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Abstract. This article examines two different mechanisms for saving power in battery-operated em-
bedded systems. The first strategy is that the system can be placed in a sleep state if it is idle. However,
a fixed amount of energy is required to bring the system back into an active state in which it can re-
sume work. The second way in which power savings can be achieved is by varying the speed at which
jobs are run. We utilize a power consumption curve P(s) which indicates the power consumption
level given a particular speed. We assume that P(s) is convex, nondecreasing, and nonnegative for
s ≥ 0. The problem is to schedule arriving jobs in a way that minimizes total energy use and so that
each job is completed after its release time and before its deadline. We assume that all jobs can be
preempted and resumed at no cost. Although each problem has been considered separately, this is
the first theoretical analysis of systems that can use both mechanisms. We give an offline algorithm
that is within a factor of 2 of the optimal algorithm. We also give an online algorithm with a constant
competitive ratio.
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1. Introduction

As battery-operated embedded systems proliferate, energy efficiency is becom-
ing an increasingly critical consideration in system design. This article examines
strategies that seek to minimize power usage in such systems via two different
mechanisms, described as follows.

(1) Sleep State. If a system or device is idle, it can be put into a low-power sleep state.
While the device consumes less power in this state, a fixed amount of energy
is required to transition the system back to an on state in which tasks can be
performed. An offline algorithm which knows ahead of time the length of the
idle period can determine whether the idle period is long enough so that the
savings in energy from being in the sleep state outweighs the cost to transition
back to the on state. An online algorithm does not know the length of the
idle period in advance and must determine a threshold T such that if the idle
period lasts for at least time T, it will transition to a sleep state after that time.
The embedded systems literature refers to the problem of deciding when to
transition to a low-power sleep state as dynamic power management.

(2) Dynamic Speed Scaling. Some systems can perform tasks at different speeds.
The power usage of such a system is typically described by a convex function
P(s), where P(s) is the power usage level of the system when it is running
at speed s. In many settings, the amount of work required by jobs can be
estimated when they arrive into the system. The goal is to complete all jobs
between their release time and their deadline in a way that minimizes the total
energy consumption. Since the power function is convex, it is more energy
efficient to slow down the execution of jobs as much as possible while still
respecting their timing constraints. An offline algorithm knows about all jobs
in advance, whereas an online algorithm only learns about a job upon its release.
This problem often goes under the name dynamic voltage scaling or dynamic
frequency scaling in the embedded systems literature.

We design algorithms for the dynamic speed scaling problem in which the system
has the additional feature of a sleep state. We call this problem dynamic speed
scaling with sleep state (DSS-S). DSS-NS (no sleep) will denote the dynamic speed
scaling without a sleep state. Combining these two problems (dynamic speed scaling
and dynamic power management) introduces challenges which do not appear in
either of the original problems. In the first problem, the lengths of the idle intervals
are given as part of the input, whereas in our problem they are created by the
scheduler, which decides when and how fast to perform the tasks. In the DSS-NS
problem, it is always in the best interest of the scheduler to run jobs as slowly
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as possible within the constraints of the release times and deadlines due to the
convexity of the power function. By contrast, in DSS-S, it may be beneficial to
speed up a task in order to create an idle period in which the system can sleep.

There are numerous examples of systems that can be run at multiple speeds, have
a sleep, state, and receive jobs with deadlines. For example, the Rockwell WINS
node is a mobile sensing/computing node that has onboard environmental sensors.
It gathers the data and then sends it over ad hoc wireless links through an onboard
radio to other nodes. The onboard computation has two parts: (a) a full-fledged
processor that does application as well as many of the networking protocols; and
(b) a microcontroller that enables the sensors. Data can be transmitted at different
speeds and each speed has a different power usage rate. The system also has a sleep
state in which the power usage level is greatly reduced. [Srivastava et al. 2007;
Rockwell Scientific 2007].

2. Previous Work

The problem of when to transition a device to a sleep state when it is idle is a
continuous version of the ski rental problem [Irani and Karlin 1997]. It is well
known that the optimal competitive ratio that can be achieved by any deterministic
online algorithm for this problem is 2. Karlin et al. examine the problem when the
length of the idle period is generated by a known probability distribution [Karlin
et al. 1990]. Irani et al. examine the generalization in which there are multiple
sleep states, each with a different power usage rate and start-up cost [Irani et al.
2003]. There has also been experimental work that investigates how to use trace
data to estimate a probability distribution that can be used to guide probabilistic
algorithms [Keshav et al. 1995; Irani et al. 2003]. The embedded systems literature
refers to the problem of deciding when to transition to a low-power sleep state as
dynamic power management. Benini et al. [2000] give an excellent review of this
work.

The dynamic speed scaling problem without the sleep state has been examined
by Yao et al. [1995]. They give an optimal offline algorithm for the problem.
Their algorithm plays an important role in our algorithms for DSS-S, so we will
discuss it in depth in a subsequent section. Yao et al. also define a simple online
algorithm called Average Rate (AVR) and prove that the competitive ratio for AVR
is between dd and 2ddd , when the power usage as a function of speed is a degree-d
polynomial. Recently, Bansal et al. have shown that another natural online algorithm
called Opitmal Available obtains a competitive ratio of dd which is tight for that
algorithm [Bansal et al. 2007]. They also introduce a new algorithm which obtains
a competitive ratio of 2(d/(d − 1))ded .

Dynamic speed scaling is also a well-studied problem in the embedded systems
literature (see Quan and Hu [2001] and references therein.) The problem often goes
by the name dynamic voltage scaling or dynamic frequency scaling. We adopt the
more generic term dynamic speed scaling to emphasize the fact that the algorithm
selects the speed of the system to minimize power usage. Simunic examines the
problem of combining dynamic speed scaling and dynamic power management for
an embedded system called SmartBadge [Simunic 2001]. Another related paper
examines task scheduling (although not with multiple speeds) so as to create idle
periods for putting a device into a sleep state [Lu et al. 2000]. This problem captures
some of the features of the problem we address here.
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There are a number of issues in the real-world problem of power management
that are not incorporated into the model we use in this article. The first of these
has to do with the latency incurred in transitioning from one state to another.
Some previous work on dynamic power management does incorporate the latency
involved in transitioning from the on to the sleep state and vice versa [Benini et al.
2000]. Ramanathan et al. [2000] perform an experimental study of the latency/power
tradeoff in dynamic power management. In Irani et al. [2003], algorithms which
are designed using a model which does not incorporate this latency perform very
well empirically, even when this additional latency is taken into account.

The model we use here also omits the transition time from one speed to another
as well as the time to preempt and resume jobs. In addition, we assume here that the
power function is continuous and that there is no upper bound on the speed of the
system. In reality, there are a finite number of speeds at which the system can run and
the algorithm must select one of these values. Some work in the systems literature
address models in which the system cannot change instantaneously or continuously
between speeds [Hong et al. 1998]; [Ishihara and Yasuura 1998]. Naturally, this
makes the problem much harder to solve. As a result, much of the work on dynamic
speed scaling makes all of the assumptions we make here. It remains to determine
experimentally whether these assumptions are in fact reasonable.

