
S

E
a

b

c

d

a

M
6

K
E
S
D

1

e
f
o
u
m
t
t
s
t
o
e

t
w
r
m
d
r
w
w
t

G

f

2
h

Sustainable Computing: Informatics and Systems 2 (2012) 184– 189

Contents lists available at SciVerse ScienceDirect

Sustainable Computing:  Informatics  and  Systems

jo u r n al hom epage: www.elsev ier .com/ locate /suscom

peed  scaling  with  power  down  scheduling  for  agreeable  deadlines�

vripidis  Bampisa, Christoph  Dürra,b,∗, Fadi  Kacemc, Ioannis  Milisd

LIP6, Université Pierre et Marie Curie, case 169, 4 place Jussieu, 75252 Paris Cedex 05, France
CNRS, France
IBISC, Université d’Evry, France
Department of Computer Science, Athens University of Economics and Business, Greece

 r  t  i  c  l  e  i n  f  o

SC:
8W01

a  b  s  t  r  a  c  t

We  consider  the  problem  of scheduling  on  a  single  processor  a given  set of  n  jobs.  Each  job  j has  a workload
eywords:
nergy minimization
cheduling
ynamic programming

wj and  a release  time  rj.  The  processor  can  vary  its  speed  and  hibernate  to  reduce  energy  consumption.  In
a  schedule  minimizing  overall  consumed  energy,  it might  be  that  some  jobs  complete  arbitrarily  far from
their release  time.  So  in  order  to  guarantee  some  quality  of service,  we  would  like  to  impose  a  deadline
dj =  rj +  F for  every  job  j,  where  F  is  a  guarantee  on  the  flow  time.  We  provide  an  O(n3) algorithm  for  the
more  general  case  of  agreeable  deadlines,  where  jobs  have  release  times  and  deadlines  and  can  be  ordered
such that  for  every  i <  j, both  ri ≤  rj and  di ≤  dj.
. Introduction

Recent research addresses the issue of reducing the amount of
nergy consumed by computer systems while maintaining satis-
actory level of performance. This can be done at different levels
f a computer system. One possibility is to specify a good sched-
ling mechanism in the operating system level. Here we have two
echanisms at hand. One common method for saving energy is

he power-down mechanism,  which is to simply suspend the sys-
em during long enough idle times. Another common method is
peed scaling,  which is to adjust the processor speed low enough
o meet the jobs requirements. In this paper we study the problem
f designing scheduling algorithms for minimizing the consumed
nergy using both mechanisms.

The question whether this problem can be solved in polynomial
ime was posed by Irani and Pruhs [1],  who called it speed scaling
ith power down scheduling problem. We  provide an O(n3) algo-

ithm in this paper for the special case of agreeable deadlines. Jobs
ay  be released at different time moments, and may  have distinct

eadlines. The agreeable deadline property just means that later
eleased jobs also have later deadlines. This holds, for example,
hen the deadline of each job is exactly F units after its release time,

hich arises when one wants to maintain a guarantee of service for

he flow time of the jobs.

� This work is supported by the ANR grants NETOC and TODO as well as by the
dR recherche opérationnelle.
∗ Corresponding author at: CNRS, France. Tel.: +33 1 44 27 70 11;

ax:  +33 1 44 27 88 89.
E-mail address: Christoph.Durr@LIP6.fr (C. Dürr).

210-5379/$ – see front matter ©  2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.suscom.2012.10.003
© 2012 Elsevier Inc. All rights reserved.

2. Problem definition

An instance of our scheduling problem consists of n jobs, 1, 2, . . .,
n, where each job j, 1 ≤ j ≤ n, is specified by a release time/deadline
interval1 [rj, dj) in which it must be scheduled and a workload wj .
An instance has the agreeable deadlines property if the jobs can be
renumbered such that both their release times and deadlines are
in non-decreasing order, i.e. i < j implies ri � rj and di � dj.

