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Energy efficiency is a crucial desideratum in the design of computer systems, from small-
sized mobile devices with limited battery to large scale data centers. In such computing 
systems, processors and memory are considered as two major power consumers among 
all the system components. One recent trend to reduce power consumption is using 
shared memory in multi-core systems, such architecture has become ubiquitous nowadays. 
However, implementing the energy-efficient methods to the multi-core processor and the 
shared memory separately is not trivial. In this work, we consider the energy-efficient 
task scheduling problem, which coordinates the power consumption of both the multi-core 
processor and the shared memory, especially focus on the general situation in which the 
number of tasks is more than the number of cores. We devise an approximation algorithm 
with guaranteed performance in the multiple cores system. We tackle the problem by first 
presenting an optimal algorithm when the assignment of tasks to cores is given. Then we 
propose an approximation assignment for the general task scheduling.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, energy consumption is one of the major concerns in computer science. This attracts the atten-
tion of researchers in designing algorithms for minimizing energy consumption without performance degradation, which is 
referred to as energy efficiency problems.

One of the technologies used for energy efficiency is speed-scaling, where the processors are capable of varying its speed 
dynamically (or Dynamic Voltage Scaling (DVS)). The faster the processors run, the more energy they consume. The idea is to 
complete all the given tasks before their deadlines with the slowest possible speed to minimize energy usage. The energy 
minimization problem of scheduling n tasks with release times and deadlines on a single-core processor that can vary its 
speed dynamically where preemption is allowed has been first studied in the seminal paper by Yao et al. [2].

✩ A preliminary version of this paper appeared in Proceedings of FAW’2020, LNCS 12340, p 83–95 [1].

* Corresponding author.
E-mail address: sxliu@hit.edu.cn (S. Liu).
https://doi.org/10.1016/j.tcs.2021.03.030
0304-3975/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2021.03.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2021.03.030&domain=pdf
mailto:sxliu@hit.edu.cn
https://doi.org/10.1016/j.tcs.2021.03.030
Peter Hu

Peter Hu

Peter Hu

Peter Hu



V. Chau, C.K.K. Fong, S. Liu et al. Theoretical Computer Science 866 (2021) 160–170
A lot of the previous research work in the literature focused on optimizing the power consumption of a single-core pro-
cessor. However, in recent years, with the rapid development of data science and the demand for large-scale data analytics, 
parallel computing or distributed computing become a critical infrastructure in the market, that is a cluster with multiple 
processor cores, which can share the heavy workload to speed up the task executions. In such architecture, the main mem-
ory is usually shared among multiple processor cores. To minimize the power consumption of the cluster and distribute 
the resources efficiently, a scheduler is required to assign the tasks to each core simultaneously to utilize the computation 
resources fully. We refer to this as the system-wide energy consumption problem.

Fu et al. [3] were the first to study the problem of minimizing the scheduling problem with the consideration of both 
the multi-core processor power and the shared main memory power. The challenge of this problem lies in balancing these 
two conflicting power consumption: executing tasks at a lower speed leads to a lower processor power consumption but 
a higher memory power consumption. They focus on the case where the number of cores is unbounded, and tasks are 
available at the beginning.

In this paper, we consider the energy-efficient task scheduling problem for multiple homogeneous cores and the main 
memory shared by these cores. Our objective is to find a feasible schedule with minimum energy consumption. We con-
centrate on the scenario when the number of tasks is more than the number of cores. Fu et al. [3] already pointed out that 
the setting is NP-hard. Hence, we aim to design an approximation algorithm to obtain a near-optimal performance with a 
theoretical guarantee. We have made the following technical contributions in this paper:

• For completeness, we present the optimal algorithm when there is a single-core.
• We extend the intuition of the single-core case to the multi-core case, where the problem is tackled in two steps:

– We first present an optimal polynomial-time algorithm when the assignment of tasks to cores is given;
– We propose an algorithm to assign tasks to cores, and show that it is a constant approximation algorithm.

Related works. As a standard method to reduce the power consumption of the processor, DVS works by properly scaling the 
voltage of the processor and has been widely utilized for a single-core processor in recent decades. Yao et al. [2] were the 
first to give a polynomial-time algorithm to compute an optimal schedule. The time complexity has been further improved 
in [4] and [5]. More works along this line can be found in the surveys [6,7]. Albers et al. [8] proved the NP-hardness of the 
multi-core DVS problem when tasks could not migrate1 and gave several approximation algorithms for various special cases. 
More recently, there also exist some works focusing on scheduling tasks at an appropriate speed to create an idle period in 
which the processor can be switched into the sleep state [9–13].

