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Abstract
Speed scaling problems consider energy-efficient job scheduling in processors by adjusting the speed to reduce energy
consumption, where power consumption is a convex function of speed (usually, P(s) = sα, α = 2, 3). In this work, we study
speed scaling problems considering memory/cache. Each job needs some time for memory operation when it is fetched from
memory„ and needs less time if fetched from the cache. The objective is to minimize energy consumption while satisfying
the time constraints of the jobs. Two models are investigated, the non-cache model and the with-cache model. The non-cache
model is a variant of the ideal model, where each job i needs a fixed ci time for its memory operation; the with-cache model
further considers the cache, a memory device with much faster access time but limited space. The uniform with-cache model
is a special case of the with-cache model in which all ci values are the same. We provide an O(n3) time algorithm and an
improved O(n2 log n) time algorithm to compute the optimal solution in the non-cache model. For the with-cache model,
we prove that it is NP-complete to compute the optimal solution. For the uniform with-cache model with agreeable jobs
(later-released jobs do not have earlier deadlines), we derive an O(n4) time algorithm to compute the optimal schedule, while
for the general case we propose a (2α g

g−1 )
α/2-approximation algorithm in a resource augmentation setting in which the

memory operation time can accelerate by at most g times.

Keywords Speed scaling · Energy efficiency · Scheduling · Memory operation time · DVS · Algorithm design

1 Introduction

Advances in processor, memory and communication tech-
nologies in recent years have given rise to a tremendous pro-
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liferation of portable electronic devices. Since such devices
are often powered by batteries, the energy-efficient execution
of jobs in order to prolong battery life is increasingly impor-
tant. Processors capable of operating at a range of voltages
and frequencies are already available (e.g., Intel’s SpeedStep
technology and AMD’s PowerNow technology). The ability
of a processor to adjust voltages is often referred to in the
literature as dynamic voltage scaling (DVS). Since energy
consumption is at least a quadratic function of the supply
voltage (hence CPU speed), it saves energy to run the proces-
sor at the lowest possible constant speed, while still meeting
all the timing constraints, rather than running at full speed
and then switching to idle.

One of the earliest theoretical models for speed scaling
problems based on DVSwas introduced by Yao et al. (1995).
The power consumption function P(s) in the processor is
convex and is usually assumed to be P(s) = sα , where s is
the speed and α is a constant larger than 1. Each job has a
release time ri , deadline di and workload wi . The schedule
should decide which job to execute and at what speed at time
t . Energy consumption is the integral of the power function
over all time t . The goal is to minimize energy usage while
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satisfying all the timing constraints of n jobs. This model
is referred to as the ideal model by Yao et al. 1995. The
authors proposed a polynomial time algorithm to compute the
minimum-energy schedule (MES). Several online heuristics
were also considered, including the average rate heuristic
(AVR) and optimal available heuristic (OPA). The constant
competitiveness of AVR and OPA are derived in Yao et al.
(1995) and Bansal et al. (2004), respectively, which verifies
the effectiveness of the online algorithms.

Additional algorithms for energy-efficient scheduling
were subsequently proposed under various related models
and assumptions. In the case of a CPU that is only able
to change speed gradually instead of instantaneously, Hong
et al. (1998) discussed some special cases that could be solved
optimally in polynomial time. Wu et al. (2009) studied an
accelerationmodelwhere the rate of speed change is bounded
by a constant K . The authors derived an efficient algorithm to
compute the optimal solution for agreeable jobs, i.e., earlier-
released jobs have earlier deadlines. Aside from these DVS
models, there are also other extensions. For example, Irani
et al. (2007), Albers and Antoniadis (2014) and Antoniadis
et al. (2015) investigated approximation algorithms for an
extended scenario where the processor can be put into a low-
power sleep statewhen idle, and a certain amount of energy is
neededwhen the processor changes from the sleep state to the
active state. Albers et al. (2015) developed an optimal offline
algorithmandonline heuristic algorithms formulti-processor
speed scaling problem with migration. Other related works
can be found in survey papers (Albers 2010; Bambagini et al.
2016).

Although numerous studies had been performed using dif-
ferent assumptions regarding CPU variable speed capacity,
it was not until 2003 that a more realistic model incorpo-
rating the effect of memory operations was proposed by
Seth et al. (2003). The authors noted that memory access
time is dependent on the front-side bus (FSB), which is a
fixed value, making memory operations difficult to acceler-
ate. Since the execution time of memory operations is not
affected by the processor frequency, the workload of each
job is now divided into two parts: a computational compo-
nent whose execution timescales are inversely proportional
to theCPUspeed, and amemory componentwhose execution
time is fixed. In addition, if cache-locking techniques (which
allow placing jobs in the cache) are supported, then we need
to further considerwhich jobs to put in the cache to reduce the
total energy consumption, because jobs placed in the cache
require lessmemory execution time. Other, more recent stud-
ies have investigated the use of this model for periodic jobs
that have periodic releases and processing requirements. For
example, Bini et al. (2005) extended the model by allowing
periodic jobs to have deadlines earlier than the end of the
period and enforcing a discrete number of processor speeds.
Aydin et al. (2006) assumed different power dissipation and

on-chip/off-chip workload characteristics for different tasks.
Yang et al. (2007) introduced a preemption control technique
which significantly reduces the number of preemptionswhile
also minimizing energy consumption. For additional works
involving this model, please refer to Choi et al. (2005) and
Hsu and Feng (2004).

In this paper, we theoretically study two models which
consider memory operation and non-periodic jobs. The non-
cache model is a generalization of the ideal model, where
each job i requires a fixed ci time to finish the memory
operation, in addition to its computational workload wi . The
with-cache model additionally allows the jobs to be placed
into the cache (which has much faster access speed than nor-
mal memory) to further save time in memory operations and
prolong the execution time of the jobs. The number of jobs to
be stored in the cache (limited space) is boundedby a constant
N . We say a schedule has k evictions if it allocates k jobs to
memory. The algorithm should determine the allocation and
speed of jobs to achieve minimum energy consumption. The
uniform with-cache model is a special case where every job
has the same ci value.

Our contributions are summarized as follows. For the non-
cache model, we provide an O(n3) time algorithm and an
improved O(n2 log n) time algorithm to compute the optimal
solution. For the with-cachemodel, we prove that optimizing
energy for general jobs is NP-complete. We then study the
agreeable jobs in the uniform with-cache model. We derive
an O(n4) time dynamic programming algorithm to compute
the optimal solution. Note that these results rely only on the
assumption that P(s) is convex and nonnegative, and P(0) =
0. We then consider the general jobs in the with-cache model
with the stricter but common assumption that P(s) = sα

(α ≥ 1). We study the resource augmentation setting of this
problem where the job’s eviction time (memory operation
time) can accelerate s times, which will be referred to as
the g-speed with-cache model. In the resource augmentation
setting, an algorithm is a c-approximation if it always outputs
a solution (given the g-speed augmented resource) that is at
most c times that of the optimal solution for the 1-speedwith-
cache model. We propose a (2α g

g−1 )
α/2-approximation for

the g-speed with-cache model.
The remainder of this paper is organized as follows. In

Sect. 2, we review models of speed scaling problems. In
Sect. 3, we develop optimal algorithms for the non-cache
model under continuous speed and discrete speed settings.
In Sect. 4, we turn to the with-cache model, and present the
NP-completeness of the optimization problem for the model.
Section 4.1 derives a dynamic programming algorithm for
the uniform with-cache model, and Sect. 4.2 investigates
the g-speed resource augmentation setting of the with-cache
model. Concluding remarks are presented in Sect. 5.
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2 Formulation

The input J is composed of n jobs Ji = (ri , di , wi , ci ),
where 1 ≤ i ≤ n. Each job i (or Ji ) has a release time ri ,
deadline di , workload wi and memory operation time ci .

In the non-cache model, a schedule S should specify three
functions: the speed s(t) for time t , the function δ(t, i) that
indicates whether time t is used for the computation opera-
tion for job i , and the function ρ(t, i) that indicates whether
time t is used for the memory operation for job i . When
time t is used for the computation operation (memory oper-
ation) for job i , we say that job i is executed (or evicted)
at time t . Hence, δ(t, i) (or ρ(t, i)) equals 1 if job i is exe-
cuted (or evicted) at time t . At most one job is executed or
evicted at any time t , i.e.,

∑
i∈J (δ(t, i) + ρ(t, i)) ≤ 1. The

condition
∑

i∈J ρ(t, i) = 1 implies that s(t) = 0, because
no job is executed at time t . The goal is to find a feasible
schedule to minimize energy consumption E = ∫ ∞

0 sα(t)dt .
A schedule is feasible if it satisfies both the workload con-
straint

∫ di
ri

s(t)δ(t, i)dt ≥ wi and the eviction time constraint
∫ di
ri

ρ(t, i)dt ≥ ci . We assume a preemptive setting where
the unfinished workload of a job that is suspended can be
resumed later, without any penalty. For the memory opera-
tion when eviction preemption is allowed, the job’s eviction
time can be allocated to several separate intervals (jobswould
later resume at that break). When eviction preemption is not
allowed, the job’s eviction time should be allocated to a con-
tiguous interval. In this work, we focus on the case in which
eviction preemption is allowed.