A schedule is defined by three functions

mode : R  → {on, off}
speed : R  → R

+

job : R  → {none, 1, . . . , n},
with the following properties

1. ∀t : speed(t) > 0 ⇒ mode(t) = on
2. ∀t : speed(t) = 0 ⇔ job(t) = none
3. ∀t : job(t) = j, j /= none ⇒ t ∈ [rj, dj)
4. ∀j /= none :

∫
speed(t)dt = wj where the integral is over all times

t such that job(t) = j
5. for every time t, there is a positive length interval I 	 t on which

the schedule is constant. Moreover I is of the form (− ∞ , u), [t′,
u) or [t′, + ∞)  for some time points t′, u.
The last property is in fact a simplifying assumption to avoid
degenerate schedules. The interpretation is that at a time t
where job(t) = none, the machine is idle but switched on when

1 Notation: [t0, t1) stands for the half open interval {t : t0 ≤ t < t1}.

dx.doi.org/10.1016/j.suscom.2012.10.003
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
mailto:Christoph.Durr@LIP6.fr
dx.doi.org/10.1016/j.suscom.2012.10.003


: Info

m
n
o

t
a

1

2

s
m
t
a
c
t

l
s

r
s
fi
o
m
a

3

a
a
t
a
N
c
t

b
s
m
p
[
O
d
g
c
g
o
i

y
v
a

w
r
v
o
s
[
h

E. Bampis et al. / Sustainable Computing

ode(t) = on and is shut down when mode(t) = off. There is a non-
egligible energy consumption during the idle time periods, but
ne avoids the cost of shutting down and rebooting the machine.

The cost (i.e., the consumed energy) of a schedule is specified by
hree parameters: an exponent  ̨ ∈ [2, 3], a wake-up cost L > 0 and

 ground dissipation energy g > 0, and it has two components:

. The speed cost, that is the energy consumed in all times t such that
job(t) = j /= none. This cost is defined as cspeed =

∫
speed(t)˛dt.

. The mode cost, that is the cost of the ground dissipation energy
plus the wake-up energy.

A schedule with property (5) partitions the time into a
equence S of disjoint, inclusion-wise maximal intervals, such that
ode(t) = on if and only if t ∈ ∪S = ∪Ik∈SI. The sequence S is called

he support of the schedule, and the energy consumption gener-
ted by this support constitutes its mode cost which is defined as
mode = L(|S| + 1) + g| ∪ S|. Note that we count a wake-up cost L for the
wo half-infinite intervals surrounding S.

Hence, the total cost is just the sum cspeed + cmode and the prob-
em studied in this paper consists in finding a minimum cost
chedule for an agreeable deadline instance.

The outline of the paper is as follows. After a brief survey over
elated work, we start showing structural properties of optimal
chedules, in particular we introduce the notion of prefix and suf-
x of a block. Finally we define the dynamic program, prove its
ptimality and analyze its complexity, while mentioning imple-
entation issues. The algorithm has been implemented in Python

nd can handle instances of 300 jobs within a second.

. Previous work

Our scheduling problem for general instances (with non-
greeable deadlines) was raised in Ref. [1].  No polynomial time
lgorithm is known for this problem, nor has it been shown
o be NP-hard. The current best positive result is a 137/117-
pproximation provided in [2].  The same paper also gives an
P-hardness proof, however for a different energy mode, when

speed is defined as
∫

f(speed(t)) dt for some piecewise linear mono-
one function f.

The general problem contains two subproblems, which have
een studied and solved individually. The first one does not con-
ider speed scaling, and restricts to speeds 0 or 1, depending on the
ode. Here essentially the goal is to minimize cmode only. This sub-

roblem has been solved in O(n5) time by dynamic programming
3]. For agreeable instances the complexity has been improved to
(n2) [4].  The second subproblem does not consider the power
own mechanism, and restricts to the single mode ‘on’ and to
round dissipation energy g = 0. Here the problem is to minimize
speed only. This problem has been solved by a widely celebrated
reedy algorithm due to Yao et al. [5] in O(n3) time. The complexity
f this algorithm, known as YDS, has been improved to O(n2 log n)
n Ref. [6] and even to O(n2) for agreeable instances [7].

