at speeds s1 and s2, respectively. Suppose, in an optimal schedule for
J , that α time is devoted to speed s1 and β time is devoted to speed s2. An optimal
schedule will not contain any idle period; hence the following equations are satisfied:

{
αs1 + βs2 =

∑
Ri,

α + β = 1.

Clearly, any (s1, s2)-schedule for J will also satisfy the above two equations. Since
these equations uniquely determine α and β, the lemma follows.

The two-level schedule as described in the proof of Lemma 5.2, which first com-
putes the continuous optimal schedule and then rounds the execution speed of each
job up and down appropriately [4], requires O(n3) computation time. We now de-
scribe a more efficient algorithm which directly outputs a two-level schedule without
first computing the continuous optimal schedule. The algorithm runs in O(n) time
if the input jobs are already sorted by deadline (as obtained via Algorithm 3) and
O(n log n) time in general.

The two-level scheduling algorithm (Algorithm 4) proceeds as follows. It first
computes the s2-schedule for J which in general does not provide a feasible schedule.
We then transform it into a feasible schedule by suitably adjusting the execution speed
of each job from s2 to s1 and possibly extending its execution interval if necessary.
These adjustments are done in an orderly and systematic manner to ensure overall
feasibility. The algorithm needs to consult the corresponding s1-schedule of J in
making the transformation. An (s1, s2)-schedule for J is produced at the end which
by Lemma 5.4 is an optimal two-level schedule.

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

668 MINMING LI AND FRANCES F. YAO

Algorithm 4 Two-Level Schedule

Input:
speeds s1, s2, where s1 > s2

An eligible job set J for (s1, s2)-scheduling
Variables:
Committed: the list of allocated time intervals.
Committed(i): the time intervals allocated to job ji.

Output:
Optimal (s1, s2)-schedule for J

Compute s1-schedule for J to obtain Is1k for k = 1, . . . , n.
Compute s2-schedule for J to obtain Is2k for k = 1, . . . , n.
Committed ← ∅
for i = n downto 1 do

1. I =Is2i − Committed
2. Take I ′ ⊆ Is1i of appropriate length (possibly 0) from the right end of Is1i

to obtain an (s1, s2)-schedule for ji over I ∪ I ′

3. Committed(i) = I ∪ I ′

4. Committed ← Committed ∪ Committed(i)
end for

5.1. Correctness of two-level scheduling algorithm. Let J be an eligible
job set for (s1, s2)-scheduling. We will show that Algorithm 4 indeed outputs an
(s1, s2)-schedule for J .

The jobs in J are sorted in increasing order by their deadlines as j1, j2, . . . , jn.
After computing the s1-schedule and s2-schedule for J , the algorithm then allocates
appropriate execution time and speed for each job ji in the order i = n, . . . , 1. Step
2 of the for loop carries out the allocation for job ji. We examine this step in more
detail in the following lemma.

Lemma 5.5. In step 2 of the for loop, by choosing an appropriate interval I ′ ⊆ Is1i
(assuming Is1i ∩ Committed = ∅), an (s1, s2)-schedule for job ji over I ∪ I ′ can be
found where I = Is2i − Committed.

Proof. There are two cases to consider when step 2 is encountered. Suppose job
ji can be feasibly scheduled with speed s1 over I = Is2i − Committed. Since the
s2-schedule of ji over I clearly has no idle time, Lemma 5.2 ensures that an (s1, s2)-
schedule exists for job ji over I. Suppose ji cannot be feasibly scheduled at s1 over
I. Under the assumption Is1i ∩ Committed = ∅, we can take sufficient length of time
I ′ from Is1i so that ji can be finished at s1 over I ∪ I ′. Therefore one can always find
an (s1, s2)-schedule for job ji over I ∪ I ′.

We next prove that the assumption Is1i ∩Committed = ∅ in Lemma 5.5 is indeed
satisfied when step 2 is encountered in the ith iteration (see property (3) below). In
fact, we show by induction on i that the following induction hypotheses are maintained
by the algorithm at the start of the ith iteration for i = n, . . . , 1.