3. Our Results

We prove two results in this work. These results hold for convex power functions
P(s). The convexity of P(s) is a standard assumption in this area and corresponds
well to analytical models for P(s) [Raghunathan et al. 2001]. We give an offline
algorithm for the DSS-S problem that produces a schedule whose total energy
consumption for any set of jobs is within a factor of 2 of the optimal. We still do
not know whether the offline problem is NP-hard.

We also present an online algorithm for DSS-S that makes use of an online
algorithm for DSS-NS. We define the following properties of an algorithm for
DSS-NS: Let J be a set of input tasks to an algorithm for DSS-NS. Let J ′ be a
subset of J . An online algorithm for DSS-NS is said to be additive if, for every t ,

sA,J ′(t) ≤ sA,J .

This will be important because our algorithm schedules some jobs according to an
online algorithm A for DSS-NS and some jobs according to a difference scheme.
The set of jobs given to A is a subset of all of the jobs in the instance. We will need
to argue that at every point in time, the speed incurred by the jobs given to A is at
most the speed that A would have incurred on the total set of jobs.

An online algorithm is said to be monotonic if the only points in time at which
it increases its speed are when a new job is released. In other words, an online
algorithm always has a plan as to how fast it will schedule the set of jobs that have
been released but have not yet been completed. This is exactly the speed function
it will employ if no additional jobs arrive. If the online algorithm is monotonic,
this plan will not involve increasing the speed. The monotonic property will be
important later in the proof because we need to lower bound the speed of the device
while it is on. This is to ensure that as long as the algorithm is paying the price to
keep the device on, a certain amount of work is being accomplished. We only invoke
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the online algorithm A for DSS-NS when the current set of uncompleted jobs cannot
be finished by their deadlines at a certain speed s. In this case, we want to be sure
that A is running at a speed of s or greater. Running more slowly would require an
increase in speed at some later time. Both AVR and Optimal Available are additive
and monotonic.

Now suppose that there is an online algorithm for DSS-NS that is additive,
monotonic, and c1-competitive. Let f (s) = P(s) − P(0). Let c2 be such that for all
x, y > 0, f (x+y) ≤ c2( f (x)+ f (y)). The competitive ratio of our online algorithm
is at most max{c2c1+c2 +2, 4}. Using the upper bound for Optimal Available given
by Bansal et al. [2007], this yields an upper bound of 8 for quadratic power functions
and 114 for cubic power functions. It should be noted that the biggest bottleneck for
improvement for DSS-S is to devise more competitive algorithms for the version
of the problem with no sleep state (DSS-NS). The best-known upper bound for
DSS-NS with a cubic power function is 27. This is obtained by plugging d = 3 into
the upper bound of dd proven by Bansal et al. for the competitive ratio of Optimal
Available [Bansal et al. 2007].

4. Problem Definition

First we define the dynamic speed scaling problem with no sleep state (DSS-NS)
and then augment the model with a sleep state. A system can execute jobs at different
speeds. The power consumption rate of the system is a function P(s) of the speed
s at which it runs. The input consists of a set J of jobs. Each job j has a release
time r j and a deadline d j . We will sometimes refer to the interval [r j , d j ] as j’s
execution interval. R j is the number of units of work required to complete the job.
A schedule is a pair S = (s, job) of functions defined over [t0, t1] (specifically, t0 is
the first release time and t1 is the last deadline). Moreover, s(t) indicates the speed
of the system as a function of time and job(t) indicates which job is being run at
time t . Here job(t) can be null if there is no job running at time t . A schedule is
feasible if all jobs are completed between the time of their release and deadline. In
other words, for all jobs j ,

∫ d j

r j

s(t)δ(job(t), j)dt = R j ,

where δ(x, y) is 1 if x = y and 0 otherwise. The total energy consumed by a
schedule S is

cost(S) =
∫ t1

t0
P(s(t))dt.

The goal is to find for any problem instance a feasible schedule S which minimizes
cost(S).

In the dynamic speed scaling problem with sleep state (DSS-S), the system
can be in one of two states: on or sleep. A schedule S now consists of a triplet
S = (s, φ, job), where φ(t) is defined over [t0, t1] and indicates which state the
system is in (i.e., sleep or on) as a function of t . The criteria for a feasible schedule
is the same as in DSS-NS except that we place the additional constraint that if
φ(t) = sleep , then s(t) = 0. Power consumption is nowdefined by a function

ACM Transactions on Algorithms, Vol. 3, No. 4, Article 41, Publication date: November 2007.

Peter Hu



41:6 S. IRANI ET AL.

P(s, φ), where s is a nonnegative real number representing the speed of the system
and φ is the state. The power function is defined as follows:

P(s, φ) =
{

P(s) if φ = on
0 if φ = sleep,

where P(s) is a convex function. All values are normalized so that it costs the
system 1 unit of energy to transition from the sleep to the on state. The value P(0)
will play an important role in the development of our algorithms. This is the power
rate when the system is idle (i.e., speed is 0) and on. Throughout this article, we
make the assumption that P(0) > 0. Without this assumption, there is no benefit
for the system to transition to a sleep state and the problem reduced to dynamic
speed scaling with no sleep state. Note that the power consumption goes from P(0)
down to 0 when the system transitions to the sleep state.

Let k be the number of times that a schedule S transitions from sleep state to on
state. The total energy consumed by S is

cost(S) = k +
∫ t1

t0
P(s(t), φ(t))dt.

We call the system active when it is running a job. The system is idle if not running
a job. Note that when the system is idle, it can be in either the on or sleep state.
However, if it is active, it must be in the on state.

For any power function P(s) and instance J , both DSS-NS and DSS-S are well
defined and we can talk about the optimal schedule for both of these problems. In
the case of DSS-NS, the optimal schedule does not change if the power function
P(s) − c is used instead for any constant c. Thus, we can assume for DSS-NS that
0 = P(0) and that no power is expended when the speed of the system is 0.

We assume throughout this work that jobs are preemptive. Note that the difficult
part of the problem is to determine s(t), the speed at which the system will run. If
there is a feasible schedule which uses speed s(t), then the schedule which runs the
system at speed s(t) and uses the earliest-deadline-first strategy to decide which
job to run will result in a feasible schedule.

5. An Offline Algorithm

Consider the problem of running a single job in isolation. The system will be turned
on to start the job and will go to the sleep state after the job is done, regardless of
when or how fast it is run. As a result, for this simple example we can disregard the
transition cost in searching for an optimal strategy. Let R be the amount of work
required to complete the job. If the job is executed at a constant speed of s, it will
require power expenditure of P(s) for a period of time of R/s. Thus, the optimal
speed for the job would be the s that minimizes

P(s)
R
s

.