Different variants of this problem have been studied in the past
ears, which include the online setting, as well as different objective
alues, like minimizing throughput or flowtime. We  refer to [8] for
n overview.

An important ingredient for the algorithm presented in this
ork, is the aforementioned YDS algorithm. For completeness we

oughly sketch it now. At each step of the algorithm, the inter-
al I� of maximum density is selected among all O(n2) intervals

f the form [ri, dj]. The density of an interval is defined as the ratio

 = W/(dj − ri), where W denotes the total workload of all jobs k with
rk, dk] ⊆ [ri, dj]. The key idea is that any feasible schedule must
ave for [ri, dj] an average speed at least s. Then all those jobs are
rmatics and Systems 2 (2012) 184– 189 185

scheduled in I� at speed s using the EDF (Earliest-Deadline-First)
policy. No job will miss its deadline by maximal density of I�. For
the sequel of the algorithm the time interval I� is blacked out. This
means that when computing densities of candidate intervals for
subsequent iterations, the blacked out intervals are excluded, and
the schedule for the remaining jobs must exclude them as well. The
algorithm ends when all jobs are scheduled.

4. Structure of an optimal schedule

In this section we  show some structural properties of optimal
schedules, see Fig. 1 for illustration.

When a job j is running at speed s its execution takes wj/s
time units and the consumed energy is (s˛ + g)wj/s.  This amount
of energy is minimum for speed s� : = (g/(  ̨ − 1))1/˛, which we call
the critical speed. Note that s� is job independent. The density of
an interval I is defined as

∑
wj/|I| over all jobs j with [rj, dj) ⊆ I.

An interval is called dense, if its density is at least s�, and sparse,
otherwise.

Lemma  1 ([9]). Given an instance of the speed scaling with power
down scheduling problem, there is an optimal schedule (mode, speed,
job) with the following properties.

job span for every time t, if job(t) = j /= none then for all times u ∈ [rj,
dj) with mode(u) = on,  we have speed(u) � speed(t)
earliest deadline first for every time pair t < u if
job(t) /= none /= job(u), then job(t) � job(u).
dense intervals dense intervals I are scheduled according to the YDS
rule.
domination for any other optimal schedule (mode′, speed′, job′),
and a smallest time t such that mode(t) /= mode′(t) we have
mode(t) = on and mode′(t) = off.

In particular the first property implies that whenever j is sched-
uled, the speed is the same. The next two  properties imply that
dense intervals divide the problem into independent subproblems,
as we  describe now.

Definition 1. A subinstance of our problem is specified by a pair
(i, j) with i ∈ {1, . . .,  n}, j ∈ {i − 1, . . .,  n}. For convenience we denote
d0 = r1 − L/g and rn+1 = dn + L/g. It consists of the interval I = [di−1, rj+1)
and a job set J. If i = j + 1, then J =∅, else J = {i, . . .,  j}. The release
time/deadline intervals of these jobs are restricted by intersection to I.

Note that in case di−1 < rj+1 or di−1 < di or rj < rj+1, the subinstance
(i, j) is infeasible as the release time/deadline interval of i or j is
restricted to the empty interval.

We extend also the definition of the cost function for subin-
stances. The schedule of a subinstance (i, j), consisting of job
set J and interval I, is defined by the functions speed : I →
R

+, mode : I → {on, off} and job : I → {none} ∪ J. For the mode cost,
let S : = {t ∈ I : mode(t) = on}  be the support of the schedule, and k
be the number of intervals in I \ ∪ S. Then, cmode : = kL + g| ∪ S|. The
interpretation is that if immediately before and after I the machine
is on, then shutdown intervals at the borders of I also do generate
a wake-up cost.

We choose d0 far enough from r1 such that w.l.o.g. an optimal
schedule for the subinstance (1, k) will start with a shutdown inter-
val. A symmetric property is true for subinstances of the form (k, n).
Therefore the cost of the subinstance (1, n) is consistent with the
cost definition for the complete instance. Note that the optimum

for a subinstance of the form (i, i − 1) equals min {L, g(ri − di−1)}.