Lemma 5.6. At the beginning of the ith iteration of the for loop, the following
are true:

(1) Committed(i + 1) ⊆ Is1i+1 ∪ Is2i+1.

(2) ∪n
k=i+1I

s2
k ⊆ Committed ⊆ (∪n

k=i+1I
s1
k) ∪ (∪n

k=i+1I
s2
k).

(3) Committed ∩ (∪i
k=1I

s1
k) = ∅.

Peter Hu

Peter Hu
Subset of J shown above

Peter Hu
Committed(i)

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu
extending its execution interval

Peter Hu

OPTIMAL SCHEDULES FOR DISCRETE VARIABLE PROCESSOR 669

Proof. It is easy to verify that all three induction hypotheses hold initially for
i = n. Now assume that they hold for iterations i+1, . . . , n; we will prove them for the
ith iteration. Property (1) is a result of how Committed(i+1) is selected as discussed
in Lemma 5.5. For property (2), the right side follows from (1) since Committed =
∪n
k=i+1Committed(k). The left side follows from the fact that, by Lemma 5.5, each

Committed(k) always uses up all remaining time in Is2k not already committed to
previous jobs. To prove (3), let V = ∪i

k=1I
s1
k . First, note that V is disjoint from

∪n
k=i+1I

s1
k . Next, V is contained in ∪i

k=1I
s2
k by property (2) of Lemma 3.3; hence V

is disjoint from ∪n
k=i+1I

s2
k . Thus it follows from (2) that Committed ∩ V = ∅.

Theorem 5.7. Given an eligible job set J for (s1, s2)-scheduling, Algorithm 4
generates an (s1, s2)-schedule for J .

Proof. Each job ji is feasibly executed, with no idle time, over Committed(i)
at speeds {s1, s2} as specified in Lemma 5.5. By the time the algorithm terminates,
Committed = ∪n

k=1Committed(k) ⊇ ∪n
k=1I

s2
k = [0, 1] by property (2) of Lemma

5.6. Hence there is no idle time in [0, 1]. The resulting schedule thus satisfies the
requirements of an (s1, s2)-schedule for J .

5.2. Complexity of two-level scheduling algorithm. We will show that the
cost of Algorithm 4 is O(n log n). The algorithm first computes the s1-schedule and s2-
schedule for J in O(n log n) time. The resulting list Ls1 with at most 2n s1-execution
intervals is already sorted, and similarly for the list Ls2 of s2-execution intervals. A
sorted list Ls1,s2 , of size at most 4n, representing Ls1 ∩Ls2 can be obtained with cost
O(n). Using appropriate pointers from lists Ls1 , Ls2 , and Committed into Ls1,s2 ,
each step of the for loop can be carried out in constant time plus the number of
intervals visited. Execution of step 2 may cause a splitting of some interval in Ls1 (to
represent interval I ′) and corresponding splitting in Ls1 , Ls1,s2 , and Committed. As
only a single split can be introduced in each iteration, the overall effect is only O(n).
Also each subinterval in Ls1 , Ls2 , and Ls1,s2 needs to be visited only once. Hence the
total running time of the algorithm is O(n) if the input jobs are sorted (as output by
Algorithm 3). We have proved the following theorem.

Theorem 5.8. Algorithm 4 computes an optimal two-level schedule for J in
O(n log n) time.

Algorithm 5 Optimal Discrete DVS Schedule

Input:
job set J
speed levels: s1 > s2 > · · · > sd > sd+1 = 0
Output:
Optimal Discrete DVS Schedule for J

Generate J1, J2, . . . , Jd by Algorithm 3
for i = 1 to d do

Schedule jobs in Ji using Algorithm 4 with speeds si and si+1

end for
The union of the schedules give the optimal Discrete DVS schedule for J

670 MINMING LI AND FRANCES F. YAO

6. Optimal discrete voltage schedule.

Theorem 6.1. Algorithm 5 generates a min-energy discrete DVS (MDDVS)
schedule with d voltage levels in time O(dn log n) for n jobs.

Proof. This is a direct consequence of Theorems 4.10, 5.7, and 5.8.