We call this speed the critical speed and denote it by scrit. Note that the critical
speed is independent of R, the size of the job.

Let us first examine a simple example. Consider P(s) = s3 + 16 and a single
job of size 1. Figure 1 shows three possible speeds at which the job could be run:
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FIG. 1. Example of energy consumed by a single job of size 1 run at three different speeds.

1, 2, and 3. The total area of the rectangle is the total energy expended. We have
divided the energy in each case into two components as follows:

—Idle Energy. This is the energy spent keeping the system on. It is P(0) times the
length of execution of the job (shown shaded in Figure 1).

—Running Energy. This is the energy spent in running at a particular speed. This
is just P(s) − P(0) times the length of the execution of the job, when the job is
run at a speed of s (shown unshaded in Figure 1).

Because of the convexity of P , the running energy will not decrease as the speed
increases. Since the execution time decreases as speed increases, the idle energy
decreases as the speed increases. By setting the derivative of P(s)/s to 0 and solving
for s, we can see that when the speed is 2, the total energy is minimized.

In the example, the decrease in idle energy in going from a speed of 2 to a speed
of 3 is 16(1/2 − 1/3) = 16/6. Note, however, that this is actually an upper bound
for the savings in idle energy that this individual job would have in the context of a
larger schedule, since we have not taken into account the transition costs in going
back to the on state in order to begin running another job. However, since even
this savings does not compensate for the additional energy required to run the job
faster, we can be sure that we would prefer a speed of 2 to a speed of 3 if the release
times and deadlines allow for it. We cannot reach the same conclusion, however, for
slower speeds. It may be more beneficial to run a job more slowly than the critical
speed in the context of an entire schedule. This will depend on the length of the idle
period created by running it faster and whether the savings in idle energy offsets
the additional running and transition costs.

Let us now examine the critical speed more carefully. The function that concerns
us is P(s)/s. The derivative of this function is

s P ′(s) − P(s)

s2
.

Since we are trying to determine where this derivative is 0, we will only be concerned
with where this function is negative, 0, or positive. The denominator is positive for
any s > 0, so we will focus on the numerator s P ′(s) − P(s), which we will denote
by F(s). The derivative of F(s) is s P ′′(s). Since P is assumed to be convex, this
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41:8 S. IRANI ET AL.

means that F(s) is a nondecreasing function. At s = 0, F(s) = −P(0). Recall our
assumption that P(0) > 0 which implies that F(0) < 0.

There are two possibilities. The first is that the function F(s) never reaches 0
for any s ≥ 0. This is not a particularly interesting case, as it means that P(s)/s
always decreases as s grows and we should execute all jobs as quickly as possible.
It also does not correspond to realistic models of power as a function of speed
[Raghunathan et al. 2001]. As we have discussed previously, real devices have an
upper bound on the speed at which they can run. In this case, we could take the
critical speed to be the maximum speed of the device, or we could stick with our
theoretical model and assume that the critical speed is infinite and each job that
runs at the critical speed has an execution time of 0. In either case, the rest of the
discussion in the article will still hold.

The more interesting case is where F(s) does in fact reach 0. We define the critical
speed to be the smallest s > 0 for which F(s) = 0. (This is the smallest s for which
d(P(s)/s)/ds = 0.) Moreover, since F(s) is nondecreasing, it is nonnegative for
any s ≥ scrit. Thus, the derivative of P(s)/s is nonnegative for any s ≥ scrit and we
have the following fact.

Fact 1. If the critical speed scrit is well defined for P(s), then for any sscri t ≤
s1 ≤ s2,

P(scrit)

scrit
≤ P(s1)

s1

≤ P(s2)

s2

. (1)

5.1. SCHEDULING FAST JOBS. It will be useful at this point to prove a few
properties of an optimal schedule for DSS-S. The following lemma is noted in Yao
et al. [1995] without proof. For completeness, we include the proof.

LEMMA 2. Consider an instance J of DSS-S with power function P. There is
an optimal schedule in which for every job j in J , there is a constant speed s j such
that whenever job( j, t) = 1, s(t) = s j .

PROOF. The lemma states that there is an optimal schedule in which each job
is run at a constant speed, although not necessarily in one contiguous interval. The
lemma follows directly from the convexity of P . Consider a schedule S. If there
is a job that is not run at uniform speed, we can transform it into a schedule in
which the job function remains unchanged (i.e., all jobs are worked on during the
same intervals as before), and jobs j is run at uniform speed. Furthermore, the total
energy consumed by the new schedule is no greater than by the original schedule.
This process can then be iterated until each job is run at its own uniform speed.

Fix the intervals in which the system works on job j . In other words, fix the
intervals in which δ( job(t), j) = 1. The total amount of work done during these
intervals ∫ d j

r j

s(t)δ(job(t), j)dt,

must be a constant R j . Given this fact, since the power function P is convex, the
energy consumed in completing job j∫ d j

r j

P(s(t))δ(job(t), j)dt,
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Algorithms for Power Savings 41:9

is minimized when the speed is uniform during these intervals. This is a direct
result of the continuous version of Jensen’s inequality. Since

∫
δ(job(t), j)dt is the

total length of the intervals during which the system works on job j , this uniform
speed is s j = R j/

∫
δ(job(t), j)dt. Change the speed function s so that s(t) = s j

whenever job(t) = j .

Now we need a few definitions, given as follows.

—A partial schedule for both DSS-S and DSS-NS is a specification for the functions
(s, job) in the case of DSS-NS and (s, φ, job) for DSS-S defined over a finite
set of intervals. We will only consider partial schedules having the property that
for each job, either all or none of the work for that job is completed during the
portions of s and job that have been defined.

—A partial schedule P ′ is an extension of a partial schedule P if the intervals over
which P ′ is specified include all the intervals over which P is specified.

—A complete schedule (or just a schedule) is a partial schedule in which the
functions are defined over the entire interval of interest (i.e., from the first release
time to the last deadline).

—An extension of a partial schedule P is said to be optimal if it is complete and
has the minimum cost among all extensions of P .

LEMMA 3. Let P be a partial schedule for an instance J of DSS-S with power
function P. There is an optimal extension of P in which every job j that remains
undefined in P is run at a uniform speed s j . Furthermore, the system never runs
more slowly than s j in the extension during those portions of interval [r j , d j ] that
are not already scheduled under P .

PROOF. We introduce a dummy cost function. The cost of a schedule according
to the dummy cost function is ∫

(s(t))2dt.

We use the dummy cost function to break ties among schedules that have the
same cost according to the real cost function. Let S be an optimal extension of P
such that it has the smallest cost according to the dummy cost function among all
optimal extensions of P . We will prove that S has the property that we desire. It
will be convenient to assume for the remainer of this proof that when we refer to
some interval I , we are referring to those portions of I that have not already been
scheduled under P .