Now consider all inclusion-wise maximal dense intervals. They
partition the time line into a sequence of alternating dense and
sparse intervals.



186 E. Bampis et al. / Sustainable Computing: Informatics and Systems 2 (2012) 184– 189

Fig. 1. Structure of an optimal schedule for an instance of 11 jobs. The boxes represent job executions where the height equals speed and the area equals the workload of
the  job. The different colors of the boxes distinguish critical speed, less than critical speed and more than critical speed. The thick line below represents the mode. Finally the
i beled
i  with 

s

s
t
a
w
c
q
H
t

L
p
i
t

5

s
s
r

L

P
s
w
s
i
t
f
m
u
t
s
o

d
b

D
s
w

L
i
t
I

ntervals at the bottom represent the release time/deadline intervals of each job j, la
nterval. Jobs 1,5,6,7,11 are scheduled at critical speed s� , while job 9 is scheduled
hutdown between jobs 1 and 2.

The following lemma  follows directly from the definitions. We
tress here that independence of the subschedules is implied by
he agreeable deadline assumption. Lemma  1 states that there is
n optimal schedule, satisfying the earliest deadline first property,
hich means that whenever job j is scheduled, all jobs i < j already

ompleted. So the agreeable deadline assumption happens to be
uite strong, which permits a dynamic programming approach.
owever the problem does not become trivial, since one still needs

o decide when the machine is to be shutdown and when to be idle.

emma  2. Sparse intervals I are associated to pairs (i, j), such that the
ortion of an optimal schedule for the original instance restricted to I,

s also an optimal schedule for the subinstance (i, j). Moreover none of
hese subinstances contain dense intervals.

. Suffixes and prefixes

In this section, we consider an optimal schedule of an arbitrary
ubinstance consisting of a job set J and an interval I such that all
ubintervals of I are sparse. Whenever, in this section, we  refer to
elease times/deadlines rk, d�, they are restricted to I (see Fig. 2).

emma  3. For all times t ∈ I, speed(t) � s�.

roof. Let t be a time that maximizes speed(t), and assume
peed(t) > s� for the sake of contradiction. We  consider an inclusion-
ise maximal interval A 	 t on which the speed is constantly

peed(t). Let i, . . .,  k, i � job(t) � k, be the jobs scheduled in this
nterval. If A = [ri, dk), then A is a dense interval, a contradiction
o Lemma  2. Thus, the inclusion A ⊆ [ri, dk) is strict. Assume dk > u
or u = max  A (the other case is symmetric). By Lemma  1, we have

ode(u) = off, and there is a time t′ such that job k is scheduled in [t′,
). For a small enough ı � 1, the execution of job k can be extended
o [t′, u′) for u′ = t′ + ı(u − t′) and lower its speed to speed(t)/ı. This
trictly decreases the overall cost, a contradiction to the optimality
f the schedule. �

The support of the schedule consists of blocks separated by shut-
own intervals. We  shall show now that the boundaries of these
locks have a particular structure (see Fig. 2).

efinition 2. A suffix is a job pair (a, b) such that all jobs a, . . .,  b are
cheduled at critical speed between ra and u with u = ra + (wa + . . . +
b)/s�, and mode(u) = off.  The definition of a prefix is just symmetric.
emma  4. Let [t, u) be an inclusion-wise maximal shutdown interval
n I, that is mode(t′) = off for all t′ ∈ [t, u). If t is not the start of I,
hen there is a suffix (a, b) ending at t = ra + (wa + . . . + wb)/s�.
f u is not the end of I, then there is a prefix (b + 1, c) starting at
 by its workload wj . Here the schedule consists of 2 blocks separated by a shutdown
higher speed, as [r9, d9) is a dense interval. Note that the schedule is idle but not

u = dc − (wb+1 + . . . + wc)/s�. Moreover, if both cases hold
(inf I < t < u < sup I) then without loss of generality rb+1 > t.