Besides speed-scaling, another way of reducing energy consumption is dynamic resource sleep (DRS) management, which 
powers off the machines when the machines do not have many tasks to process. For instance, the storage cluster in the 
data centers can be turned off to save energy during low utilization period. The min-gap strategy is one of the approaches 
in DRS. When the machines are idle, they are transited to the suspended state without any energy consumption. However, a 
small amount of energy will be consumed in the process of waking up the machines from the suspended state. Hence, the 
objective of the min-gap strategy is to find a schedule such that the number of idle periods can be minimized. However, 
if the wake-up cost is non negligible, i.e., it is more profitable to keep the machine in the active state instead of turning it 
off then turning it on again, then the problem aims to find a schedule with the minimum number of active periods. This 
problem has been first studied by Baptiste [14], and has been improved in [15]. More works along this line with various 
settings can be found in [16,17].

Researchers have also explored the system-wide energy-saving solution in the architecture consisting of a single DVS 
core and a single memory. Jejurikar and Gupta [18] proposed a heuristic algorithm for minimizing the energy consumption 
of the discrete speed level single-core processor system while Zhuo and Chakrabarti [19] considered the case of continuous 
speed. Furthermore, Zhong and Xu [20] proposed algorithms for periodic and sporadic tasks, aiming at reducing the energy 
consumption of both the single processor and the shared memory. In [21], Zhong and Xu also gave the lower bounds and 
approximation algorithms, as well as some hardness results in minimizing system-wide energy problems.

The work most related to ours is [3]. They studied the problem of task scheduling for multiple cores with shared memory. 
However, they only studied the case when the number of cores is larger than the number of tasks. They presented optimal 
solutions for different task models, such as all tasks are available at the beginning, or for the case where tasks have agreeable 
deadline, i.e., later release time implies later deadline. Finally, they tested the proposed algorithms with simulations under 
the condition when the system is reasonably loaded. However, if the system is overloaded (in particular when there are 
more tasks than the number of available cores), their algorithm cannot be used, and therefore, the primary motivation of 
this paper is to address this problem.

With the proliferation of computing devices, e.g., mobile devices and servers, energy efficiency is becoming one of the 
critical issues in the design of computer systems.

Especially, it is reported that the processor consumes as much as 50% energy consumption of the overall system [22]. At 
the same time, the main memory contributes to about 30-40% of total energy consumption in modern server systems [23].

1 A task must be scheduled on a single core.
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This difficult situation keeps attracting the attention of numerous researchers from both computer systems and theoret-
ical computer science, aiming at proposing energy-efficient solutions for different computer architectures with processors 
and main memory. The recent trend of this line of research focuses on the computing environments equipped with the 
multi-core processor and the main memory shared by these cores, as such architecture has become ubiquitous in servers, 
personal computers, and even embedded systems.

For example, there are a series of works improving the energy savings of the multi-core processor by applying the 
standard method of Dynamic Voltage Scaling (DVS) [24–27].

On the other hand, to reduce the energy consumption of the main memory, previous studies target at maximizing the 
time period of sleep mode (which can be seen as a low power state, e.g., the power-down state and low refresh rate, when 
the memory is not accessed) [19–21].

Nevertheless, we should note that most previous research works either consider optimizing a single power consumption 
(i.e., multi-core processor power or memory power) or focus on the problem with the system provisioning single-core 
processor and memory.

They first showed that the problem is NP-hard if the number of cores is fewer than the number of tasks (and the 
number of cores is at least 2). Thus, to avoid facing the NP-hardness for the feasibility of the problem, they then turned 
their attention to the case when the number of cores is unbounded where several optimal solutions are proposed regarding 
different task models.

Paper organization. The rest of the paper is organized as follows. Section 2 describes the system model and presents the 
problem definition studied in this paper. In Sections 3 and 4, we consider the single-core and multi-core cases, respectively. 
Finally, we conclude the paper in Section 5.

2. Preliminaries

In this section, we present the system and task models studied throughout this paper. Then we formally define our 
problem based on these models.

2.1. System and task model

We consider the energy-efficient task scheduling problem for multiple homogeneous cores and the main memory shared 
by these cores. We assume that each core has an individual voltage supply and the speed of each core changes in a 
continuous fashion.