In thewith-cachemodel, with the support of cache-locking
techniques, we need to decide which jobs to put in the cache
to reduce the energy consumed. Job i has eviction time ci
if it is allocated to memory, and eviction time 0 if it is allo-
cated to the cache. bi = 1 indicates that job i is allocated
to the cache; otherwise bi = 0. The eviction time constraint
is

∫ di
ri

ρ(t, i)dt ≥ 0 if bi = 1 and
∫ di
ri

ρ(t, i)dt ≥ ci if
bi = 0. We assume that each job occupies one slot of the
memory/cache. The cache is usually much smaller than the
memory. Assuming that the cache has N slots, while the
memory has unbounded size, to reduce energy consumption,
a schedule will allocate as many jobs as possible to the cache
(which reduces the memory operation time of the jobs), i.e.,
∑

1≤i≤n bi = N . We say a schedule has k evictions if k jobs
are stored in memory. Set K = n − N . Clearly, the optimal
solution has K evictions. The uniform with-cache model is a
special case of the with-cache model where every job has the
same length of eviction time c if it is allocated to memory
(i.e., Ji = (ri , di , wi , c)).

In the resource augmentation setting of the with-cache
model, the job’s eviction time can accelerate s times, which
is referred to as the g-speed with-cache model. Given the g-
speed augmented resource, an algorithm is a c-approximation

if it always outputs a solution that is at most c times the
optimal solution for the 1-speed with-cache model.

By abusing the notation, we use OPT to denote both the
optimal schedule and the energy in the optimal schedule for a
specifiedmodel (if the context is clear).We defineOPT = ∞
when the input instance has no feasible schedule. We use
set R (or D) to denote the collection of different release
times (or deadlines) for the jobs.We define rmin = mini∈J ri
and dmax = maxi∈J di . By W[t1,t2](S), we denote the total
workload that is executed in interval [t1, t2] in schedule S.
Given a schedule, the maximum interval that has the same
speed is called a block. The peak block is the block with the
maximum speed among all blocks of a schedule. The time
t is said to be tight in S if it is used to execute some job i
which has a deadline/release time at exactly t in S (we say t
is a tight deadline/tight release time, respectively, in S).

3 Non-cachemodel

In this section, we develop the optimal scheduling algorithms
for the non-cachemodel. First, we derive an O(n3) time algo-
rithm to compute the optimal solution in the continuous speed
setting. Next, we develop an O(dn log n) time algorithm to
solve this problem under the discrete speed setting, with d
discrete speeds available. Finally, we extend the approach
in the discrete speed setting to obtain an algorithm for the
continuous speed setting, improving the time complexity to
O(n2 log n).

3.1 Optimal continuous voltage schedule

We first propose an O(n3) time algorithm in the continuous
speed setting, based on the idea of fixing the schedule block
by block. The following fact states a fundamental property
that will be used frequently.

Fact 1 Assume that there exists a schedule to execute jobs
j1, j2 in two separate intervals with length t1, t2 and speed
s1, s2, respectively, where s1 > s2. Then, another feasible
schedule whichmoves a partial workload of j1 to be executed
in j2’s interval with new speeds s′

1 ≥ s′
2, where s

′
1 < s1 and

s′
2 > s2, reduces the total energy consumed by these two jobs.

This can be easily proved using the convexity of the power
function.

To simplify our discussion, we define the virtual speed
of job j as the speed of its eviction interval. If S executes
job j with speed s j (one speed by the provable property
(P1) in Lemma 1 below), we then set the virtual speed of
j in its eviction interval to be s j (which actually does not
execute anyworkload). Thus, in the following, whenwe refer
to block [a, b] in S, wemean themaximum intervalwhich has
the same speed (including the virtual speed) in S. Consider
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the case that schedule S arranges the eviction time of job j
in interval [t j , d j ]. For unification, w.l.o.g., we assume that
OPT executes virtual workload s j (d j − t j ) of j in interval
[t j , d j ]. Thus, in this case we can also say that d j is a tight
deadline in S. We first prepare some key properties of the
optimal solution, which are extended from the ideal model
(Yao et al. 1995), with the proof moved to the “Appendix”.

Lemma 1 The optimal solution of the non-cache model has
three properties:

(P1) There is an optimal schedule, with jobs executed in
EDF order.

(P2) OPT always executes each job with a single speed.
OPT is composed of blocks.

(P3) For a peak block B = [a, b] in OPT, a is a tight arrival
time and b is a tight deadline.

Based on these three proven properties, we derive a key
observation for the peak block of the optimal solution.

Lemma 2 The speed in the peak block B = [a, b] of OPT is∑
i :[ri ,di ]⊆[a,b] wi

b−a−∑
i :[ri ,di ]⊆[a,b] ci

.

Proof Assume that OPT has speed s1 in [a, b], which is
the largest among all blocks. We first argue that OPT only
executes jobs with [ri , di ] ⊆ [a, b] in interval [a, b]. Oth-
erwise, there exists a job j with d j > b or r j < a that
is executed in [a, b] (assume that such a job is executed
in [a0, b0] with a ≤ a0 < b0 ≤ b). W.l.o.g., assume that
d j > b. If OPT executes some workload in interval [a′, b′]
with b ≤ a′ < b′ ≤ d j and speed s2 < s1, then mov-
ing a partial workload of j from interval [a0, a0 + ε] to
[a′, a′ + ε] (resulting in the same speed in these two inter-
vals) will reduce the energy by Fact 1. For the remaining
case in which jobs executed in interval [b, d j1 ] have speed
s1 (or the whole interval [b, d j1 ] is used for eviction), we
can apply the swapping procedure as defined in Lemma 1
to deduce a contradiction. Hence, OPT executes only jobs
with [ri , di ] ⊆ [a, b] in the interval [a, b] in EDF order by
Lemma 1. This block has one speed and total eviction time of
at least

∑
i :[ri ,di ]⊆[a,b] ci . In OPT, all time of [a, b] excluding

the eviction time should run the workload with speed of at

least
∑

i :[ri ,di ]⊆[a,b] wi

b−a−∑
i :[ri ,di ]⊆[a,b] ci

to finish the jobs. We then remove

the possibility of s1 >

∑
i :[ri ,di ]⊆[a,b] wi

b−a−∑
i :[ri ,di ]⊆[a,b] ci

.Wewill first show

that OPT will not allocate the eviction time of a job j1 with
d j1 > b or r j1 < a in interval [a, b]. W.l.o.g., we only
discuss the case d j1 > b, since it holds symmetrically for
the case r j1 < a. We choose a small interval [t, t + ε] with
a ≤ t < t+ε ≤ b in which OPT allocates j1’s eviction time.
Similar to the proof of (P3) in Lemma 1, we assume that j1’s
workload is executed with speed s1 in interval [a0, a0 + ε′]

(the only difference now is that this small interval must be
outside interval [a, b]). By discussing the same two cases
of interval [b, d j1 ] (whether or not there exists a job exe-
cuted in [b, d j1 ] with speed s2 < s1) as the proof of (P3) in
Lemma 1, we can again deduce a contradiction. Thus, no job
with d j1 > b or r j1 < a has its eviction time allocated in

[a, b] in OPT. By the assumption s1 >

∑
i :[ri ,di ]⊆[a,b] wi

b−a−∑
i :[ri ,di ]⊆[a,b] ci

,

there exists at least one small interval in [a, b] that is not
used for either the execution of the workload or for eviction
time. This contradicts the choice of “block” [a, b]. There-
fore, OPT always has speed

∑
i :[ri ,di ]⊆[a,b] wi

b−a−∑
i :[ri ,di ]⊆[a,b] ci

if [a, b] is its
peak block. �	

Using this lemma, we derive Theorem 1 to compute the
optimal solution. The general idea is as follows: identify the
peak block that corresponds to the largest speed block in the
optimal solution, and then re-scale the jobs to a new instance;
iteratively find the new peak block in the new instance that
can be verified to be the second largest speed block in the
optimal solution.

Theorem 1 The optimal solution for the non-cache model
can be computed in O(n3) time.