Proof. Suppose that there is an execution interval [t0, t) where
some job b = job(t0) is scheduled at speed(t0) < s�. For a small enough
ı > 1 let t′ : = t0 + (t − t0)/ı. Consider a new schedule where the
execution interval is compressed to [t0, t′), the speed in there is mul-
tiplied ı, and the shutdown interval is extended to [t′, u). This new
schedule has a strictly decreased cost, contradicting optimality.

This shows that if t is not the start of I, then some job b is sched-
uled right before t, say in some interval [t0, t), at critical speed. We
will now show that there is a job a such that between ra and t, jobs
a, . . .,  b are all scheduled at critical speed. If t0 = rb, we simply set
a = b. Otherwise assume that rb < t0. If right before t0 the schedule
mode is off, then we can slightly shift the execution interval of b to
[t0 − ε, t − ε), to obtain a schedule of the same cost but with dom-
inating work toward the beginning. W.l.o.g. we  can assume that
right before t0 a job b − 1 is scheduled in some interval [t1, t0). By
the job span property of Lemma  1 and Lemma 3 it is scheduled
at speed s�. We  iterate the arguments on t1 and b − 1, eventually
reaching a job a with the required property.

The same argument applied symmetrically shows the existence
of a prefix (b + 1, c) if u is not the end of I. Now if both suffix and prefix
exist, and rb+1 � t, then we could shift the execution of b + 1 from
[u, wb+1/s�) to [t, wb+1/s�), yielding a schedule with more work
dominating toward the beginning. The cost of the new schedule
remains either the same or it is reduced by L, if b + 1 were alone in
its block. Therefore we can assume w.l.o.g. that t < rb+1. �

To proceed to our dynamic programming algorithm we need
one more property of suffixes and prefixes implied by the following
definition.

Definition 3. For a given subinstance (i, j) we define two functions
f, h : {i, . . .,  j} → {i, . . .,  j} as follows: f(a) is the highest index job b ≤ j
such that for all a ≤ k < b, ra + (wa + . . . + wk)/s� � rk+1, while h(k) is
the highest index job c ≤ j such that for all k < � ≤ c}, dc − (w� + . . . +
wc)/s� � d�−1.

Lemma  5. Any suffix (a, b) satisfies b = f(a) and any prefix (k, c)
satisfies c = h(k).

The function f requires a little more attention. Since by Lemma  3,
the job a − 1 cannot be scheduled with higher than critical speed,
we can assume that a suffix (a, b) is such that a is the smallest

index job with f(a) = b. So from now on we restrict the domain of f
to those jobs. This allows f to be invertible, i.e. a = f−1(b). Note that
by definition of f, the job j is in the co-domain of f, meaning that
f−1(j) is defined.



E. Bampis et al. / Sustainable Computing: Informatics and Systems 2 (2012) 184– 189 187

le. No

6

c
s
w

T
t

O

w
w
v

P
u

o
a
o
t
c

g
c

u
fi
d
s

t

t
t
o
s

c
s
L

b
L
d
n
t
c
a

Fig. 2. Illustration of a suffix (a, b) and a prefix (b + 1, c) in a schedu

. The dynamic program

For every subinstance (i, j), we denote by Yi,j the minimum cspeed
ost plus g(rj+1 − di−1), and by Oi,j the minimum cspeed + cmode cost. If
ubinstance (i, j) is infeasible we set Yi,j, Oi,j to +∞. For convenience
e denote g� : = (g + (s�)˛)/s�.

heorem 1. The value Oi,j satisfies the following recursion. If j = i − 1,
hen Oi,j = min{L, g(rj+1 − di−1)}, otherwise, let k = f−1(j).

i,j = min

⎧⎪⎪⎨
⎪⎪⎩

Yi,j

L + g�(wi + . . . + wh(i)) + Oh(i)+1,j

Yi,k−1 + g�(wk + . . . + wj) + L

min  Yi,a−1 + g�(wa + . . . + wb) + L + g�(wb+1 + . . . + wc) + Oc+1,j,

(1)

here the inner minimization is over all jobs a ∈ {i + 1, . . . j} ∪ {b, c}
ith b = f(a), b < j and c = h(b + 1).  As usual if there are no such jobs, the

alue of this inner minimization is +∞.

roof. The case j = i − 1 is simple, since the optimal empty sched-
le is either idle or shutdown depending on the span of [rj+1, di−1).