From Lemma 2, we can assume that each remaining job is run at its own uniform
speed s j . Suppose that jobs j and k are not defined in P and that in S, there is an
interval Ik ⊆ [r j , d j ] such that the system works on job k at speed sk < s j during
Ik . Let I j be an interval during which the system works on job j . The total amount
of energy consumed during these two intervals is |Ik |P(sk) + |I j |P(s j ). The total
amount of work completed is |Ik |sk+|I j |s j . Now we will change the schedule so that
the system runs at a constant speed of λsk + (1 −λ)s j , where λ = |Ik |/(|Ik |+ |I j |).
Note that this speed is strictly greater than sk and strictly less than s j . Also note that
the same amount of work is completed as before. In the new schedule, the work that
was previously done in Ik will take a little less time and the work that now spills
over from I j can be completed during the extra time created in Ik . This is possible
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41:10 S. IRANI ET AL.

because only job j is worked on in I j and Ik ⊆ [r j , d j ]. The energy expended
under the new schedule in Ik ∪ I j is (|I j | + |Ik |)P(λsk + (1 − λ)s j ). The energy
expended under the old schedule in Ik ∪ I j is (|I j | + |Ik |)(λP(sk) + (1 − λ)P(s j )).
Because P is convex, the energy expended under the new schedule is no greater
than that expended under the old. If the power consumed in the new schedule is
strictly less than that used in the old schedule, this contradicts the optimality of S.
If they are the same, then we will show that the new schedule has a strictly lower
value according to the dummy cost function, again contradicting our assumption
about S. Since sk < s j ,

(|Ik | + |I j |)[(λsk)2 + ((1 − λ)s j )
2] > (|Ik | + |I j |)(λsk + (1 − λ)s j )

2.

The expression on the left is the cost under the dummy cost function of the original
schedule and the expression on the right is the cost under the dummy cost function
of the new schedule.

It will be useful now to describe the optimal offline algorithm for DSS-NS given
by Yao et al. [1995]. Their algorithm always maintains some partial schedule in
which subset J ′ consists of jobs that are scheduled for a set of time intervals I.
The intervals I are said to be blacked out and the system is reserved only for jobs
in J ′ during these times. In a given iteration, a subset of the remaining jobs are
selected. The current schedule is extended so that the jobs in this subset are all
completed at the same constant speed (although not necessarily during a single the
jobs contiguous interval). The intervals of time that are used to execute these jobs
are then blacked out, the newly scheduled jobs are added to J ′, and all remaining
jobs must be executed during the remaining time that is not blacked out.

We will prove several facts about this algorithm. First of all, in each successive
iteration, the speed at which each set of jobs is run does not increase. Furthermore,
for all the jobs scheduled in this manner at a speed of scrit or greater, there is an
optimal schedule for DSS-S that schedules these jobs in exactly the same way. This
means that we can follow the optimal algorithm DSS-NS problem until a job is
scheduled at a speed less than the critical speed. At this point, we are left with
a partial schedule in which all the remaining jobs can be completed at speed no
greater than scrit. The difficulty then is to determine how to schedule these remaining
jobs.

We now describe the details of the optimal algorithm for DSS-NS. A job j is
said to be contained in interval [z, z′] if [r j , d j ] ⊆ [z, z′]. For any interval [z, z′],
define l(z, z′) to be the length of the interval, excluding those intervals in which the
machine has already been blacked out. Define the intensity of interval [z, z′] to be

g(z, z′) =
∑

j such that [r j ,d j ]⊆[z,z′] R j

l(z, z′)
. (2)

An iteration of the optimal algorithm for DSS-NS proceeds by selecting an
interval [z, z′] of maximum intensity. It schedules all jobs contained in [z, z′] at a
speed of g(z, z′) using earliest-deadline-first and then blacks out the interval [z, z′].
The pseudocode for the algorithm is given in Figure 2. The scheduled jobs are
then removed from the set of remaining jobs. The algorithm iterates in this manner
until all jobs are scheduled. At any point in time, given the schedule that has been
determined so far, it is clear that g(z, z′) is a lower bound for the average speed
during the interval [z, z′]. The proof of optimality entails proving that for the interval
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FIG. 2. The optimal DSS-NS algorithm.

[z, z′] of maximum intensity, the optimal schedule runs the jobs contained in [z, z′]
at a speed of exactly g(z, z′).

Suppose that the algorithm iterates r times. Let I1, I2, . . . , Ir be the sequence of
intervals that are blacked out in the course of the algorithm. Let g(Ik) be the critical
speed of Ik at the time that it is blacked out and let Sk be the set of jobs that are
contained in Ik at the time that Ik is blacked out (i.e., the jobs that are scheduled in
Ik). We need the following lemma.

LEMMA 4. For any k = 2, . . . r , g(Ik−1) ≥ g(Ik).

PROOF. Suppose the lemma is not true. Consider the first k such that g(Ik−1) <
g(Ik). If Ik and Ik−1 are not contiguous, then exactly the same set of jobs are
contained in Ik before and after Ik−1 is blacked out. This means that Ik must have
higher intensity than Ik−1 before Ik−1 was blacked out, which contradicts the fact
that we always black out the interval with the highest intensity. If Ik and Ik−1 are
contiguous, then before Ik−1 is blacked out, the intensity of Ik ∪ Ik−1 is∑

j∈Sk−1
R j + ∑

j∈Sk
R j

|Ik−1| + |Ik | .

This value is strictly greater than g(Ik−1).

g(Ik−1) =
∑

j∈Sk−1
R j

|Ik−1| <

∑
j∈Sk−1

R j + ∑
j∈Sk

R j

|Ik−1| + |Ik | <

∑
j∈Sk

R j

|Ik | = g(Ik)

This inequality holds because the expression in the middle is a weighted average of
those on either side. This contradicts the fact that the interval of maximum intensity
was chosen when Ik−1 was blacked out.

This lemma tells us that if we look at the order in which jobs are scheduled,
it is clear that they are run at slower and slower speeds. The next lemma tells us
that an optimal algorithm for DSS-S can use the optimal algorithm for DSS-NS,
scheduling jobs in the same manner until the speed at which a job will be scheduled
drops below scrit.

LEMMA 5. Suppose that we have a partial schedule P for the DSS-S problem.
Let I be the interval of maximum intensity. If the intensity of interval I is at least
scrit, then there is an optimal extension of P in which only jobs contained in I are
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scheduled during interval I . Furthermore, the optimal schedule schedules all jobs
contained in I using earliest-deadline-first with no sleep periods.

PROOF. Consider an optimal extension S of P . By Lemmas 2 and 3, we can
assume that each job j not scheduled in P is run at its own uniform speed s j .
Furthermore, the system never runs slower than s j during those intervals in [r j , d j ]
that are not already scheduled under P .

