
Noname manuscript No.
(will be inserted by the editor)

An O(n2) Algorithm for Computing Optimal Continuous
Voltage Schedules

Minming Li · Frances F. Yao · Hao
Yuan

the date of receipt and acceptance should be inserted later

Abstract Dynamic Voltage Scaling techniques allow the processor to set its
speed dynamically in order to reduce energy consumption. In the continuous
model, the processor can run at any speed, while in the discrete model, the pro-
cessor can only run at finite number of speeds given as input. The current best
algorithm for computing the optimal schedules for the continuous model runs
at O(n2 log n) time for scheduling n jobs. In this paper, we improve the run-
ning time to O(n2) by speeding up the calculation of s-schedules using a more
refined data structure. For the discrete model, we improve the computation of
the optimal schedule from the current best O(dn log n) to O(n log max{d, n})
where d is the number of allowed speeds.

1 Introduction

Energy efficiency is always a primary concern for chip designers not only for
the sake of prolonging the lifetime of batteries which are the major power
supply of portable electronic devices but also for the environmental protection
purpose when large facilities like data centers are involved. Currently, proces-
sors capable of operating at a range of frequencies are already available, such
as Intel’s SpeedStep technology and AMD’s PowerNow technology. The capa-
bility of the processor to change voltages is often referred to in the literature as
DVS (Dynamic Voltage Scaling) techniques. For DVS processors, since energy
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consumption is at least a quadratic function of the supply voltage (which is
proportional to CPU speed), it saves energy to let the processor run at the
lowest possible speed while still satisfying all the timing constraints, rather
than running at full speed and then switching to idle.

One of the earliest theoretical models for DVS was introduced by Yao, De-
mers and Shenker [27] in 1995. They assumed that the processor can run at
any speed and each job has an arrival time and a deadline. They gave a charac-
terization of the minimum-energy schedule (MES) and an O(n3) algorithm for
computing it which is later improved to O(n2 log n) by [21]. No special assump-
tion was made on the power consumption function except convexity. Several
online heuristics were also considered including the Average Rate Heuristic
(AVR) and Optimal Available Heuristic (OPA). Under the common assump-
tion of power function P (s) = sα, they showed that AVR has a competitive
ratio of 2α−1αα for all job sets. Thus its energy consumption is at most a
constant times the minimum required. Later on, under various related models
and assumptions, more algorithms for energy-efficient scheduling have been
proposed.

Bansal et al. [7] further investigated the online heuristics for the model
proposed by [27] and proved that the heuristic OPA has a tight competitive
ratio of αα for all job sets. For the temperature model where the temperature of
the processor is not allowed to exceed a certain thermal threshold, they showed
how to solve it within any error bound in polynomial time. Recently, Bansal
et al. [5] showed that the competitive analysis of AVR heuristic given in [27]
is essentially tight. Quan and Hu [24] considered scheduling jobs with fixed
priorities and characterized the optimal schedule through transformations to
MES [27]. Yun and Kim [28] later on showed the NP-hardness to compute the
optimal schedule.

Pruhs et al. [23] studied the problem of minimizing the average flow time
of a sequence of jobs when a fixed amount of energy is available and gave a
polynomial time offline algorithm for unit-size jobs. Bunde [9] extended this
problem to the multiprocessor scenario and gave some nice results for unit-
size jobs. Chan et al. [10] investigated a slightly more realistic model where
the maximum speed is bounded. They proposed an online algorithm which is
O(1)-competitive in both energy consumption and throughput. More work on
the speed bounded model can be found in [6] [11] [18].

Ishihara and Yasuura [16] initiated the research on discrete DVS problem
where a CPU can only run at a set of given speeds. They solved the case
when the processor is only allowed to run at two different speeds. Kwon and
Kim [17] extended it to the general discrete DVS model where the processor
is allowed to run at speeds chosen from a finite speed set. They gave an O(n3)
algorithm for this problem based on the MES algorithm in [27], which is later
improved in [19] to O(dn log n) where d is the allowed number of speeds.