Now for some i ≤ j, consider the subinstance (i, j). By induction
n j − i, we can show that for each of the four cases in Eq. (1) there is

 feasible schedule with the corresponding cost. For the remainder
f the proof, we consider a schedule S minimizing cspeed + cmode for
his subinstance, and we show that one of the four cases yields its
ost.

If S is never power down, then the contribution of cmode is exactly
(rj+1 − di−1), and the contribution of cspeed is minimal. So the first
ase applies.

Now suppose that there is some interval [t, u) where the sched-
le is power down, [t, u) is inclusion-wise maximal and it is the
rst interval. There are several cases now, depending on the con-
itions t = min  I, u = max  I, where I is the interval associated to the
ub-instance (i, j).

It cannot be that both conditions are true, since this means that
he schedule is empty, which contradicts the case assumption i ≤ j.

If t = min  I and u < max  I, then by Lemma  4 there is a prefix (i, c) of
he form c = h(i). The portion up to dc of this schedule has a contribu-
ion to cost equal to L + g�(wi + . . . + wc), and by the composition
f schedules, its remainder has a contribution of Oc+1,j. Hence, the
econd case of Eq. (1) applies.

If t > min  I and u = max  I, similarly there is a suffix (k, j) and the
ost of the schedule up to rk is Yi,k−1, since there are no power down
tates, while the remainder contributes a cost of g�(wk + . . . + wj) +
. This time it is the third case of Eq. (1) which applies.

If t > min  I and u < max  I, again by Lemma  4, there is a suffix (a,
) and a prefix (b + 1, c) around a power down interval [t, u), and by
emma  5 we have b = f(a), c = h(b + 1). Then, the cost of the schedule
ecomposes into the cost Yi,a−1 for the part before ra, since it does

ot contain power down states, the cost g�(wa + . . . + wc) + L for
he part in [ra, dc), and the cost Oc+1,j for the remainder, by the
omposition of schedules. In this final case, the last case of Eq. (1)
pplies. �
te that job a starts at its release time and job c ends at its deadline.

7. Complexity analysis

The dynamic program uses O(n2) variables, and for each one of
them a minimization over O(n) values is required. Therefore, it can
be run in O(n3) time.

For a fixed subinstance (i, j) the functions f, h can be computed
by simple scanning procedures in linear time as following (we  omit
their proof of correctness).

• Initially � : = i and t : = ri. For all k = i, i + 1, . . .,  j, if t < rk, then � : = k,
t : = rk . In any case f(�) : = k, t := t + wk/s�.

• Initially � : = j and t : = dj. For all k = j, j − 1, . . .,  i, if t > dk, then � : = k,
t : = dk. In any case h(k) =�, t := t − wk/s�.

The computation of the values Yi,j however is crucial, there are
O(n2) of them and the best known algorithm to compute the opti-
mal  schedule for each of them runs in time O(n2) [6],  which would
lead to a total running time of O(n4). We  now describe a procedure
which permits to compute Yi,j iteratively from Yi−1,j in total time
O(n2). Therefore we  can compute all optimal cspeed subschedules in
total time O(n3).

7.1. Computing Yi,j

The general outline is as follows. We  first compute Y1,n in time
O(n2) using the algorithm from Ref. [6].  Then in a first right to left
scan we compute all values Y1,j for j = n − 1, . . .,  1. After that for every
j, we apply a left to right scan to compute all values Yi,j for i = 2, . . .,
j. This left to right scan works as follows.

It receives as input the cspeed-optimal schedule S for the subin-
stance (1, j), and applies the following squeezing procedure to S. The
schedule S consists of a sequence of blocks,  every block spans some
time interval [t, u) and contains a sequence of jobs running at some
constant, but block dependent speed.