Proof By Lemma 1, the peak block of OPT can be com-
puted by looking for an interval [t1, t2] where t1, t2 ∈ R∪D
that maximizes

∑
i :[ri ,di ]⊆[t1,t2] wi

t2−t1−∑
i :[ri ,di ]⊆[t2,t1] ci

. We only need to try all

possible pairs of tight times in R ∪ D that could form such
an interval. Note that the peak block [a1, b1] executes jobs
in (and only in) {i : [ri , di ] ⊆ [a1, b1]}. This allows us to
handle the remaining jobs recursively to determine the block
with the second highest speed in OPT. The method consists
in computing the peak block [a2, b2] for the remaining jobs
J \ {i : [ri , di ] ⊆ [a1, b1]} as though there were no inter-
val [a1, b1] (Bansal et al. 2004). Applying the same proof in
Lemma 1, we can exactly determine the jobs that should be
executed in interval [a2, b2]. Therefore, we can recursively
identify all the blocks of OPT and also its optimal sched-
ule. There are at most n blocks, and computing each block
uses O(n2) time, since enumerating all possible pairs of tight
times requires O(n2) time. Thus, energy optimization of the
non-cache model can be completed in O(n3) time. �	

3.2 Optimal discrete voltage schedule

In this section, we consider the discrete speed setting in
which the processor can run at only d given speed levels
s1 > s2 > · · · > sd > 0. In the non-cache model, the execu-
tion time of a job consists of two parts: job processing time
and memory operation time. In the analysis, we may con-
sider the allocation time for one job. Once the union of time
intervals is assigned to the job, it does not reallymatter which
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operation comes first (memory operation or job processing)
as long as the timing constraints for both job processing and
memory operation are satisfied.

It is natural to compute the optimal continuous voltage
schedule and then adjust the speed to its neighboring speed
among {s1, s2, . . . , sd , sd+1}, where we let sd+1 = 0. For a
single job, it has been proven in Ishihara and Yasuura (1998)
that the minimum energy is achieved by using the imme-
diate neighbors sl , sl+1 of the ideal speed s in appropriate
proportions. It also works for this model with memory con-
sideration, as rounding the speed to further neighbors will
result in more energy consumption owing to Fact 1. This
property is necessary, as in the following we show how
to obtain the schedule of discrete speeds without comput-
ing the optimal continuous voltage schedule. For the ideal
model without memory operation time, a method was intro-
duced in Li and Yao (2005) to obtain an optimal schedule,
which contains two main steps, partitioning and two-level
scheduling. We show that this method can be extended to
our model and gives an optimal algorithm with time com-
plexity O(dn log n).

For ease of presentation, we define three independent
states of a processor: idle (no job to be executed), mo
(performing memory operation for a job) and processing
(performing calculation for a job). Only when a processor is
in state processing does it consume energy.

3.2.1 Partition

The analysis in this section is based on the optimal continu-
ous schedule of J . From Lemma 1, the optimal continuous
voltage schedule follows the EDF policy and has the follow-
ing properties: the processing speed of one job is constant,
and the processing speed (including virtual speed) in a block
is also constant. In this optimal continuous schedule ofJ , let
J ≥s (resp. J <s) denote the subset of J consisting of jobs
whose processing speeds ≥ s (resp. < s), and let T≥s (resp.
T<s) denote the unions of blocks in which the processing
speed ≥ s (resp. < s).

In this section, we aim to compute J <s and T<s with
a constant s. Using the approach in Li and Yao (2005), we
show in the following that the partition

〈J ≥s,J <s
〉
can be

computed without computing the optimal continuous sched-
ule. An s-schedule is a schedule that processes jobs in EDF
order at constant speed s and operates memory for one job
immediately once the job is determined to be executed. In
the optimal continuous schedule, for each job i during time
interval [ri , di ], the machine cannot be idle and the machine
speed (including virtual speed) cannot be smaller than the
processing speed of job i . Hence, any job that can be sched-
uled during T<s must belong to J <s . In other words, for
each job i ∈ J ≥s , the interval [ri , di ] is outside T<s . As
jobs J ≥s can never be executed during T<s , the union of

time intervals T<s is more than enough to finish jobs J <s

under constant speed s. As a result, by running s-schedule, an
idle interval (we call it “gap”) must exist and must only exist
in T<s , and all jobs of J <s must be finished during T<s .
Moreover, some jobs of J ≥s must be unfinished (or finished
exactly at its deadline), and we call this deadline a critical
deadline in the s-schedule. By running the s-schedule in a
reverse manner, we can get the critical release times as well.
As a matter of fact, the critical deadline and release times
come from jobs J ≥s and hence cannot be inside T<s . Also,
the execution intervals of unfinished jobs (and jobs that are
finished exactly at their deadline) in s-schedule will cover
all time intervals outside T<s . Therefore, the boundary of
each interval in T<s must be a critical deadline or critical
release time. By expanding each gap to the right (resp. left)
until reaching any critical release time (resp. critical dead-
line), we are able to identify T<s and furthermore to obtain
J <s , and hence J ≥s , T≥s .

When the machine speed is fixed to constant s, for each
job the required processing time is also fixed, i.e., there is no
difference between processing time and memory operation
timewith respect to the job. Therefore, the following theorem
is cited from Li and Yao (2005).

Theorem 2 For a given speed s, the partition
〈J ≥s,J <s

〉
of

job set J can be computed in O(n log n) time.

We keep partitioning J by the given speeds. For the input
of d given speeds, job set J could be partitioned into d dis-
joint groups J 1,J 2, . . . ,J d , where J l consists of all jobs
whose execution speeds in the continuous optimal schedule
lie between sl and sl+1.

This process can be completed by applying the second
fastest speed s2 first, and obtains T≥s2 and J ≥s2 (which is
J 1), according the mentioned partition method. Then, by
eliminating the occupied time intervals T≥s2 for the remain-
ing jobs, we apply the speed s3, and so on. Based on The-
orem 2, the partition {J 1,J 2, . . . ,J d} takes O(dn log n)

time.

3.2.2 Two-level schedule

As argued earlier, there exists an optimal schedule that exe-
cutes jobs in group J l at two speeds sl and sl+1.

Definition 1 For a job set J , a two-level schedule ( or
(sl , sl+1)-schedule for short) with speeds sl and sl+1, sl >

sl+1, is a feasible schedule s(t) for J if for any time t ,
s(t) ∈ {sl , sl+1} or some job is evicted at time t (memory
operation).

Theorem 3 For each job group J l , an (sl , sl+1)-schedule
exists if and only if

(1) the sl -schedule for J l is a feasible schedule, and
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(2) the sl+1-schedule forJ l contains no idle processor state.

Proof Note that sl > sl+1. If (sl , sl+1)-schedule exists, then
both (1) and (2) hold by definition. Condition (1) shows that
speed sl is sufficient to finish all jobs, while speed sl+1 is not.
Therefore, by slowing the speed in sl+1-schedule to eliminate
all the idle periods, one can obtain an (sl , sl+1)-schedule. �	
Theorem 4 Any (sl , sl+1)-schedule for job group J l is opti-
mal.

Proof We prove the theorem by showing that any feasible
schedule of J l using two speeds sl and sl+1, without idle
time, consumes the same amount of energy, which results in
the fact that any such feasible (sl , sl+1)-schedule is optimal.

Given a feasible schedule of J l , let α and β denote the
total amount of time the processor runs at speed sl and sl+1,
respectively. Let tall denote the total available execution time
for all jobs of J l . We then have

⎧
⎨

⎩

αsl + βsl+1 =
∑

j∈J l
w j ,

α + β +
∑

j∈J l
c j = tall.

tall and total workload of job set J l are fixed values; thus α

and β are the same in all (sl , sl+1)-schedule of job setJ l , and
the energy consumption is the same. There is no idle state
of the processor in any (sl , sl+1)-schedule, and tall contains
all applicable time intervals. Thus, any (sl , sl+1)-schedule is
optimal. �	

We give an algorithm extended from Li and Yao (2005)
in the “Appendix” (Algorithm 5) to find the (sl , sl+1)-
schedule of job group J l in the “Appendix”. Finally, we
obtain the optimal schedule of J by first computing the
(s1, s2)-schedule for jobs in J 1, eliminating the time inter-
vals occupied by jobs in J l for the remaining jobs, and we
then compute the (s2, s3)-schedule for jobs in J 2, and so on.

3.3 Improved optimal continuous voltage schedule

We now use the partition method in the above-referenced
discrete speed setting to improve the time complexity of com-
puting the optimal solution in the continuous speed setting.
We will show that the continuous optimal voltage schedule
can be obtained in O(n2 log n) time.

Define T as the union of all job intervals of job set J .

Define the average rate avr(J ) =
∑

j∈J w j

|T |−∑
j∈J c j

, where |T | is
the length of available intervals inT . By executing s-schedule
of job set J over T with speed s = avr(J ), we obtain a
partition

〈
J≥s, J<s

〉
.