When the CPU can only change speed gradually instead of instantly, [13]
discussed about some special cases that can be solved optimally in polynomial
time. Later, Wu et al. [26] extended the polynomial solvability to jobs with
agreeable deadlines. Irani et al. [14] investigated an extended scenario where
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the processor can be put into a low-power sleep state when idle. A certain
amount of energy is needed when the processor changes from the sleep state
to the active state. The technique of switching processors from idle to sleep
and back to idle is called Dynamic Power Management (DPM) which is the
other major technique for energy efficiency. They gave an offline algorithm
that achieves 2-approximation and online algorithms with constant compet-
itive ratios. Recently, Albers and Antoniadis [3] proved the NP-hardness of
the above problem and also showed some lower bounds of the approximation
ratio. Pruhs et al. [22] introduced profit into DVS scheduling. They assume
that the profit obtained from a job is a function on its finishing time and on
the other hand money needs to be paid to buy energy to execute jobs. They
give a lower bound on how good an online algorithm can be and also give
a constant competitive ratio online algorithm in the resource augmentation
setting. A survey on algorithmic problems in power management for DVS by
Irani and Pruhs can be found in [15]. Most recent surveys by Albers can be
found in [1] [2].

In [20], the authors showed that the optimal schedule for tree structured
jobs can be computed in O(n2) time. In this paper, we prove that the optimal
schedule for general jobs can also be computed in O(n2) time, improving upon
the previously best known O(n2 log n) result [21]. The remaining paper is
organized as follows. Section 2 will give the problem formulation. Section 3 will
discuss the linear implementation of an important tool — the s-schedule used
in the algorithm in [21]. Then we use the linear implementation to improve
the calculation of the optimal schedule in Section 4. In Section 5, we give
improvements in the computation complexity of the optimal schedule for the
discrete model. Finally, we conclude the paper in Section 6.

2 Models and Preliminaries

We consider the single processor setting. A job set J = {j1, j2, . . . , jn} over
[0, 1] is given where each job jk is characterized by three parameters: arrival
time ak, deadline bk, and workload Rk. Here workload means the required
number of CPU cycles. We also refer to [ak, bk] ⊆ [0, 1] as the interval of jk. A
schedule S for J is a pair of functions (s(t), job(t)) which defines the processor
speed and the job being executed at time t respectively. Both functions are as-
sumed to be piecewise continuous with finitely many discontinuities. A feasible
schedule must give each job its required workload between its arrival time and
deadline with perhaps intermittent execution. We assume that the power P , or
energy consumed per unit time, is P (s) = sα (α ≥ 2) where s is the processor

speed. The total energy consumed by a schedule S is E(S) =
∫ 1

0
P (s(t))dt.

The goal of the min-energy feasibility scheduling problem is to find a feasible
schedule that minimizes E(S) for any given job set J . We refer to this problem
as the continuous DVS scheduling problem.

For the continuous DVS scheduling problem, the optimal schedule Sopt
is characterized by using the notion of a critical interval for J , which is an
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interval I in which a group of jobs must be scheduled at maximum constant
speed g(I) in any optimal schedule for J . The algorithm MES in [27] proceeds
by identifying such a critical interval I, scheduling those ‘critical’ jobs at speed
g(I) over I, then constructing a subproblem for the remaining jobs and solving
it recursively. The details are given below.

Definition 1 For any interval I ⊆ [0, 1], we use JI to denote the subset of
jobs in J whose intervals are completely contained in I. The intensity of an
interval I is defined to be g(I) = (

∑
jk∈JI Rk)/|I|.

An interval I∗ achieving maximum g(I) over all possible intervals I defines
a critical interval for the current job set. It is known that the subset of jobs
JI∗ can be feasibly scheduled at speed g(I∗) over I∗ by the earliest deadline
first (EDF) principle. That is, at any time t, a job which is waiting to be
executed and having earliest deadline will be executed during [t, t + ε]. The
interval I∗ is then removed from [0, 1]; all the remaining job intervals [ak, bk]
are updated to reflect the removal, and the algorithm recurses. We denote the
optimal schedule which guarantees feasibility and consumes minimum energy
in the continuous DVS model as OPT.