During the procedure we keep track of the first block which
spans time interval [t, u) and schedules the jobs i, . . .,  b at speed s.
Initially i = 1. We  consider the action of squeezing the block to the
interval [u − � , u) by increasing the speed s, where � := u − (wi +
. . . + wb)/s.

While i ≤ j, we  decide which of the following events happens
first, and execute the corresponding actions. See Figure 3.

unfeasibility event: It happens when di−1 = di or rj = rj−1. Since in
the subinstance (i, j) all jobs are restricted to the interval [di−1,
rj+1], it follows that one of the jobs i, j is restricted to an empty
interval, and cannot be scheduled with finite speed. In this case,
we announce that subinstance (i, j) is unfeasible, we  remove job i
from S, and increase i.

merge event: It happens when the current speed s equals speed(u).
In this case we  merge the first two  blocks. (Note that if u = db, then
this event will immediately be followed by the next split event for
the merged block.)



188 E. Bampis et al. / Sustainable Computing: Informatics and Systems 2 (2012) 184– 189

uring

s
d
o

c
b
F
c
p
d
a
s
o
o

c
b
d
k
b

a
w

8

i

[

[

[

[

[

[

[

[

[

Fig. 3. Different events d

split event: At some moment, a job i ≤ k < b from the first block
might complete at its deadline. This happens when the speed
s reaches ŝ(k, b, u) := (wk+1 + . . . + wb)/(u − dk). In this case the
block splits into two new blocks with the first of them restricted
to the interval [t, dk) and to the jobs i, . . .,  k.
deadline event: When s = (wi + . . . + wb)/(u − di−1), the current
schedule S is the optimal cspeed-schedule for the subinstance (i,
j). In this case we output S as Yi,j, we remove job i from S, and
increase i.

At any moment the algorithm maintains a schedule S for the
ubinstance consisting of all jobs i, . . .,  j with release times and
eadlines restricted to the interval [u − � , rj+1]. We  omit the proof
f optimality of S which should be straightforward.

It remains to specify how the next event can be determined in
onstant time. The merge and deadline events, are both specified
y a single expression determining the value � at which they occur.
or the split event the situation is more subtle, since there are b − i
andidates ŝ(k, b, u), one for each job i ≤ k < b. We  handle this by
recomputing ŝ. Note that for a given job b, there are only O(n)
ifferent times u to be considered, and they are of the form db, rb+1
nd rj+1 for all 1 ≤ j ≤ n. This is because every block of an optimal
chedule ends either at the end of the interval I if it is the last block,
r at one of db, rb+1, depending on whether the next block has lower
r higher speed.

This means that there are O(n3) values of the form ŝ(k, b, u) to
ompute, and this can be done for each pair b, u in linear time,
y iterating k from b − 1 to 1. In the procedure above we need to
etermine the job k, i ≤ k < b minimizing ŝ(k, b, u). Clearly, such a job

 can be computed in constant time for each triplet (i, b, u), again
y iterating i from b − 1 to 1 for each pair b, u.

In the event loop described above every job is responsible for
t most three events. Therefore its complexity is O(n) for fixed j,
hich yields to a total running time of O(n3).
. Conclusion

We provided a polynomial time algorithm for the speed scal-
ng with power down scheduling problem, for the special case of
 the squeeze procedure.

agreeable deadlines. This assumption leads to strong structural
properties of optimal schedules, which are non-preempted and,
moreover, permit a partitioning leading to a dynamic programming
algorithm. So the proposed algorithm could not be generalized to
instances with arbitrary deadlines. However, we believe that the
squeezing procedure could be of independent interest.

References

1] S. Irani, K.R. Pruhs, Algorithmic problems in power management, SIGACT News
36 (2) (2005) 63–76.

2] S. Albers, A. Antoniadis, Race to idle: new algorithms for speed scaling with a
sleep state, in: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on  Discrete Algorithms, SIAM, Springer-Verlag, 2012, pp. 1266–1285.