Lemma 3 Let s = avr(J ), if T<s = ∅; then s-schedule is
an optimal schedule for job set J .

Proof Suppose there is an optimal schedule with speed func-
tion Sopt. It is easy to see that Sopt ≥ s in interval T≥s , and
Sopt < s in interval T<s . Since

∫
T Soptdt = ∫

T s dt = ∑
wk ,

we have
∫
T≥s (Sopt − s)dt = ∫

T<s (s − Sopt)dt . If T<s = ∅,
then Sopt = s over T≥s and T≥s = T . �	

Based on Lemma 3, the optimal schedule can be con-
structed by executing partition

〈J ≥s,J <s
〉
of job set J ,

recursively, where we describe the process in Algorithm 1.

Algorithm 1 Partitioned Optimal Voltage Schedule (POVS)
Input: job set J , available interval T of J
Output: continuous optimal voltage schedule for job set J

if J = ∅ then
return

end if
s ← avr(J )〈J ≥s ,J<s

〉 ← Parti tion(J , s)

if T<s = ∅ then
return s-schedule over T

else
return the union of schedules POV S(J ≥s , T≥s) and
POV S(J<s , T<s )

end if

In Algorithm 1, each partitioning for job set J will cost
O(n log n) time and at most O(n) recursion nodes. In total,
Algorithm 1 computes a continuous optimal schedule for a
job set J in O(n2 log n) time.

4 With-cachemodel

In this section, we investigate the with-cache model, which
further allows cache operation with faster memory access
time. We will first prove that computing the optimal solution
in the general setting is NP-complete. We will then study the
uniform with-cache model with agreeable jobs and give a
polynomial time algorithm to compute the optimal solution.
Finally, we will propose an approximation algorithm for the
general setting with resource augmentation.

We start by presenting the complexity of the general with-
cache model in the following theorem.

Theorem 5 Computing the optimal solution for the speed
scaling problem in the with-cache model is NP-complete.

Proof Given any instance of the Partition problem (with |U |
items u1, u2, . . . , u|U | and

∑|U |
j=1 u j = 2B where each u j >

0), the goal of the Partition problem is to find a subset with
total value B. We construct a corresponding instance of the
with-cache model with 2|U | + 1 jobs. Let the number of
evictions be K ∈ [1, |U |], and the corresponding settings
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are as follows:

P(s) = s2; umax = max
1≤i≤|U | ui ;

yi =
√
11umax

4ui
− 1

2

w0 = 3B;

T =
|U |∑

i=1

4y2i ui − (n − K )
11umax

2
+ 4B;

We construct the following 2|U | + 1 jobs.

J0 =
⎛

⎝0, 4
∑

0≤ j≤|U |
u j , 3B, 0

⎞

⎠ ;

J2i−1 =
⎛

⎝4
∑

0≤ j≤i−1

u j , 4
∑

0≤ j≤i−1

u j + 2ui , 2yi ui , 0

⎞

⎠ ,

1 ≤ i ≤ |U |;

J2i =
⎛

⎝4
∑

0≤ j≤i−1

u j + ui , 4
∑

0≤ j≤i−1

u j + 3ui , 0, 2ui

⎞

⎠ ,

1 ≤ i ≤ |U |;

In the jobs constructed, each job has a time interval of
length 2ui . Note that every job J2i−1 has eviction time 0,
while job J2i has eviction time 2ui . Each job J2i has zero
workload; thus, it has eviction time 2ui when its speed is
fixed to be zero. The speed of job J2i−1 would be affected
by cases of whether J2i is allocated to the cache.

Wewill show that the constructed instance has energy E ≤
T if and only if the Partition problem has a subset with sum
B and the total number of elements in that set is exactly K .

We start by analyzing the possible schedules that opti-

mize the energy. First we have yi =
√

11umax
4ui

− 1
2 ≥ 3

2 .

Thus, job J2i−1 should be executed with speed of at least 3
2

in OPT. Let b j = 0 if OPT allocates job J j to memory for
eviction (incurs eviction time c j for this job) and b j = 1 if
OPT allocates job j to the cache for eviction (incurs eviction
time 0 for this job). Note that job J2i needs eviction time
of exactly 2ui . If b2i = 0, then the eviction interval of J2i
is exactly

[
4

∑
0≤ j≤i−1 u j + ui , 4

∑
0≤ j≤i−1 u j + 3ui

]
. A

simple extension of Lemma 1 can show that job J0 is exe-
cuted at a single speed in OPT. Note that the total workload
w0 is equal to 3B. Even if these workloads are executed only

in interval∪1≤i≤|U |
[
4

∑
0≤ j≤i−1 u j + 3ui , 4

∑
0≤ j≤i−1 u j

+4ui
]
(that can only be used to execute J0), the speed is at

most 3
2 , which is smaller than the speed of job J2i−1. There-

fore, J0 would not be executed in interval [r2i−1, d2i−1] by
Fact 1.

Based on the above-stated properties, J2i−1 runs until time
r2i +ui with a time interval of length 2ui if J2i is in the cache,
and runs until time r2i with a time interval of length ui if J2i
is not in the cache. Moreover, J0 is free to use the remain-
ing intervals. Therefore, the energy consumed by J2i−1 is
2y2i ui when b2i = 1 and is (2yi )2ui when b2i = 0. Job
J0 is not executed in interval [r2i + ui , d2i ] when b2i = 0,
and is allowed to execute there when b2i = 1. Thus, the
total time that job J0 is executed in OPT can be written as
∑|U |

i=1 ui + ∑|U |
i=1 b2i ui . The energy incurred by J0 is thus

w2
0∑|U |

i=1(ui+b2i ui )
= w2

0

2B+∑|U |
i=1 b2i ui

. The total energy is

E =
|U |∑

i=1

4y2i ui +
|U |∑

i=1

(
2y2i ui − 4y2i ui

)
b2i + w2

0

2B + ∑|U |
i=1 b2i ui

=
|U |∑

i=1

4y2i ui +
|U |∑

i=1

(
−2y2i ui

)
b2i + w2

0

2B + ∑|U |
i=1 b2i ui

.

Since yi =
√

11umax
4ui

− 1
2 , we have

E =
|U |∑

i=1

4y2i ui −
|U |∑

i=1

b2i

(
11umax

2
− ui

)

+ w2
0

2B + ∑|U |
i=1 b2i ui

=
|U |∑

i=1

4y2i ui −
|U |∑

i=1

b2i
11umax

2
+

|U |∑

i=1

b2i ui + w2
0

2B + ∑|U |
i=1 b2i ui

=
|U |∑

i=1

4y2i ui − (n − K )
11umax

2
+

|U |∑

i=1

b2i ui + w2
0

2B + ∑|U |
i=1 b2i ui

.

The last step is taken because there should be K evictions
where K = n − ∑|U |

i=1 b2i .
Let x = ∑

1≤i≤|U | b2i · ui . Note that we set T =
∑|U |

i=1 4y
2
i ui − (n − K ) 11umax

2 + 4B. E is minimized at
∑|U |

i=1 4y
2
i ui − (n − K ) 11umax

2 − 2B + 2w0 = T if and only

if 2B+ x = w0 ∧∑|U |
i=1 b2i = K . Sincew0 = 3B, E is min-

imized if and only if
∑|U |

i=1 b2i ui = B ∧∑|U |
i=1 b2i = K . The

Partition problem says that looking for any subset with sum
B is NP-complete. Thus, the problem that looks for a subset
with sum B where the total number of elements is K , is still
NP-complete. Because otherwise we can search in O(|U |)
time to find a solution in polynomial time for the Partition
problem.

Hence, the decision version of the with-cache model is
NP-complete. This finishes the proof. �	

4.1 Uniformwith-cachemodel with agreeable jobs

In this section, we design an O(n4) time algorithm for
the uniform with-cache model with agreeable jobs (where
earlier-released jobs have earlier deadlines).

123



640 Journal of Scheduling (2018) 21:633–646

Before discussing the details, we present an example to
demonstrate a difference in the properties of the optimal
solution structure between the non-cachemodel and thewith-
cachemodel. The optimal algorithm inSect. 3 implies that the
optimal solution for the non-cache model with jobs executed
in EDF order is unique (this can be verified by observing the
uniqueness of the schedule in the peak block of the optimal
solution). However, this property does not hold in the with-
cache model. We construct an instance for illustration. The
instance is composed of three jobs, J1 = (0, 2, 4, 1), J2 =
(0, 7, 3, 1), J3 = (5, 7, 4, 1). Set K = 1, α = 2. There are
three cases (corresponding to selecting one job to store in
the cache) among the feasible schedules. Minimum energy
consumption can only be achieved by allocating job 1 or job
3 to the cache. Moreover, the peak block is interval [0, 2]
with speed 4 when we choose job 3, while the peak block
is interval [5, 7] with speed 4 when we choose job 1. Both
of these schedules achieve the minimum cost of 32. Clearly,
the optimal schedule (restricted to EDF order) for the with-
cache model is not unique. Thus, the notion of a greedy-like
algorithm for the non-cache model is difficult to extend to
the with-cache model.