Let I be an interval of maximum intensity and suppose that the system works
on some job j during I that is not contained in I . It must be the case then that at
some point in S, the speed of the system is greater than g(I ) during interval I , since
the average speed during I must be at least g(I ), even when job j is excluded. Let
I ′ be a maximal interval in which the system runs faster than g(I ) during all the
time in I ′ that it is not already scheduled under P . It must be the case that there is
some job k that the system works on during I ′ and whose interval of execution is
not contained in I ′ (otherwise, we have found an interval of greater intensity than
I ). Since I ′ was chosen to be maximal, the system must have speed at most g(I )
during some portion of [rk, dk] and yet the system works on k at a speed strictly
greater than g(I ). This contradicts our assumptions about S.

Now we will establish that the jobs contained in I can be scheduled optimally
at a speed of g(I ) with no transition to the sleep state. Let R be the total amount
of work required for the jobs contained in I . Define s(t) to be the average speed
of the system in interval I if a total of time t is spent in the sleep state. Then
s(t) = R/(|I | − t). Because P is convex, the expression

P
(

R
|I | − t

)
(|I | − t) =

(
P(s(t))

s(t)

)
R

is a lower bound for the energy expended during the interval I . Note that s(t) >
s(0) = g(I ) ≥ scrit. Fact 1 indicates that running at speed s(0) with no sleep time
will minimize the total energy consumed in the interval. If all jobs in I are run at
a speed of s(0) = g(I ), earliest-deadline-first will produce a feasible schedule or
else there is an interval of greater intensity.

5.2. SCHEDULING SLOW JOBS. LetJfast denote the set of jobs that are scheduled
according to the optimal algorithm for DSS-NS at a speed of scrit or higher. This
subsection will focus only on the remaining jobs and will only account for the
energy expended when the system is not running a job fromJfast. We can readjust the
release times and deadlines for these remaining jobs so that they do not occur during
a blacked-out interval. Release times will be moved to the end of the blacked-out
interval and deadlines will be adjusted to the beginning of the blacked-out interval.

Now we must decide at what speed and time to run the jobs which would run
slower than scrit in the no-sleep version of the problem. We are guaranteed that
there is a feasible solution in which these remaining jobs run no faster than scrit.
Our algorithm decides to run all jobs at a speed of scrit. Any algorithm that makes
this choice will be active and idle for the same amount of time. The algorithm must
decide during what time intervals the system will be idle, given the job release times
and deadlines. When all of these idle periods have been determined, it is decided
whether the system will transition into the sleep state during each such interval
(depending on whether the interval has length at least 1/P(0)). Naturally, it would
then be better to have fewer and longer idle periods (as opposed to many fragmented
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ones), since this gives the algorithm opportunity to transition to the sleep state and
save energy with fewer start-up costs.

Note that one could further improve the performance of the algorithm by using
our method only to determine when the job is in the sleep state and then rerunning
the optimal algorithm for DSS-NS with all the sleep intervals blacked out. This
would have the effect of allowing the algorithm to use idle intervals that are too
short to transition to the sleep state; some jobs would then run more slowly and save
energy. However, we will bound the algorithm without this final energy-reducing
step.

A job is said to be pending at time t if its release time has been reached but
it has not yet completed. All jobs are run at speed scrit. We will assume that the
system is in the on state when the first job arrives. Thus if t0 is the first release time,
the system starts running the task with the earliest deadline among all those which
arrive at time t0. Subsequent events are handled according to the algorithm given
in the figures to follow. The basic idea is that while the algorithm is active it stays
active, running jobs until there are no more jobs to run. When it becomes idle, it
stays idle as long as it possibly can until it has to wake up in order to complete all
jobs by their deadline at speed scrit. The algorithm is called LEFTTORIGHT because it
sweeps through time from left to right. Throughout this article, we think of time as
the x-axis. An event is said to be to the left of another if it occurs earlier. Similarly,
an event is said to be to the right of another if it occurs later.

THEOREM 6. If the power function P(s) is convex, then the algorithm Left-To-
Right achieves an approximation ratio of 2.

Before proving Theorem 6, we prove the following useful lemmas. The first
establishes that the algorithm given in Figure 3 calculates the latest time that the
system can wake up and still complete all jobs by their deadline at critical speed.

LEMMA 7. If the system is idle at time t, then tw , computed in Figure 4, is
the largest value such that the system can remain idle for the interval [t, tw ] and
complete all jobs in J − Jfast by their deadlines at a speed of scrit.

PROOF. Recall the definition of the intensity of an interval given in Eq. (2). For
the purposes of this proof, we will consider only jobs in J − Jfast in determining
the intensity of an interval.

If the system wakes up at time tw , then for any job in J −Jfast whose execution
interval contains tw , its arrival time is effectively tw . What we want to know is the
largest value for tw such that the intensity of all intervals is no more than scrit. Then
according to the Yao et al. algorithm [1995], all jobs can be scheduled after tw at a
speed no greater than scrit.

We need only consider intervals that begin at time tw . This is because, by defini-
tion, all jobs in J − Jfast can be completed by their deadlines at a speed of scrit or
less. Thus, for any arrival time a and deadline d such that tw < a < d, the intensity
of the interval [a, d] is no more than scrit.

Order the jobs in J − Jfast that have not been completed at time t by their
deadlines. Thus we have t ≤ d1 ≤ · · · ≤ dk . Each deadline d j is a candidate
right endpoint of the interval of maximum intensity. Jobs 1 through j must be
completed by d j . If the system is running at speed scrit, it will require a time interval
of

∑k
j=1 R j/scrit to finish these jobs at a speed of scrit, which means the system must

begin by time d j −∑k
j=1 R j/scrit. Thus, if we wait until min j t j , the jobs contained
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FIG. 3. The algorithm LEFTTORIGHT.

FIG. 4. The procedure SETWAKEUPTIME() called from LEFTTORIGHT.

in the maximum-intensity interval will require a speed of exactly scrit to complete.
Waiting any longer will force the algorithm to run faster than scrit.

In the proof of the next lemma as well as the proof of the theorem, we let SOPT

be the optimal schedule for a particular input. Let SLTR be the schedule produced
by the Left-To-Right algorithm on the same input. Let POPT (respectively, PLTR)
denote the set of maximal intervals during which the system is in the sleep state for
SOPT (respectively, SLTR). Let DOPT (respectively, DLTR) denote the set of maximal
intervals during which the system is idle in SOPT (respectively, SLTR). Recall that
when the system is asleep, it is in the sleep state. When the system is idle, it is
running at speed zero. Note that the system can either be in the sleep or active state
when it is idle.
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FIG. 5. Figure for proof of Lemma 8.

LEMMA 8. At most two intervals from DLTR can intersect a single interval from
POPT.

PROOF. Suppose to the contrary that there is an interval I ∈ POPT which is
intersected by three intervals A, B, C ∈ DLTR. Suppose without loss of generality
that A is to the left of B and B is to the left of C . Refer to Figure 5. Consider the
first job j that LTR runs when it wakes up after B. It must be the case that j has a
release time after the beginning of B, or else the system would not have gone idle
at the beginning of B. Recall that LTR does not go idle if there are any pending jobs
in the system. Job j cannot have a deadline after the beginning of C , or else the
system would have delayed starting work at the end of B, since it delays waking
up until it is necessary in order to complete all jobs by their deadlines at a speed of
scrit.