3] P. Baptiste, M.  Chrobak, C. Dürr, Polynomial time algorithms for minimum energy
scheduling, in: Proceedings of the 15th annual European conference on Algo-
rithms, Springer-Verlag, 2007, pp. 136–150.

4]  E. Angel, E. Bampis, V. Chau, Low complexity scheduling algorithm minimizing
the energy for tasks with agreeable deadlines, submitted for publication.

5]  F. Yao, A. Demers, S. Shenker, A scheduling model for reduced cpu energy, in:
Proceedings of the 36th Annual Symposium on Foundations of Computer Science
(FOCS’95), 1995, pp. 374–382.

6] M.  Li, A. Yao, F. Yao, Discrete and continuous min-energy schedules for vari-
able voltage processors, Proceedings of the National Academy of Sciences of the
United States of America 103 (11) (2006) 3983.

7] W.  Wu,  M. Li, E. Chen, Min-energy scheduling for aligned jobs in accelerate
model, Theoretical Computer Science.

8] S. Albers, Energy-efficient algorithms, Communications of the ACM 53 (5) (2010)
86–96.

9] S. Irani, S.K. Shukla, R.K. Gupta, Algorithms for power savings, ACM Transactions
on Algorithms 3 (4) (2007) 41.

Evripidis Bampis has received his Diploma of Electri-
cal Engineering from the National Technical University of
Athens (Greece) in 1989, and his Msc  and PhD from the
University of Paris-Sud (Orsay) in 1990 and 1993, respec-
tively. Since September 2010, he joined the Department
of  Computer Science of the University Pierre et Marie
Curie (Paris 6) as a Professor, and he is a member of
the  Operations Research group of the laboratory LIP6. His

main research interests concern the design and the anal-
ysis of algorithms for scheduling and graph problems.
He  is in particular interested in approximation and on-
line algorithms, algorithmic game theory, multi-objective
optimization and power-aware scheduling.



: Info

last years he was a visiting researcher in LiX-Ecole Poly-
technique and LAMSADE-University Paris-Dauphine. His
research interests include design and analysis of algo-
rithms and applications to computer and communication

systems and networks, combinatorial optimization, graph theory and game theory.
E. Bampis et al. / Sustainable Computing

Christoph Dürr obtained his PhD from Université Paris-
Sud in 1997. He was  a post-doctoral researcher at ICSI
Berkeley and at the CS department of the Hebrew Uni-
versity Jerusalem, as a Marie Curie fellow of the European
Commission. He is interested in algorithmic aspects of
various areas of computer science, scheduling and game
theory. Currently he is employed as Senior Researcher at
the CNRS in the University Pierre et Marie Curie in Paris,
France. His research interests include on-line algorithms,
algorithmic game theory and optimization in general.

Fadi Kacem is a PostDoctoral researcher at Orange Labs,
France. He received his MS  degree and his Ph.D in Com-
puter Science from University of Evry Val d’Essonne,

France, in 2008 and 2012, respectively. Previously, he
completed a B.Sc. degree in Computer Engineering from
the  Ecole Nationale des Sciences de l’Informatique,
Tunisia. His research focus is on the areas of optimization
algorithms and energy-aware green computing.
rmatics and Systems 2 (2012) 184– 189 189

Ioannis Milis received his Diploma in Electrical Engineer-
ing from the Democritus University of Thrake and his
Ph.D. in Computer Science from the Athens University of
Economics and Business (AUEB). He was  a post-doctoral
researcher in LRI-University Paris Sud XI-Orsay, INRIA-
Sophia Antipolis and National Technical University of
Athens, as a Marie Curie fellow of the European Commis-
sion. He joined the AUEB faculty in 1998 and he is currently
a  Professor in the Department of Informatics. During the


	Speed scaling with power down scheduling for agreeable deadlines
	1 Introduction
	2 Problem definition
	3 Previous work
	4 Structure of an optimal schedule
	5 Suffixes and prefixes
	6 The dynamic program
	7 Complexity analysis
	7.1 Computing Yi,j

	8 Conclusion
	References