For ease of understanding, in the following discussion we
will focus on the case where an arrival time would not be a
deadline, i.e., any time t is either an arrival time or a deadline.
On the other hand, for the general case in which a time, say
t1, can be both an arrival time and a deadline, our results can
be easily extended by discussing the types of t1.
Iterative function

Given an interval [t1, t2]where t1, t2 ∈ R ∪ D, we denote
by J (t1, t2) the job set that would be assigned to this interval.
We define the assignment of jobs J (t1, t2) as follows:

1. If t1 ∈ R ∧ t2 ∈ D, then assign all jobs with [ri , di ] ⊆
[t1, t2] to J (t1, t2).

2. If t1 ∈ R∧ t2 ∈ R, then assign all jobs with t1 ≤ ri < t2
to J (t1, t2).

3. If t1 ∈ D∧ t2 ∈ D, then assign all jobs with t1 < di ≤ t2
to J (t1, t2).

4. If t1 ∈ D ∧ t2 ∈ R, then assign all jobs with [ri , di ] ∩
(t1, t2) �= ∅ to J (t1, t2).

We denote by E(t1, t2, k) the minimum cost (energy)
among all feasible schedules that finish jobs J (t1, t2) with
exactly k evictions. Correspondingly, we use E(t1, t2) to
denote the minimum cost among all feasible schedules that
finish the jobs J (t1, t2) in the ideal model without consid-
ering memory operation. By abusing the notation, we also
use J (t1, t2) to denote the total workload of these jobs if
the context is clear. Let s0(t1, t2) = J (t1,t2)

t2−t1−kc for every pair
t1, t2 ∈ R∪D. In the initialization iteration, set E(t1, t2, k) =
s0(t1, t2)α(t2 − t1 − kc) if executing all jobs J (t1, t2) with
speed s0(t1, t2) in EDF order in interval [t1, t2] is feasible.

Otherwise, set E(t1, t2, k) = ∞.Wewill prove the following
iterative function as stated in Lemma 4, which is crucial to
our polynomial time algorithm.

Lemma 4 If t1, t2 are tight times in OPT, then
E(t1, t2, k) = min

t :t1<t<t2,t∈R∪D
min
0≤i≤k

{E(t1, t, k − i) + E(t, t2, i)}
where t1, t2 ∈ R ∪ D.

For simplicity, we will first explain it in the ideal model,
and then extend the reasoning to the uniform with-cache
model.
Dynamic programming algorithm in the ideal model

Note that Wu et al. (2009) derived an improved O(n2)
time algorithm to compute the optimal solution for agreeable
jobs in the ideal model. We restudy this problem and present
an extendable dynamic programming algorithm to compute
such a solution by losing an O(n) factor of time. Since the
ideal model is a special case of the non-cache model (where
all ci = 0), the lemmas proved in Sect. 3 still hold for the
ideal model. Let the peak block in OPT be [a, b]; then a, b
are tight. Denote by E(t1, t2) the minimum cost among all
feasible schedules that finish jobs J (t1, t2). We derive the
following execution and operation rules.

Lemma 5 Execution rule If [t1, t2] is a block in OPT, then
OPT executes jobs J (t1, t2) exactly in interval [t1, t2]. The
corresponding speed in this interval is J (t1,t2)

t2−t1
.

Operation rule If [t1, t], [t, t2] are two adjacent blocks in
OPT, then J (t1, t) ∩ J (t, t2) = ∅ and J (t1, t2) = J (t1, t) ∪
J (t, t2) for all t1 < t < t2, t ∈ R ∪ D.

Proof Wefirst prove the execution rule. First, if t1 ∈ R∧t2 ∈
D, then t1 is a tight arrival time and t2 is a tight deadline by
Lemma 1. For the agreeable jobs, OPT executes the jobs with
no preemptions in EDF order by Lemma 1. Thus, all the jobs
executed in [t1, t2] have r1 ≤ ri < di ≤ t2. The jobs J (t1, t2)
are {i : [ri , di ] ⊆ [t1, t2]} in this case. Next, if t1 ∈ R∧ t2 ∈
R, then this implies that t1, t2 are tight arrival times. Since
OPT executes the jobs with no preemptions in EDF order,
all the jobs with t1 ≤ ri < t2, and only these jobs, should be
executed in [t1, t2] inOPT. The case inwhich t1 ∈ D∧t2 ∈ D
can be similarly discussed. If t1 ∈ D ∧ t2 ∈ R, then t1 is a
tight deadline and t2 is a tight arrival time. Exactly those jobs
with [ri , di ] ∩ [t1, t2] �= ∅ should be executed in [t1, t2]. For
all cases, OPT executes J (t1, t2) in [t1, t2]. Obviously, the
block [t1, t2] has speed J (t1,t2)

t2−t1
. Therefore, the execution rule

is proved.
Next we focus on the operation rule. By Lemma 1 and its

extension in the proof of Theorem 1, t1, t, t2 are tight. We
will discuss this by the types of t1, t2.

First, if t1 ∈ R ∧ t2 ∈ D, then J (t1, t2) = {i :
[ri , di ] ⊆ [t1, t2]}. If t ∈ R, then J (t1, t) = {i : t1 ≤
ri < t} and J (t, t2) = {i : [ri , di ] ⊆ [t, t2]}. Obviously,
J (t1, t) ∩ J (t, t2) = ∅ and J (t1, t2) ⊆ J (t1, t) ∪ J (t, t2). It
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is sufficient to prove that {i : t1 ≤ ri < t} ∪ {i : [ri , di ] ⊆
[t, t2]} ⊆ {i : [ri , di ] ⊆ [t1, t2]}. Note that t is a tight arrival
time and t2 is a tight deadline by Lemma 1. OPT has speed
in [t, t2] greater than that in [t1, t]. For the agreeable jobs,
OPT executes the jobs with no preemptions in EDF order
by Lemma 1. Therefore, there exists at least one job j with
t ≤ r j < d j ≤ t2. Thus, all the jobs with t1 ≤ ri < t have
di ≤ t2, because the input is agreeable jobs. Hence, we have
J (t1, t) ∪ J (t, t2) ⊆ J (t1, t2). If t ∈ D, the case is similar
by symmetrical handling of the arrival time and deadline.

Second, we consider the case t1 ∈ R ∧ t2 ∈ R. Here,
J (t1, t2) = {i : t1 ≤ ri < t2}. If t ∈ R, then J (t1, t) = {i :
t1 ≤ ri < t} and J (t, t2) = {i : t ≤ ri < t2]}. Obviously,
J (t1, t2) = {i : t1 ≤ ri < t2} = {i : t1 ≤ ri < t} ∪ {t ≤ ri <

t2} and J (t1, t) ∩ J (t, t2) = ∅. If t ∈ D, then J (t1, t) = {i :
[ri , di ] ⊆ [t1, t]} and J (t, t2) = {i : [ri , di ] ∩ (t, t2) �= ∅}.
Obviously, J (t1, t) ∩ J (t, t2) = ∅ and J (t1, t2) ⊆ J (t1, t) ∪
J (t, t2). Since t1 is a tight arrival time and t is a tight deadline,
there exists a job with t1 ≤ r j ′ < d j ′ ≤ t . We claim that all
jobs j ∈ J (t, t2) have r j ≥ t1, because otherwise r j < t1 <

t < d j , and the existence of a job with t1 ≤ r j ′ < d j ′ ≤ t
contradicts “the input is agreeable jobs”. Therefore, we have
J (t1, t) ∪ J (t, t2) ⊆ J (t1, t2). Thus, J (t1, t) ∪ J (t, t2) =
J (t1, t2) in this case.

Third, t1 ∈ D ∧ t2 ∈ D can be handled symmetrically,
similar to t1 ∈ R ∧ t2 ∈ R.