The authors in [21] later observed that in fact the critical intervals do not
need to be located one after another. Instead, one can use a concept called
s-schedule defined below to do bipartition on jobs which gradually approaches
the optimal speed curve.

Definition 2 For any constant s, the s-schedule for J is an EDF schedule
which uses a constant speed s in executing any jobs of J . It will give up a job
when the deadline of the job has passed. In general, s-schedules may have idle
periods or unfinished jobs.

Definition 3 In a schedule S, a maximal subinterval of [0, 1] devoted to ex-
ecuting the same job jk is called an execution interval for jk (with respect to
S). Denote by Ik(S) the union of all execution intervals for jk with respect to
S. Execution intervals with respect to the s-schedule will be called s-execution
intervals.

It is easy to see that the s-schedule for n jobs contains at most 2n s-
execution intervals, since the end of each execution interval (including an idle
interval) corresponds to the moment when either a job is finished or a new
job arrives. Also, the s-schedule can be computed in O(n log n) time by using
a priority queue to keep all jobs currently available, prioritized by their dead-
lines. In the next section, we will show that the s-schedule can be computed
in linear time.

3 Computing an s-Schedule in Linear Time

In this work, we assume that the underlying computational model is the unit-
cost RAM model with word size Θ(log n). This model is assumed only for the
purpose of using a special union-find algorithm by Gabow and Tarjan [12].

Peter Hu
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1 Initialize ei ← ti for 1 ≤ i < m. ;
2 for k=1 to n do
3 Let i be the rank of ak in T , i.e., ti = ak. ;
4 Initialize r ← Rk, where r denotes the remaining workload to be scheduled. ;
5 while r > 0 do
6 Search for an earliest non-empty canonical time interval [ep, tp+1) such that

ep ≥ ti. ;
7 if ep ≥ bk then
8 Break the while loop because the job cannot be finished.
9 end

10 Set u ← min{bk, tp+1}.
11 if r > s · (u− ep) then
12 Schedule job k at [ep, u). ;
13 Update ep ← u. ;
14 Update r ← r − s · (u− ep). ;

15 else
16 Schedule job k at [ep, ep + r/s). ;
17 Update ep ← ep + r/s. ;
18 Update r ← 0.

19 end

20 end

21 end

Algorithm 1: Algorithm for Computing an s-Schedule

Theorem 1 If for each k, the rank of ak in {a1, a2, . . . , an} and the rank of
bk in {b1, b2, . . . , bn} are pre-computed, then the s-schedule can be computed in
linear time in the unit-cost RAM model.

We make the following two assumptions:

– the jobs are already sorted according to their deadlines;
– for each job jk, we know the rank of ak in the arrival time set {a1, a2, . . . , an}.

Because of the first assumption and without loss of generality, we assume that
b1 ≤ b2 ≤ . . . ≤ bn. Algorithm 1 schedules the jobs in the order of their
deadlines. When scheduling job k, the algorithm tries to search for an earliest
available time interval and schedule the job in it, and then repeat the process
until all the workload of the job is scheduled or unable to find such a time
interval before the deadline. A more detailed discussion of the algorithm is
given below.

Let T be {a1, a2, . . . , an, 1, 1 + ε}. Note that the times “1” and “1 + ε”
(where ε is any fixed positive constant) are included in T for simplifying the
presentation of the algorithm. Denote the size of T by m. Denote ti to be the
i-th smallest element in T . Note that the rank of any ak in T is known. During
the running of the algorithm, we will maintain the following data structure:

Definition 4 For each 1 ≤ i < m, the algorithm maintains a value ei, whose
value is in the range [ti, ti+1]. The meaning of ei is that: the time interval
[ti, ei) is fully occupied by some jobs, and the time interval [ei, ti+1) is idle.

If [ti, ti+1) is fully occupied, then ei is ti+1. Note that such a time ei always
exists during the running of the algorithm, which will be shown later when
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Fig. 1: An illustration for example 2.

we discuss how to maintain ei. At the beginning of the algorithm, we assume
that the processor is idle for the whole time period. That means ei = ti for
1 ≤ i < m (see line 1 of Algorithm 1).