We next show that the running time of Algorithm 5 is optimal by proving an
Ω(n log n) lower bound in the algebraic decision tree model.

Theorem 6.2. Any deterministic algorithm for computing an MDDVS schedule
with d ≥ 2 voltage levels will require Ω(n log n) time for n jobs.

Proof. The integer element uniqueness (IEU) problem is known to have Ω(n log n)
computational complexity in the algebraic decision tree model [8]. We now make a
linear reduction from IEU to MDDVS. Suppose the given instance of IEU consists of
n positive integers {x1, x2, . . . , xn}. First, compute N = max{xi} in linear time. We
construct a job set J = {j1, j2, . . . , jn} over time span [0, N] with [ai, bi] = [xi − 1, xi]
and Ri = 1. (The time span can be normalized to [0, 1] by scaling all numbers
appropriately.) Thus the time intervals of all the jobs are disjoint if and only if the
integers xi are distinct. Set the available speed levels to be s1 = n (to guarantee
feasibility) and sd = 1, while s2, . . . , sd−1 may be any values in between. It is easy
to see that the answer to the IEU problem is yes (all integers xi are distinct) if and
only if MDDVS ≤ n (by executing every job at speed sd = 1). This completes the
reduction.

7. Conclusion. In this paper we considered the problem of job scheduling on
a variable voltage processor with d discrete voltage/speed levels. We give an algo-
rithm which constructs a minimum energy schedule for n jobs in O(dn log n) time,
which is optimal for fixed d. The min-energy discrete schedule is obtained with-
out first computing the continuous optimal solution. Our algorithm consists of two
stages: a multilevel partition of J into d disjoint groups Ji, followed by finding a
two-level schedule for each Ji using speeds si and si+1. The individual modules in
our algorithm, such as the multilevel partition and two-level scheduling, may be of
interest in and of themselves aside from the main result. Our algorithm admits a
simple implementation, although its proof of correctness and complexity analysis are
nontrivial. We have also discovered some nice fundamental properties associated with
EDF scheduling under variable speeds. Some of these properties are stated as lemmas
in section 3 for easy reference. Our results may provide some new insights and tools
for the problem of min-energy job scheduling on variable voltage processors. Aside
from the theoretical value, we also expect the algorithm to be useful in generating
optimal discrete schedules for simulation purposes as in the continuous case.

REFERENCES

[1] F. Yao, A. Demers, and S. Shenker, A scheduling model for reduced CPU energy, in Pro-
ceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science, 1995,
pp. 374–382.

[2] Intel Corporation, Wireless Intel SpeedStep Power Manager - Optimizing power consumption
for the intel PXA27x processor family, Wireless Intel SpeedStep(R) Power Manager White
paper, 2004.

[3] T. Ishihara and H. Yasuura, Voltage scheduling problem for dynamically variable voltage
processors, in Proceedings of the International Symposium on Low Power Electronics and
Design, ACM, New York, 1998, pp. 197–201.

[4] W. Kwon and T. Kim, Optimal voltage allocation techniques for dynamically variable voltage
processors, ACM Transactions on Embedded Computing Systems, 4 (2005), pp. 211–230.

Peter Hu

OPTIMAL SCHEDULES FOR DISCRETE VARIABLE PROCESSOR 671

[5] N. Bansal, T. Kimbrel, and K. Pruhs, Dynamic speed scaling to manage energy and temper-
ature, in Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, 2004, pp. 520–529.

[6] H. S. Yun and J. Kim, On energy-optimal voltage scheduling for fixed-priority hard real-time
systems, ACM Transactions on Embedded Computing Systems, 2 (2003), pp. 393–430.

[7] M. Li, J. B. Liu, and F. F. Yao, Min-energy voltage allocation for tree-structured tasks, in Pro-
ceedings of the Eleventh International Computing and Combinatorics Conference, Springer-
Verlag, Berlin, 2005, pp. 283–296.

[8] A. C.-C. Yao, Lower bounds for algebraic computation trees with integer inputs, SIAM J. Com-
put., 20 (1991), pp. 655-668.