Lastly, we discuss the case t1 ∈ D ∧ t2 ∈ R. In this
case, we have J (t1, t2) = {i : [ri , di ] ∩ (t1, t2) �= ∅}. If
t ∈ D, then J (t1, t) = {i : t1 < di ≤ t} and J (t, t2) =
{i : [ri , di ] ∩ (t, t2) �= ∅}. Clearly, {i : [ri , di ] ∩ (t1, t] �=
∅} ∪ {i : [ri , di ] ∩ (t, t2) �= ∅} ⊆ {i : [ri , di ] ∩ (t1, t2) �= ∅}.
We have J (t1, t)∩ J (t, t2) = ∅ and J (t1, t)∪ J (t, t2) ⊆ {i :
[ri , di ]∩ (t1, t] �= ∅}∪{i : [ri , di ]∩ (t, t2) �= ∅} ⊆ J (t1, t2).
It remains to be shown that J (t1, t2) ⊆ J (t1, t) ∪ J (t, t2).
This is true, since a job in J (t1, t2) with t1 < di ≤ t (or
di > t) belongs to J (t1, t) (or J (t, t2)). If t ∈ R, this can be
discussed similarly to the case t ∈ D. Therefore, the lemma
is true. �	

We are now ready to present the iterative function for the
ideal model in Lemma 6. Note that the iterative function
computes E(t1, t2) by summing two values E(t1, t), E(t, t2),
which implicitly computes a schedule/cost for jobs J (t1, t)∪
J (t, t2). When computing E(rmin, dmax), the final iteration
computes a schedule for jobs J (rmin, t) ∪ J (t, dmin). An
implicit corollary by Lemma 5 is that jobs J (rmin, t) ∪
J (t, dmin) in the final iteration are exactly equal to the input
jobs J .

Lemma 6 If t1, t2 are tight times in OPT, then E(t1, t2) =
min

t :t1<t<t2,t∈R∪D
E(t1, t) + E(t, t2).

Proof We prove this lemma by induction on the number of
jobs in J . When |J | = 1, OPT is composed of one block.

OPT can be computed in the initialization step by comput-
ing E(rmin, dmax). When |J | = 2, OPT is composed of at
most two blocks. These two blocks are separated at time
t ∈ R∪D. W.l.o.g., assume that t is a tight deadline in OPT,
since the argument on the release time is symmetrical. More-
over, OPT executes jobs J (rmin, t) in interval [rmin, t] and
jobs J (t, dmax) in interval [t, dmax]. The value E(t, dmax)

(or E(rmin, t) ) is computed by calculating (J (t,dmax))
α

(dmax−t)α−1 (or
(J (rmin,t))α

(t−rmin)α−1 ) in the initialization step. The total value of these
two blocks E(rmin, dmax) can be obtained in the second
iteration when computing min

t :rmin<t<dmax,t∈R∪D
E(rmin, t) +

E(t, dmax). For the case in which there are k jobs, we assume
the induction basis wherein the iterative function can com-
pute the optimal schedule in [t, dmax] (or [rmin, t])when there
are i jobs (i ∈ {1, . . . , k−1}) being executed there. W.l.o.g.,
assume that t is a tight deadline inOPT.We have t ∈ D in this
case. Assuming that |J (rmin, t)| = k1 where 1 ≤ k1 < k,
and |J (t, dmax)| = k2 where k2 = k−k1, OPT executes jobs
J (rmin, t) in interval [rmin, t] and jobs J (t, dmax) in interval
[t, dmax]. The value E(t, dmax) (or E(rmin, t) ) can be com-
puted by the induction basis since 1 ≤ k1, k2 ≤ k − 1. By
enumerating all possible times t ∈ D, the minimum value
of E(rmin, t) + E(t, dmax) among all rmin < t < dmax is
E(rmin, dmax), exactly the cost of OPT.

Now we extend the setting to the case in which t1, t2
are the input in function E(·, ·) (instead of rmin, dmax). If
t is a tight time in OPT, then OPT executes jobs J (t1, t)
in interval [t1, t] and jobs J (t, t2) in interval [t, t2]. The
same proof as stated above can be used to show E(t1, t2) =

min
t :t1<t<t2,t∈R∪D

E(t1, t) + E(t, t2). �	
With the iterative function in hand, we are now ready to

present the proposed Algorithm 2. Theorem 6 concludes the
results.

Theorem 6 For the ideal model with agreeable jobs, OPT
can be computed by the dynamic programming algorithm in
O(n3) time.

Proof As shown inAlgorithm2, in the initialization iteration,
we set E(t1, t2) = s0(t1, t2)α(t2 − t1) if executing all jobs
J (t1, t2)with speed s0(t1, t2) in EDF order in interval [t1, t2]
is feasible. Otherwise, we set E(t1, t2) = ∞. Note that the
optimal solution is composed of blocks where the starting
and finishing time of the block are tight. Function E(t1, t2)
computes the minimum possible energy of an interval [t1, t2]
with the implicit assumption that t1, t2 are tight. To find the
optimal solution, we need only compute E(rmin, dmax).

Assume that t1, t2, . . . , t2n are the times in R ∪ D with
non-decreasing order. The energy of the optimal schedule
can be computed by solving E(rmin, dmax) = E(t1, t2n). In
iteration i , the algorithm computes a schedule with mini-
mal cost for an interval that is crossing i consecutive times
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Algorithm 2 Dynamic Programming Algorithm
Assume that t1, t2, . . . , t2n are the times inR∪Dwith non-decreasing
order. Denote by C(tu , tu+i ) (u, u + i ∈ [1, 2n]) the minimal cost to
execute jobs J (tu , tu+i ) in interval [tu, tu+i ].
Define sub-routine F(tu, tu+i ) to be value ∞ if it is infeasible
to execute J (tu, tu+i ) with speed J (tu ,tu+i )

tu+i−tu
in interval [tu, tu+i ] or

J (tu ,tu+i )
α

(tu+i−tu )α−1 if feasible.

for iteration i = 1, 2, . . . , 2n do

for each value u = 1, . . . , 2n − i do
Compute value F(tu, tu+i ).
Update C(tu , tu+i ) = min

1≤ j≤i
{C(tu , tu+ j ) +

C(tu+ j , tu+i ), F(tu, tu+i )}.

end for

end for
Return C(t1, t2n).

in {t1, t2, . . . , t2n}. We first consider the case in which t1 <

t2 < · · · < t2n , i.e., every two jobs have different arrival times
or deadlines. Denote by C(tu, tu+i ) (u, u + i ∈ [1, 2n]) the
minimal cost to execute jobs J (tu, tu+i ) in interval [tu, tu+i ].
Computing each value F(·, ·) needs to enumerate the inner
index j , which uses O(n) time. There are O(n2) items of
F(·, ·). Therefore, the complexity of the algorithm is O(n3).
The optimal schedule can be constructed by keeping the
information of every iteration.

For the general case inwhich t1 ≤ t2 ≤ · · · ≤ t2n , we need
to distinguish the function between C(ta, tb) and C(ta′ , tb)
(or between C(tb, ta) and C(tb, ta′)) if the two times ta, t ′a
have equal value, but one is an arrival time and the other is
a deadline. For example, given interval [ta, tb] with ta < tb,
job i1 has a deadline at ta and job i2 has an arrival time at
ta . There are two cases. One is that OPT has a tight deadline
at time ta , and the other is that OPT has a tight arrival time
at time ta . For these two cases, the operation rule is different
for function J (ta, tb), and hence also for function C(ta, tb).
Thus, we would distinguish the two kinds of operations by
indexing the type of ta . This allows the algorithm to return
the optimal solution. This finishes the proof. �	
Remark Note that in the implementing Algorithm 2, it needs
to index the type of time t (deadline or arrival time) to
distinguish the operations over it when t1 ≤ t2 ≤ · · · ≤
t2n . The other, simpler method is to replace the notation
C(tu, tu+i ), F(tu, tu+i ) with C(u, u + i), F(u, u + i) (using
a different index to distinguish the type of the time) in the
definition and further set C(u, u + i) = F(u, u + i) = ∞ if
tu = tu+i .

Dynamic programming algorithm in the uniform with-
cache model:

Finally, we extend the results to the uniform with-cache
model. With the same proofs, it is easy to show that the prop-

erties in Lemmas 1 and 5 still hold for the optimal schedule
in the uniform with-cache model.

Based on these results, the extension is then simple, where
we mainly update the iterative function for the ideal model
to be the form in Lemma 4. The running time needs another
O(n) factor compared to Theorem 6, since there is one more
inner loop in the updated iterative function.

Theorem 7 For agreeable jobs in the uniform with-cache
model, OPT can be computed in O(n4) time.

Proof Lemma5 can be directly extended to the uniformwith-
cache model. If [t1, t2] is a block in OPT, then OPT executes
the jobs J (t1, t2) exactly in interval [t1, t2]. This follows
Lemma 5 directly. The workload executed in this block has
one speed throughout the whole interval of [t1, t2], excluding
the eviction time. When the number of evictions (let it be k)
in [t1, t2] is known, since no preemption is generated when
the agreeable jobs are executed in EDF order, the total length
of eviction time in this interval is exactly kc. Thus, the speed
in this interval is J (t1,t2)

t2−t1−kc .
Therefore,we should set E(t1, t2, i) = s0(t1, t2)α(t2−t1−

ic) in the initialization where 0 ≤ i ≤ K if executing all jobs
J (t1, t2)with speed s0(t1, t2) and i evictions in EDF order in
interval [t1, t2] is feasible. Otherwise, we set E(t1, t2, i) =
∞. There are O(n2) pairs of time t1, t2.