Example 1 An example for demonstrating the usage of the ei data structure is
given below: Assume that T = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1 + ε}.
At some point during the execution of the algorithm, if some jobs have been
scheduled to run at time intervals [0.2, 0.35), [0.6, 0.86), [0.9, 0.92), then we will
have e1 = 0.1, e2 = 0.3, e3 = 0.35, e4 = 0.4, e5 = 0.5, e6 = 0.7, e7 = 0.8,
e8 = 0.86, e9 = 0.92, and e10 = 1.

Before we analyze the algorithm, we need to define an important concept
called canonical time interval.

Definition 5 During the running of the algorithm, a canonical time interval
is a time interval of the form [ep, tp+1), where 1 ≤ p < m. When ep = tp+1,
we call it an empty canonical time interval.

Note that a non-empty canonical time interval is always idle based on the
definition of ep. Any arrival time ak will not lie inside any canonical time
interval but it is possible that ak will touch any of the two ending points, i.e.,
for any 1 ≤ p < m, we have either ak ≤ ep or ak ≥ tp+1. Therefore, if we want
to search for a time interval to run a job at or after time ak, then we should
always look for the earliest non-empty canonical time interval [ep, tp+1) where
ep ≥ ak.

In Algorithm 1, a variable r is used to track the workload to be scheduled.
Lines 5-20 try to schedule jk as early as possible if r > 0. Line 6 tries to search
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for an earliest non-empty canonical time interval [ep, tp+1) no earlier than the
arrival time of jk (i.e., ep ≥ ak). Such a p always exists because there is always
a non-empty canonical time interval [1, 1 + ε). Line 7-9 means that, if ep is
not earlier than the deadline of jk, then the job cannot be finished. Line 10
sets a value of u, whose meaning is that [ep, u) can be used to schedule the
job. The value of u is no later than the deadline of jk. Lines 12-14 process the
case when the remaining workload of jk cannot be finished in the time interval
[ep, u). Lines 16-18 process the case when the remaining workload of jk can be
finished in the time interval [ep, u). In the first case, line 13 updates ep to u
because the time interval [tp, u) is occupied and [u, tp+1) is idle. In the second
case, a time of r/s is occupied by jk after the time ep, so ep is increased by
r/s.

Example 2 Following the example provided in the previous example, assume
that the speed is s = 1, if we are to schedule a job jk, where ak = 0.3, bk =
0.96, Rk = 0.35, the algorithm will proceed as follows: At the beginning, r will
be initialized to 0.35, and i = 3 (because ak = 0.3 = t3; see line 3). Line 6 will
then get the interval [e3, t4) = [0.35, 0.4) as an earliest non-empty canonical
time interval, and a workload of (0.4− 0.35)s = 0.05 is scheduled at that time
interval. The values of e3 will be updated to 0.4 accordingly. Now, r becomes
0.35 − 0.05 = 0.3, and line 6 will get the time interval [e4, t5) = [0.4, 0.5) to
schedule the job. After that r becomes 0.3− (0.5− 0.4)s = 0.2, and e4 = 0.5.
Line 6 then gets the time interval [e5, t6) = [0.5, 0.6) to schedule the job,
and r will be further reduced to 0.1. The values of e5 will be updated to 0.6.
The next time interval found will be [e8, t9) = [0.86, 0.9), and r will become
0.1 − (0.9 − 0.86)s = 0.06. The values of e8 will be updated to 0.9. The
remaining earliest non-empty canonical time interval is [e9, t10) = [0.92, 1),
but the deadline of the job is 0.96, so only [0.92, 0.96) will be used to schedule
the job, and r will be 0.02. The value of e9 is then updated to 0.96. Finally,
[e9, t10) = [0.96, 1) is the remaining earliest non-empty canonical time interval,
but e9 ≥ bk, so line 7-9 will break the loop, and jk will be an unfinished job. A
graphical illustration is provided in Figure 1. The solid rectangles represent the
time intervals occupied by some jobs before scheduling jk. The cross-hatched
rectangles represent the time intervals that are used to schedule jk. The q-th
cross-hatched rectangle (where 1 ≤ q ≤ 5) is the q-th time interval scheduled
according to this example. Note that all the cross-hatched rectangles except
the 5-th one are canonical time intervals right before scheduling jk.