This means that the execution interval for j must be contained in the interval
from the beginning of B to the beginning of C . However, this interval of time is
completely contained in I , during which the optimal schedule is idle. This implies
that the optimal schedule cannot complete job j .

It will be useful to isolate certain portions of the energy expenditure for a schedule
S = (s, φ, job) as follows.

(1) The energy expended while the system is active. Let δs(t) = 1 if s(t) > 0 and
0 otherwise.

active(S) =
∫ t1

t0
P(s(t))δs(t)dt

(2) The cost to keep the system active or shut-down and wake up the system during
idle periods (depending on which action is the most energy efficient). Let D be
the set of idle periods for the schedule S.

idle(S) =
∑
I∈D

min(P(0)|I |, 1)

(3) The cost to keep the system in the on state while the system is on.

on(S) =
∫ t1

t0
P(0)δ(φ(t), on )dt

(4) The cost to wake up the system at the end of each sleep interval. If I is the set
of maximal intervals in which the algorithm is in the sleep state, this is just the
number of intervals in I. We denote this by sleep(S).

Fix a problem instance. We will prove the following two lemmas from which
Theorem 6 follows easily.

LEMMA 9. active(SLTR) ≤ active(SOPT).
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LEMMA 10. idle(SLTR) ≤ on(SOPT) + 2sleep(SOPT).1

PROOF OF THEOREM 6.

cost(SLTR) = active(SLTR) + idle(SLTR)

≤ active(SOPT) + on(SOPT) + 2sleep(SOPT)

≤ 2active(SOPT) + 2idle(SOPT)

= 2cost(SOPT)

The first inequality uses the fact that for any schedule S, cost(S) = active(S) +
idle(S). The next inequality comes from applying Lemmas 9 and 10. Now we will
divide the energy in on(SOPT) into two parts. The first part is the energy expended
in keeping the system on while it is active and the second is the energy in keeping
it on while idle (but not sleeping). The first part can be bounded by active(SOPT).
To bound the second part, we observe that the energy spent when the system is idle
consists of the cost to keep the system on when idle (the second part of on) and the
cost of waking it up after a sleep period (sleep). Thus, the second part of on plus
sleep is bounded by idle.

We now give the proofs for the two lemmas stated earlier.

PROOF OF LEMMA 9. We will prove the lemma for each job j . Specifically, the
total energy expended by LTR in running job j is bounded by the total energy
expended by the optimal in running jobs j . Since the system must be running some
job while it is active, the lemma follows.

Lemma 2 tells us that we can assume that the optimal schedule runs job j at a
uniform speed s j . The optimal algorithm spends a total time of R j/s j on job j for
a total energy expenditure of P(s j )R j/s j . LTR runs the job at speed scrit for a total
energy expenditure of P(scrit)R j/scrit. Since scrit is the value for s that minimizes
P(s)/s, the lemma follows.

PROOF OF LEMMA 10. Recall that DLTR is the set of maximal intervals in which
the system is idle under Left-To-Right’s schedule and POPT is the set of maximal
intervals during which the system is in a sleep state in the optimal schedule. First
consider the intervals in DLTR which have no intersection with any interval in POPT.
The sum of the lengths of these intervals is at most the total length of time that the
optimal algorithm is in the on state. Since the cost of any interval is bounded by
P(0) times its length, the cost of all these intervals is at most on(SOPT).

Next consider the intervals in DLTR that have a nonzero intersection with some
interval in POPT. By Lemma 8, each interval in POPT intersects at most two intervals
from DLTR. Thus, the number of intervals in DLTR which have a nonzero intersection
with an interval in POPT is at most two times the number of intervals in POPT, which
is exactly 2sleep(SOPT). Since the cost ofany interval in DLTR is bounded by 1,

1The original version of this lemma only proved that idle(SLTR) ≤ on(SOPT) + 3sleep(SOPT).
The factor of 3 was improved to 2 due to an observation of Kimbrel, Schieber, and Sviridenko that
strengthened Lemma 8.
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the cost of all the intervals in DLTR that intersect an interval in POPT is at most
2sleep(SOPT).

6. An Online Algorithm

The online algorithm for DSS-S which we present here makes use of an online
algorithm A for DSS-NS that is additive and monotonic. At this point in time, the
only known competitive algorithm for DSS-NS is the Average Rate algorithm given
by Yao et al., which does have both properties. We will use sA(t,J ) to denote the
speed of the system as a function of time, according to algorithm A, when the input
conists of jobs in J .

Our algorithm runs in two different modes: fast mode and slow mode. The algo-
rithm is in slow mode if and only if it is feasible to complete all pending jobs by
their deadline at a speed of scrit. We maintain a set of jobs Jfast. When a job arrives
and the algorithm is in fast mode or if the release of a job causes the system to tran-
sition to fast mode, it is placed in Jfast. When the system transitions back to slow
mode, Jfast ← ∅. The algorithm maintains two speed functions sslow(t) and sfast(t).
The speed of the system is always sslow(t) + sfast(t), evaluated at the current time.
Furthermore, sfast(t) is always sA(t,Jfast). Since jobs are only added to Jfast when
the algorithm is in fast mode and Jfast is set to be the empty set when the algorithm
transitions back to slow mode, this means that sfast(t) = 0 when the algorithm is in
slow mode.

sslow is always scrit or 0. To specify s(t), it remains to determine when sslow(t) is
scrit and when it is 0. The algorithm maintains a current plan for sslow(t) and only
alters the plan at the occurence of three types of events:

(1) A new job arrives and the algorithm remains in slow mode.

(2) The algorithm transitions from fast to slow mode.

(3) A new job arrives when the system is idle, causing the system to transition to
fast mode.

In each case sslow(t) is set as follows. tcurrent will denote the current time. If the
system is currently active or just becoming active, then let tstart be the current time.
If the system is idle, then let tstart be the latest time t such that if all pending jobs
are run at a speed of scrit starting at time t , they will finish by their deadlines. Let R
denote the remaining work of all pending jobs in the system that are not in Jfast.

sslow(t) =
{

scrit for tstart ≤ t ≤ R/scrit + tstart

0 for t > R/scrit + tstart or tcurrent ≤ t < tstart

We define the notion of the excess at time t to help in determining when the algorithm
needs to switch from fast to slow mode. This value is simply the total amount of
work that would not be completed by its deadline if the algorithm were to use speed
scrit. If the algorithm is in slow mode, it just needs to check whenever a new job
arrives that the excess is 0 to see whether it needs to transition to fast mode. When
the algorithm transitions to fast mode (or whenever a new job arrives when it is in
fast mode), it computes a slow-down time which is the next time that the system
can transition to slow mode unless new jobs arrive. This is the smallest value ts
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such that ∫ ts

tcurrent

(sfast(t) + sslow(t) − scrit)dt ≥ excess at the current time.