Based on such revisions, we can extend the recursive func-
tion stated in Lemma 6 to obtain the recursive function for the
uniform with-cache model (Lemma 4). The proof paradigm
is almost the same, the only difference being that we need
to further enumerate the possible number of evictions in the
inner loop.

With the recursive function in Lemma 4, we can imple-
ment a dynamic programming algorithm to compute the
minimum energy for the uniform with-cache model. The
energy of the optimal schedule can be computed by solving
E(rmin, dmax, K ). The final dynamic programming algo-
rithm has complexity of O(n4), since it spends another factor
O(n) time compared to O(n3) time in Algorithm 2 to enu-
merate the eviction times in the loops. The optimal schedule
can be constructed by keeping the information of every iter-
ation. �	

4.2 With-cachemodel: approximation algorithm for
general jobs with resource augmentation

Theorem 5 shows that optimizing the energy for the with-
cache model is NP-complete. In this section, we study the
approximation algorithms in the resource augmentation set-
ting, i.e., the g-speed with-cache model.

Note that the definition of approximation algorithms for
the resource augmentation setting implicitly indicates that
the 1-speedwith-cachemodel has a feasible solution. That is,
given the input jobs and K , there is a feasible schedule which
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completes all the jobs in time and uses only K evictions.
We will design an algorithm that either shows that the input
is infeasible for the 1-speed with-cache model or outputs a
feasible solution for the g-speedwith-cachemodel that incurs
energy of at most c times that of the optimal solution in the
1-speed with-cache model.

Define V = {[t1, t1 + l1), [t2, t2 + l2), . . . , [tk, tk + lk)} to
be the configuration of the eviction intervals where [ti , ti +li )
is used for job eviction and ti+li ≤ ti+1. GivenV and jobsJ ,
a schedule SJV should not execute any workload of J in the
eviction intervals defined by V . Denote by h(i) = wi

di−ri
the

intensity of job i . In the with-cache model, we define hV (i)
as the intensity of job i excluding the eviction intervals V .
That is, hV (i) = wi

di−ri−
∫ di
t=ri

ρ(V,t)dt
, where indication func-

tion ρ(V, t) denotes whether or not t belongs to the eviction
intervals.

Algorithm 3 Compute the configuration V
Compute that maximum throughput m for problem P using the
dynamic programming algorithm in Baptiste (1999). Denote the com-
puted schedule to be S̄ and the intervals (for the execution of m jobs
in H) generated in the schedule to be V̄ .
if m < K then

return that the 1-speed with-cache model is infeasible.
else

Choose K jobs with the shortest eviction time. Denote by V the
interval configuration induced by V̄ which is only used for eviction
for the selected K jobs.

end if
Return V .

We first show an algorithm which determines whether the
instance for the 1-speed with-cache model is infeasible. If
not, it further returns a configuration of the eviction intervals
for future use. We use P to denote the following problem.
Given the input instance J for the with-cache model, let
H = {Ji = (ri , di , ci ), i ∈ J } be the induced job instance
wherewi = 0 for all i . For job Ji inH, we need to allocate ci
units of time in its alive interval [ri , di ], and each unit of time
is assigned to at most one job. The objective is to maximize
the number of jobs that are allocated without conflict. We
observe that this problem is in fact 1|r j , pmtn| ∑Uj in the
scheduling literature. Baptiste (1999) shows that the optimal
solution of P can be computed by dynamic programming
in O(n4) time. Our algorithm adopts their result. A feasible
schedule S (for the 1-speed with-cache model) which allo-
cates K evictions for J implies the existence of a feasible
schedule S̄ which completes K jobs in H. If the problem
P has maximum number of jobs m with m < K , then this
shows that there is no feasible schedule for the 1-speed with-
cache model with K evictions. We return a configuration
V for the remaining case K ≤ m. Note that K ≤ m does
not necessarily indicate the feasibility of the 1-speed with-

cache model. However, we will prove that there exists an
O(1)-approximation algorithm with g-speed resource aug-
mentation. Now we present our algorithm that returns a
schedule AV RJ

V ′ , and the performance of the algorithm is
proved in Theorem 8.

Algorithm 4 Schedule with performance guarantee
1. Let V be the configuration returned by Algorithm 3.
2. LetV ′ be the configuration induced byV where every job’s eviction
time can accelerate by s times.
3. Compute hV ′ (i) for each job i . Schedule each job i with speed
hV ′ (i) in the non-eviction interval of V ′ in EDF order. Denote the
resulting schedule as AV RJ

V ′ .

Theorem 8 Algorithm 4 is (2α g
g−1 )

α/2-approximation for
the g-speed with-cache model.

Proof AlgorithmAVRwas first proposed in Yao et al. (1995)
for the ideal model. It executes the jobs in EDF order at
speed s(t) = ∑

i h(i) · alive(i, t) where indication function
alive(i, t) equals 1 if t ∈ [ri , di ), and 0 otherwise. Clearly,
AVR is feasible for jobs in the ideal model. We adopt the
idea for algorithm AVR, and our schedule AV RJ

V executes
the jobs in EDF order at speed s(t) = ∑

i hV (i) ·alive(i, t) ·
ρ(V, t). Obviously, the speed is zero for the time that belongs
to the eviction intervals. We observe two useful properties of
algorithm AV RJ

V below.
First, assuming that V,V ′ are two configurations with

V ⊆ V ′, and job i in J has hV ′(i) ≤ r · hV (i), then we

have AV RJ
V ′ ≤ rα · AV RJ

V . This is because AV RJ
V ′ =

∫ ∞
t=0(

∑
i hV ′(i) · alive(i, t) · ρ(V ′, t))αdt ≤ ∫ ∞

t=0(
∑

i r ·
hV (i) · alive(i, t) · ρ(V ′, t))αdt ≤ ∫ ∞

t=0(
∑

i r · hV (i) ·
alive(i, t) · ρ(V, t))αdt ≤ rα

∫ ∞
t=0(

∑
i hV (i) · alive(i, t) ·

ρ(V, t))αdt = rαAV RJ
V , where the first step follows from

the assumption that hV ′(i) ≤ r · hV (i) and the second step
holds by ρ(V ′, t) ≤ ρ(V, t), since V ⊆ V ′. Second, if V ′ is
the configuration induced by V (returned by Algorithm 3),
where every job’s eviction time can accelerate by g times,
then we have hV ′(i) ≤ g

g−1 · h(i). We show the reasoning
below. Note that the configuration V computed in Algo-
rithm 3 uses K evictions. Moreover, each unit of time is
only used by at most one job for eviction. Thus, for each job
i , the total length of eviction time in interval [ri , di ] induced
by V is at most di − ri . In the g-speed augmentation setting,
the total length of eviction time in interval [ri , di ] induced
by V ′ is at most di−ri

g . Thus, the interval that can be used for

job execution has a length of at least di −ri − di−ri
g . We have

hV ′(i) ≤ wi g
(di−ri )(g−1) ≤ g

g−1h(i) where h(i) = wi
di−ri

.

Nowweprove that AV RJ
V ′ is a (2α g

g−1 )
α/2-approximation.

Let ∅ be the configuration with total eviction time of length
0. Each job i has h∅(i) = h(i) in AV RJ

∅ . Clearly, ∅ ⊆ V ′.
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We have AV RJ
V ′ ≤ (

g
g−1 )

αAV RJ
∅ by combining the two

properties above. Observe that AV RJ
∅ ≤ (2α)α

2 OPTJ∅ by

Yao et al. (1995) and Bansal et al. (2008). Thus, AV RJ
V ′ ≤

(2α g
g−1 )

α/2 · OPTJ∅ . Finally, letting Vopt be the optimal
configuration of eviction time in the optimal schedule for
the with-cache model, we have AV RJ

V ′ ≤ (2α g
g−1 )

α/2 ·
OPTJVopt

. This is because the optimal energy consumption
without eviction time is strictly less than that for the optimal
configuration Vopt. Hence, the theorem is proved. �	

5 Conclusion

We have studied the DVS-based energy minimization prob-
lem in additional practical models involving memory opera-
tion time, and we have presented several optimal algorithms
for the non-cache and with-cache models. Minimizing the
energy consumption in the general with-cache model is
provedNP-complete, and our approximation algorithm relies
on a g-speed resource augmentation; thus, one possible future
direction is studying the approximation algorithm without
such resource augmentation.
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Appendix A: Proof of Lemma 1

Proof Property (P1) can be proved by standard swapping
techniques. For example, for two jobs with deadlines d j1 ≤
d j2 , suppose on the contrary that in a schedule these two jobs
finish at time t j2 , t j1 with t j2 < t j1 . Clearly, t j2 < t j1 ≤
d j1 ≤ d j2 by the feasibility of the schedule. We can then
obtain a new schedule by swapping the execution order of
j1, j2 while keeping the speed function unchanged. The new
schedule would make j1 finish earlier than j2 and j2 finish at
time t j1 with t j1 ≤ d j2 . Thus, the deadline constraints of these
two jobs are not violated. Moreover, the energy consumption
stays the same, since the speed function is not changed. Thus,
applying such transformations,we can transformany feasible
schedule into EDF order.