The most critical part of the algorithm is Line 6, which can be implemented
efficiently by the following folklore method using a special union-find algorithm
developed by Gabow and Tarjan [12] (see also the discussion of the decremental
marked ancestor problem [4]). At the beginning, there is a set {i} for each
1 ≤ i < m. The name of a set is the largest element of the set. Whenever ep
is updated to tp+1 (i.e., there is not any idle time in the interval [tp, tp+1)),
we make a union of the set containing p and the set containing p + 1, and
set the name of this set to be the name of the set containing p+ 1. After the
union, the two old sets are destroyed. In this way, a set is always an interval of
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integers. For a set whose elements are {q, q + 1, . . . , p}, the semantic meaning
is that, [tq, ep) is fully scheduled but [ep, tp+1) is idle. Therefore, to search for
an earliest non-empty canonical time interval beginning at or after time ti, we
can find the set containing i, and let p be the name of the set, then [ep, tp+1)
is the required time interval.

Example 3 An example of the above union-find process for scheduling jk in
the previous example is given below: Before scheduling jk, we have the sets
{1}, {2, 3}, {4}, {5}, {6, 7, 8}, {9}, {10}. The execution of line 6 will always
try to search for a set that contains the element i = 3. Therefore, the first
execution will find the set {2, 3}, so p will be 3. After that, e3 becomes t4 = 0.4,
so the algorithm needs to make a union of the sets {2, 3} and {4} to get
{2, 3, 4}. Similarly, the next execution will find the set {2, 3, 4}, so p = 4. The
algorithm will then make a union of {2, 3, 4} and {5} to get {2, 3, 4, 5}. For
the next execution, the set {2, 3, 4, 5} will be found, and it will be merged
with {6, 7, 8} to get {2, 3, 4, 5, 6, 7, 8}. In this case, p = 8, and the earliest non-
empty canonical time interval is [ep, tp+1) = [0.86, 0.9). After e8 is updated
to t9 = 0.9, the algorithm will merge {2, 3, 4, 5, 6, 7, 8} with {9} and obtain
{2, 3, 4, 5, 6, 7, 8, 9}. Therefore, the next execution of line 6 will get p = 9.
After the time interval [0.92, 0.96) is scheduled and e9 is updated to 0.96, so
the algorithm will not do any union. The last execution finds p = 9 again, and
a loop break is performed.

Now, we we analyze the time complexity of the algorithm.

Lemma 1 Each set always contains continuous integers.

Proof It can be proved by induction. At the beginning, each skeleton set is
a continuous integer set. During the running of the algorithm, the union op-
eration always merges two nearby continuous integer sets to form a larger
continuous integer set.

Lemma 2 There are at most m− 2 unions.

Proof It is because there are only m− 1 sets.

Lemma 3 There are at most 2(m− 2) + n finds.

Proof Some m− 2 finds are from finding the set containing p+ 1 during each
union. Note that there is no need to perform a find operation to find the set
containing p for union, because p is just the name of such a set, where the set
contains continuous integers with p as the largest element. The other (m−2)+n
finds are from searching for earliest canonical time intervals beginning at or
after time ti. This can be analyzed in the following way: Let zk be the number
of times to search for an earliest non-empty canonical time interval when
processing job jk. Let wk be the number of unions that are performed when
processing job jk. We have zk ≤ wk + 1, because each of the first zk − 1 finds
must accompany a union. Therefore,∑

1≤k≤n

zk ≤
∑

1≤k≤n

(wk + 1) =
∑

1≤k≤n

wk + n ≤ (m− 2) + n.

Peter Hu
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Since these unions and finds are operated on the sets of integer intervals,
such an interval union-find problem can be solved in O(m + n) time in the
unit-cost RAM model using Gabow and Tarjan’s algorithm [12]. Note that
m = O(n), so the total time complexity is O(n). Theorem 1 holds.

If the union-find algorithm is implemented in the pointer machine model [8]
using the classical algorithm of Tarjan [25], the complexity of our s-schedule
algorithm will become O(nα(n)) where α(n) is the one-parameter inverse Ack-
ermann function.