If the system becomes idle, it maintains a wake-up time tw which is the latest time
such that all pending jobs can be completed at a speed of scrit if it wakes up at time
tw . If a new job arrives, it may have to update tw to some earlier point in time. If
the new job is large enough it may have to wake up immediately and transition to
fast mode.

When the system becomes idle, it will transition to the sleep state if the idle
period lasts at least time 1/P(0). Since the algorithm postpones processing any
jobs until absolutely necessary in order to complete all pending at speed scrit, we
call the algorithm Procrastinator. The algorithm is defined in the figures to follow.
The figures show how Procrastinator determines the functions sslow(t) and sfast(t).
The algorithm maintains a value for these functions for all t after the current time
and then periodically updates these values. The speed of the system at the cur-
rent time is always sslow(tcurrent) + sfast(tcurrent). All jobs are scheduled by the EDF
policy.

Algorithm. PROCRASTINATOR:DETERMINESPEED(J)

(1) if a new job j arrives
(2) if the system is in fast mode
(3) Jfast ← Jfast ∪ { j}.
(4) sfast(t) = sA(t,Jfast) for t > tcurrent

(5) SETSLOWDOWNTIME()
(6) if the system is in slow mode
(7) if pending jobs can be completed at rate scrit,
(8) if system is idle SETWAKEUPTIME()
(9) RESET-S-SLOW()
(10) if pending jobs can not be completed at rate scrit,
(11) Transition to fast mode.
(12) Jfast ← { j}.
(13) sfast(t) = sA(t,Jfast) for t > tcurrent

(14) if system is idle, set wake up time tw to current time.
(15) RESET-S-SLOW()
(16) SETSLOWDOWNTIME()
(17) if the system completes a job
(18) if there are no pending jobs,
(19) Set timer to 1/P(0).
(20) if wake-up time is reached
(21) if system is in sleep state
(22) Transition to on state.
(23) Start working on pending job with earliest deadline.
(24) Clear timer.
(25) if timer expires,
(26) Transition to sleep state.
(27) if the slowdown time is reached,
(28) Transition to slow mode.
(29) Jfast ← ∅
(30) Set sfast(t) = 0 for all t > tcurrent.

(31) RESET-S-SLOW()
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Algorithm. SETWAKEUPTIME()

Order all the pending jobs according to their
deadlines. Thus we have t ≤ d1 ≤ · · · ≤ dk.
For each j ∈ {1, . . . , k}, let

t j = d j −
(∑k

j=1 R j/scrit

)
Let tw = min j t j
Set the wake-up time to be tw.

Algorithm. SETSLOWDOWNTIME()

Compute E, the excess at the current time.
Set the slowdown time to be the minimum value for ts which
satisfies∫ ts

tcurrent
(sfast(t) + sslow(t) − scrit) ≥ E.

Algorithm. RESET-S-SLOW()

Let R be the total amount of work left on pending jobs
that are not in Jfast.

If the system is idle, let tstart be the wake-up time.
If the system is active, let tstart be the current time.
Set sslow(t) = scrit

for tstart ≤ t ≤ tstart + R/scrit
Set sslow(t) = 0

for t > tstart + R/scrit and tcurrent ≤ t < tstart

For the lemmas that follow, SP will denote the schedule for Procrastinator. Let
PP denote the set of maximal intervals during which the system is in the sleep state
for SP . Let DP denote the set of maximal intervals during which the system idle in
SP and let sP (t) denote the speed function in SP .

LEMMA 11. No single interval in POPT can intersect more than two intervals
in DP .

PROOF. Similar to the proof of Lemma 8 except for one case. This is the case
where job j’s deadline is after the beginning of C . If the algorithm is in slow mode
when it wakes up and starts work on j , the argument is the same as in Lemma 8. The
only case that needs to be addressed is if the release of job j causes the algorithm
to wake up in fast mode. We will argue that in this case, the algorithm must stay
busy until j’s deadline.

At any point at which the algorithm is in fast mode, define the excess at time t
to be the amount of work that would not get completed if the algorithm performed
the EDF algorithm at speed scrit. The algorithm is in fast mode if and only if the
excess is greater than 0. As long as the excess is greater than 0, there are jobs in
the system and the system stays active. Suppose that the excess reaches 0 at some
time t̂ ∈ [r j , d j ]. If there is an idle period anywhere in [t̂, d j ], then that time could
have been used to work on j at speed scrit, which means that the excess would have
reached 0 before time t̂ .
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LEMMA 12. Fix an input J and let sfast(t) denote the function sfast produced by
Procrastinator on input J . For all t , sfast(t) ≤ sA,J (t).

PROOF. Suppose that Procrastinator transitions to fast mode k times. Let Ji
denote the set of jobs that arrive while the system is in fast mode for the i th time.
Let Ii denote the interval of time in which the system is in fast mode for the i th
time. The Ii ’s are disjoint, as are the Ji ’s. Furthermore, sfast(t) = 0 for any t that
is not contained in the union of the Ii ’s. Since all jobs that arrive when the system
is in fast mode are scheduled according to algorithm A, we know that for t ∈ Ii ,
sfast(t) = sA,Ji (t). This means that for all t ,

sfast(t) ≤ max
1≤i≤k

sA,Ji (t).

The fact that A is an additive algorithm means that for all t ,

max
1≤i≤k

sA,Ji (t) ≤ sA,J (t).

LEMMA 13. Whenever the system is active under the algorithm Procrastinator,
its speed is at least scrit.

PROOF. Suppose that the system is active at the current time tc. We will first
show that the two projected speed functions sslow and sfast are nondecreasing from
time tc on. This means that both functions will in fact be nonincreasing if no
additional jobs arrive. We start with sfast. For t > tc, sfast is sA,Jfast(t). Furthermore,

sA,Jfast(t) is the speed that algorithm A would run if no further jobs besides those in

Jfast arrive. Since A is a monotonic algorithm, it will not increase its speed unless
a new job arrives. Therefore, sfast(t) is nonincreasing. Now as for sslow, we note that
RESET-S-SLOW is the procedure in which sslow is determined. The only time it is set
to be increasing is when the system is idle and there is a wake-up time for some
point in the future. In this case, sslow will increase from 0 to scrit at some time tw in
the future and will be nonincreasing for any t after tw . If the system is in slow mode
the next time it wakes up, this means that it is waking up at the current wake-up
time tw and sslow will be nonincreasing for any t > tw . If it wakes up in fast mode,
then RESET-S-SLOW is called and sslow is reset to be nonincreasing.

Now to prove the lemma, suppose for a contradiction that at some time t , the
system goes to some speed s which is less than scrit and more than 0. It must be
the case that all pending jobs can be completed at a speed of s or less at time t ,
since the algorithm has a current plan for completing them without getting faster
than s. This follows from the fact that we have just proved that the projected
speed of the system is nonincreasing. However, this also implies that the system
would have transitioned to slow mode at time t and the speed would be reset to at
least scrit.