We now prove (P2) by contradiction. Suppose on the con-
trary that job i is executed with more than two speeds in the
optimal schedule. We choose two small intervals (with the
same length ε → 0) that are used to execute job i with speeds
s1 > s2 > 0. We could move workload s1−s2

2 ε of i from the
interval with speed s1 to the interval with speed s2 so that the
two intervals will have the same speed s1+s2

2 . According to

the convexity of the power function, this deceases the energy
consumption and does not violate the feasibility of the sched-
ule, which leads to a contradiction. Therefore, in the optimal
solution, every job has a unique speed in the optimal solution.
Accordingly, the optimal solution is composed of blocks.

Now we focus on property (P3). Assume that OPT has
speed s1 in [a, b] which is the maximum speed in OPT. Let
the job that is executed (or virtually executed) at the end of
block [a, b] be j1. Assuming on the contrary that b is not
a tight deadline, we have d j1 > b. We will select a small
interval [a0, a0 + ε′] with length ε′ → 0 as defined below.
If the end of block [a, b] is executing a virtual workload,
then we set [a0, a0 + ε′] to be the latest interval that executes
j1’s workload (not virtual) with speed s1 (this small interval
exists because j1 has virtual speed s1). Otherwise, we set
a0 + ε′ = b.

We will discuss two cases of interval [b, d j1 ]. If OPT has
a small interval [a′, b′] with b ≤ a′ < b′ ≤ d j1 that executes
some workload with speed s2 < s1, then moving a partial
workload of j1 in [a0, a0 + ε′] to [a′, a′ + ε′] (resulting in
the same speed in these two blocks) reduces the energy by
Fact 1. The resulting schedule is feasible, which contradicts
the optimality of OPT. Consider the remaining case that the
whole interval [b, d j1 ] is used for eviction or jobs executed
in interval [b, d j1 ] have speed s1. Then OPTmust allocate an
eviction interval [b, v]with virtual speed s2 < s1. Such [b, v]
exists, because otherwise the peak block is [a, v] instead of
[a, b]. Suppose that OPT allocates job j2’s eviction time at
interval [v − ε, v] with ε < ε′. According to the definition
of virtual speed, j2’s workload is executed at speed s2 in
some interval which should be outside [a, d j1 ], sincewe have
shown that there are no other jobs that are executed in interval
[a, d j1 ] at a speed lower than s1.W.l.o.g., assume that interval
[a′, b′] with d j1 ≤ a′ < b′ ≤ d j2 is used to execute j2’s
workload. We will prove by contradiction that if b is not a
tight deadline, we can obtain another transformed schedule
with less energy consumption. The transformation attempts
to change the original two chosen intervals with speeds s1, s2
to three intervals with speed s3, s3, s4, which follows s1 >

s3 > s4 > s2, so that the energy consumption is reduced
by the convexity of the power function. The details are as
follows. We focus on one virtual interval [v − ε, v] and two
intervals [a0, a0+ε′] and [a′, b′].We then apply the following
transformation procedure:

1. Move all workloads in [a′, a′ + ε] to [a′ + ε, b′].
2. Swap job j ′2s eviction interval [v − ε, v] with the vacant

interval [a′, a′ + ε].
3. Move partial workload of [a0, a0+ε′] to the vacant inter-

val [v − ε, v] so that these two blocks have the same
speed (let the speed be s3). Ensure that the speed s3 in
[a0, a0 + ε′], [v − ε, v] is larger than the speed (s4) in
[a′, a′ + ε] by selecting a small ε.
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After the transformation, we obtain one virtual interval
[a′, a′+ε] and the following three intervals: [a0, a0+ε′]with
speed s3, [v − ε, v] with speed s3, and [a′ + ε, b′] with speed
s4. The total energy in these intervals after the transformation
is sα

3 · (ε′ + ε) + sα
4 (b′ − a′ − ε). Obviously, the resulting

schedule is still feasible for all jobs after transformation. The
total energy in intervals [a0, a0 + ε′] and [a′, b′] before the
transformation is sα

1 · ε′ + sα
2 (b′ −a′). Through such a chain-

like transformation procedure, we can see that the energy is
reduced by the property s1 > s3 > s4 > s2 and the convexity
of the power function. Thus, all cases lead to a contradiction.
Therefore, b is a tight deadline. Symmetrically, we can prove
that a is a tight arrival time using similar deduction. This
proves property (P3). �	

Appendix B: Algorithm of optimal discrete
voltage schedule in Section 3.2

Algorithm 5 Two-Level Schedule
Input: speed s1,s2 (s1 > s2) and job set J
Output: (s1, s2)-schedule for J .
Variables:
Committed: the list of allocated time intervals.
Committed(i): the time intervals allocated to job Ji .
I s1k : the union of time intervals which are assigned to job Jk for job
processing or memory operation in s1-schedule.
Run s1-schedule for J to obtain I s1k for k = 1, . . . , n.
Run s2-schedule for J to obtain I s2k for k = 1, . . . , n.
Committed ← ∅
for i = n downto 1 do

1. I = I s2i − Committed

2. Take I
′ ⊆ I s1i of appropriate length (possibly 0) from the right

end of I s1i to obtain an (s1, s2)-schedule for Ji over I ∪ I
′

3. Assign memory time of job Ji at the beginning of I ∪ I
′

4. Committed(i) = I ∪ I
′

5. Committed ← Committed ∪ Committed(i)
end for

Theorem 9 In Algorithm 5, the algorithm maintains the fol-
lowing properties at the beginning of iteration i:
(1) Committed(i + 1) ⊆ I s1i+1 ∪ I s2i+1
(2)

⋃n
k=i+1 I

s2
k ⊆ Committed ⊆ (

⋃n
k=i+1 I

s1
k ) ∪ (

⋃n
k=i+1 I

s2
k )

(3) Committed ∩ (
⋃i

k=1 I
s1
k ) = ∅

(4) Committed ∩ I s1i = ∅.
Proof In iteration i , time intervals assigned to job Ji include
all time intervals of I s2i and some time intervals (explained in
more detail later) from I s1i ; therefore, (1) and (2) are correct.

For (3), first, (
⋃i

k=1 I
s1
k ) is disjoint with (

⋃n
k=i+1 I

s1
k ), and

(
⋃i

k=1 I
s2
k ) is disjoint with (

⋃n
k=i+1 I

s2
k ). Second, (

⋃i
k=1 I

s1
k ) is

contained in (
⋃i

k=1 I
s2
k ) (which can be proved by induction;

one may refer to Li and Yao (2005) for additional detail),
which results in

⋃i
k=1 I

s1
k ∩(

⋃n
k=i+1 I

s1
k ∪⋃n

k=i+1 I
s2
k ) = ∅.

Combined with (2), (3) is correct. (4) is obvious from (3). �	

Correctness of Algorithm 5 The high-level idea is to assign
job Ji the remaining intervals from its s2-schedule first. If the
allocated time is sufficient to finish Ji at speed s1 ad s2, then
we move on to the next iteration. Otherwise (the time is not
sufficient even if we run the job at high speed s1 constantly),
we extract some time from Ji ’s s1-schedule.

In iteration i , time intervals assigned to job Ji are
from (I s2i ∪ I s1i ) − Committed . We first explain Step
2, and we discuss two extreme cases. In the first case,
we take Committed(i) = I and use constant speed s2
for job Ji . Apparently, this schedule may not be feasible,
but it contains no idle time. In the second case, we take
Committed(i) = I ∪ I s1i and use constant speed s1 for
job Ji . This schedule must be feasible for job Ji by prop-
erty (4) of Theorem 9. Combined with these two cases, an
(s1, s2)-schedule must exist. Once Committed(i) is fixed,
an (s1, s2)-schedule could be obtained by solving the linear
equations inTheorem4 for job Ji .We setCommitted(i) = I
if s1 · (|Committed(i)| − ci ) ≥ wi ; otherwise we set
Committed(i) = I ∪ I

′
such that s1 · (|Committed(i)| −

ci ) = wi , where I
′ ⊆ I s1i is taken from the right side of

I s1i . Consequently, no idle time interval is produced by the
algorithm, and we obtain a feasible (s1, s2)-schedule for job
Ji .
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