Note that, the number of finds can be further reduced with a more careful
implementation of the algorithm as follows (but the asymptotic complexity
will not change):

– Whenever the algorithm schedules a job jk to run at a time interval [ep, bk),
the algorithm no longer needs to proceed to line 6 for the same job, because
there will not be any idle time interval available before the deadline.

– For each job jk, the first time to find a non-empty canonical time interval
requires one find operation. In any of the later times to search for earliest
non-empty canonical time intervals for the same job, there must be a union
operation just performed. The p that determines the earliest non-empty
canonical time interval [ep, tp+1) is just the name of that new set after that
union, so a find operation is not necessary in this case. Note that the find
operations that accompany the unions are still required.

Using the above implementation, the number of finds to search for earliest
non-empty canonical time intervals can be reduced to n. Along with the m−2
finds for unions, the total number of finds of this improved implementation is
at most (m− 2) + n.

4 An O(n2) Continuous DVS Algorithm

We will first take a brief look at the previous best known DVS algorithm of
Li, Yao and Yao [21]. As in [21], Define the “support” U of J to be the union
of all job intervals in J . Define avr(J), the “average rate” of J to be the total
workload of J divided by |U |. According to Lemma 9 in [21], using s = avr(J)
to do an s-schedule will generate two nonempty subsets of jobs requiring speed
at least s or less than s respectively in the optimal schedule unless the optimal
speed for J is a constant s. The algorithm will recursively do the scheduling
based on the two subsets of jobs. Therefore, at most n calls of s-schedules on a
job set with at most n jobs are needed before we obtain the optimal schedule
for the whole job set. The most time-consuming part of their algorithm is the
s-schedules.

To apply our improved s-schedule algorithm for solving the continuous DVS
scheduling problem, we need to make sure that the ranks of the deadlines and
arrival times are known before each s-schedule call. It can be done in the
following way: Before the first call, sort the deadlines and arrival times and
obtain the ranks. In each of the subsequent calls, in order to get the new
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ranks within the two subsets of jobs, a counting sort algorithm can be used
to sort the old ranks in linear time. Therefore, the time to obtain the ranks is
at most O(n2) for the whole algorithm. Based on the improved computation
of s-schedules, the total time complexity of the DVS problem is now O(n2),
improving the previous O(n2 log n) algorithm of [21] by a factor of O(log n).
We have the following theorem.

Theorem 2 The continuous DVS scheduling problem can be solved in O(n2)
time for n jobs in the unit-cost RAM model.

5 Further Improvements

For the discrete DVS scheduling problem, we have an O(n log n) algorithm to
calculate the optimal schedule by doing binary testing on the given d speed lev-
els, improving upon the previously best known O(dn log n) [19]. To be specific,
given the input job set with size n and a set of speeds {s1, s2, . . . , sd}, we first
choose the speed sd/2 to bi-partition the job set into two subsets. Then within
each subset, we again choose the middle speed level to do the bi-partition. We
recursively do the bi-partition until all the speed levels are handled. In the
recursion tree thus built, we claim that the re-sorting for subproblems on the
same level can be done in O(n) time which implies that the total time needed
is O(n log d + n log n) = O(n log max{d, n}). The claim can be shown in the
following way. Based on the initial sorting, we can assign a new label to each
job specifying which subgroup it belongs to when doing bi-partitioning. Then
a linear scan can produce the sorted list for each subgroup.

6 Conclusion

In this paper, we improve the time for computing the optimal continuous DVS
schedule from O(n2 log n) to O(n2). The major improvement happens in the
computation of s-schedules. Originally, the s-schedule computation is done in
an online fashion where the execution time is allocated from the beginning to
the end sequentially and the time assigned to a certain job can be gradually
decided. While in this work, we allocate execution time to jobs in an offline
fashion. When jobs are sorted by deadlines, job ji’s execution time is totally
decided before we go on to consider ji+1. Then by using a suitable data struc-
ture and conducting a careful analysis, the computation time for s-schedules
improves from O(n log n) to O(n). We also design an algorithm to improve the
computation of the optimal schedule for the discrete model from O(dn log n)
to O(n log max{d, n}).
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