Let δP be an indicator function for when the schedule is active under Procrasti-
nator: δP (t) = 1 if sP (t) > 0 and 0 otherwise.

LEMMA 14.
∫ t1

t0
P(scrit)δP (t)dt ≤ active(SOPT).

PROOF. We will prove the lemma for each job j . Lemma 2 tells us that we can
assume that the optimal schedule runs job j at a uniform speed s j . The optimal
algorithm spends a total time of R j/s j on job j for a total energy expenditure of
P(s j )R j/s j . Now consider the intervals of time in which Procrastinator works on
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job j . Since Procrastinator runs at a speed that is at least scrit, the total lengths of
these intervals is no greater than R j/scrit. Since scrit is the value for s that minimizes
P(s)/s, we know that P(scrit)R j/scrit ≤ P(s j )R j/s j . Thus we have that∫ t1

t0
P(scrit)δP (t)dt ≤

∑
j∈J

P(scrit)R j

scrit
≤

∑
j∈J

P(s j )R j

s j
= active(SOPT).

LEMMA 15. Assume that Procrastinator uses an algorithm for DSS-NS that is
additive, monotonic, and c1-competitive. Then,

∫ t1
t0

[P(sP (t)−scrit)−P(0)]δP (t)dt ≤
c1active(SOPT).

PROOF. Fix an input J . Consider the problem for DSS-S with the power func-
tion P(s) − P(0). Since this function uses no energy while the system is idle, the
optimal schedule for this power function will be the same as the optimal schedule for
DSS-NS. Let SOPT−NS be the optimal schedule for DSS-NS and let cost(SOPT−NS)
denote the cost of this schedule for power function P(s) − P(0) on input J . We
know that cost(SOPT−NS) ≤ active(SOPT), since calsOPT−NS can always schedule
its jobs exactly like O PT . Furthermore, OPT has the disadvantage that it has to
pay an additional P(0) just to keep the system on.

The cost for algorithm A using power function P(s) − P(0) is
∫ t1

t0
[P(sA,J (t)) −

P(0)]δP (t)dt. >From the competitiveness of A, we know that∫ t1

t0
[P(sA,J (t)) − P(0)]δP (t)dt ≤ c1cost(SOPT−NS) ≤ c1active(SOPT).

Lemma 12 says that∫ t1

t0
P(sfast)δP (t)dt ≤

∫ t1

t0
P(sA,J (t))δP (t)dt.

Thus, we have that∫ t1

t0
[P(sfast(t)) − P(0)]δP (t)dt ≤ c1cost(SOPT−NS) ≤ c1active(SOPT).

We know that sP (t) = sfast(t) + sslow(t) for all t and sslow(t) ≤ scrit for any t . This
means that for any t ,

sP (t) − scrit ≤ sP (t) − sslow(t) = sfast(t).

Putting this all together, we get that∫ t1

t0
[P(sP (t) − scrit) − P(0)]dt ≤ c1active(SOPT).

LEMMA 16. idle(SP ) ≤ 2on(SOPT) + 4sleep(SOPT).

PROOF. Consider the algorithm which we will call P-OPT (for Procrastinator-
Optimal) which has the same set of active and idle periods as Procrastinator, but
is told in advance the length of each idle period. Such an algorithm can make the
optimal decision as to whether to transition to the sleep state at the beginning of
an idle period. Using Lemma 11 instead of Lemma 8, and an identical argument to
that used in Lemma 10, we get that idle(SP−O PT ) ≤ on(SOPT) + 2sleep(SOPT).
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Since Procrastinator uses the algorithm which shuts down as soon as the cost of
staying active equals that of powering up, we know that for any idle period, the cost
of that period for Procrastinator is at most twice the cost for that period to P-OPT.
Thus we have that 2idle(SP−O PT ) ≥ idle(SP ).

THEOREM 17. Assume that P(s) is a convex function. Let c1 be the competitive
ratio for A, an additive algorithm for the DSS-NS problem. Let f (x) = P(x)−P(0).
Let c2 be such that for all x, y > 0, f (x + y) ≤ c2( f (x) + f (y)). The competitive
ratio of Procrastinator is at most max{c2c1 + c2 + 2, 4}.

PROOF. Fix an input sequence J . We will refer to the schedule produced by
Procrastinator (respectively, Optimal, Left-To-Right, A) by SP (respectively, SOPT,
SLTR, SA). Let sP (t) denote the speed of the system as a function of time under
Procrastinator’s schedule. Let sfast(t) and sslow(t) be as defined in the algorithm
description for Procrastinator.

We first address the energy spent by Procrastinator while it is active.

active(SP ) =
∫ t1

t0
P(sP (t))δP (t)dt

=
∫ t1

t0
[P(sP (t)) − P(0)]δP (t)dt +

∫ t1

t0
P(0)δP (t)dt

=
∫ t1

t0
f (sP (t))δP (t)dt +

∫ t1

t0
P(0)δP (t)dt

≤
∫ t1

t0
[c2 f (sP (t) − scrit) + c2 f (scrit)]δP (t)dt +

∫ t1

t0
P(0)δP (t)dt

=
∫ t1

t0
c2[P(sP (t) − scrit) − P(0)]δP (t)dt

+
∫ t1

t0
c2[ f (scrit) + P(0)]δP (t)dt

≤
∫ t1

t0
c2[P(sP (t) − scrit) − P(0)]δP (t)dt +

∫ t1

t0
c2 P(scrit)δP (t)dt

≤ c2(c1 + 1)active(SOPT)

The last inequality uses Lemmas 14 and 15. From Lemma 16, we know that

idle(SP ) ≤ 2on(SOPT) + 4 · sleep(SOPT).

Here on(SP ) can be divided into two parts. The first is the cost of keeping the system
on while it is active. This part clearly overlaps with active(SOPT). The second part
is the cost of keeping the system on while idle. This part is included in idle(SOPT)
but does not overlap with sleep(SOPT). Combining with the preceding bound we
get that

cost(SP ) = active(SP ) + idle(SP )

≤ (c1c2 + c2 + 2)active(SOPT) + 4 · idle(SOPT)

≤ max{c1c2 + c1 + 2, 4}cost(SOPT)
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7. Conclusion

This article has examined the problem of dynamic speed scaling for systems that
have capacity to transition to a sleep state when idle. We have developed an offline
algorithm whose total cost comes within a factor of 2 of optimal. We have also
given an online algorithm that makes use of an online algorithm for dynamic speed
scaling without a sleep state. One of the most important questions that remains
open in this model is whether the offline problem is NP-hard. Also the competitive
ratio for the online problem is a large constant. The major bottleneck for improving
this constant is to devise more competitive algorithms for dynamic speed scaling
without a sleep state.
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