The dynamic power consumption Pd(s) of the core is a function of the core speed s:

Pd(s) = Cef V 2
dds,

where s = κ (Vdd−Vt )
2

Vdd
, and Cef , Vt , Vdd , κ are used to represent the effective switch capacitance, the threshold voltage, the 

supply voltage and a hardware-design-specified parameter, respectively. Note that Pd(s) is a convex and increasing function 
of the core speed s. As analyzed in [9,12], the dynamic power consumption Pd(s) can be represented proportional to sα . The 
power consumption of each core [9] is measured as Pd(s) = γ + βsα , where α > 1, β are hardware-specified constants [2], 
and γ denotes the static power of the core and βsα denotes the dynamic power. When γ > 0, it means that the cores 
consume energy even when they are not executing a task; Thus, these cores can be turned into the sleep state for energy 
saving. When a core is running at speed s for t > 0 units time, it can perform a total workload of s · t and consumes t · P (s)
energy.

For the shared main memory power consumption, we consider the static power of the memory. That is, as long as one of 
the cores executes a task, the shared memory needs to be in the active state, which consumes γm energy per unit of time. 
We refer to the static energy when the energy consumption is due to the active state of the core or of the shared memory, 
while the dynamic energy refers to the energy consumption due to the execution speed of the cores.

Note that our algorithm can be generalized to the case in which using a new core incurs a (wake-up) cost. We only 
need to fix the number of used cores p′ ≤ p and incorporate the cost into the objective function. Formally, let L be the 
wake-up cost of a core and let p′ ≤ p be the number of used cores. Then, we compute the schedule with the minimum 
energy consumption using p′ cores, which we add Lp′ . Finally, we select the schedule with the minimum cost among all 
the possible number of cores by increasing the running time by a factor p.

We have a set of n tasks, {1, 2, . . . , n}, where each task i is associated with a release time ri , a deadline di , and a 
non-negative workload wi . Without loss of generality, we suppose that tasks are sorted in non-decreasing order of their 
deadlines, i.e., d1 ≤ d2 . . . ≤ dn . A schedule is feasible if and only if all tasks are completed by their deadlines. In this work, 
we consider the case where tasks are available from the beginning, i.e., ri = 0, ∀i. We also let W i, j = ∑ j

k=i wk . We use 
makespan to represent the maximum completion time, i.e., the last moment the cores are executing a task.

We summarize the notations used in this paper in Table 1.
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Table 1
Notation summary.

n number of tasks
p number of cores
s speed/frequency of a core
s� critical speed/frequency of a core
α,β parameters of a core used in the power function
γ static energy rate of a core
γm static energy rate of the shared memory
P (·) power function of a core
W i, j total workload of tasks {i, . . . , j}
ci completion time of core i
� length of sleep time
Bi,k total workload of the k-th block of tasks on core i

2.2. Problem definition

In this paper, we consider the following problem. Given a set of n tasks that need to be scheduled on a system, as 
described above, where the system is associated with p cores and a shared memory. Our objective is to find a schedule with 
the minimum energy consumption such that the tasks are scheduled on a unique core, and such that they are completed 
before their deadline. Thus, we aim to minimize the following function:

E =
p∑

i=1

⎛
⎝γ ci + β

dn∫
0

si(t)
α dt

⎞
⎠ + γm

p
max
i=1

{ci} (1)

where si(t) is the running speed of the core i at time t , ci is the completion time of the core i.

3. Warm-up: single core case

This section studies the single-core case in which we propose an algorithm that computes the optimal schedule. We first 
consider the situation where γm = 0, and we will discuss the case of γm > 0 subsequently. The proposed algorithm is a 
consequence of [10]. They studied the problem of task scheduling with a single speed-scalable core, with static energy and 
when tasks have agreeable deadline, i.e., r j ≤ ri ⇔ d j ≤ di . The running complexity time of the algorithm is O (n3). We show 
in that when all tasks are released at time 0, and the running time becomes O (n2). The algorithm in [10] is based on the 
algorithm in [2] that computes the minimum energy consumption schedule by only considering the dynamic energy; In each 
iteration, we find the maximum intensity interval of tasks, which is the minimum speed such that the set of selected tasks 
must be scheduled in order to be completed before their respective deadlines. Such a speed can be calculated by dividing 
the sum of the workload of the tasks over the length of the interval. Finally, we remove the considered interval from the 
instance/schedule, and we repeat this procedure until all tasks are scheduled. In our case, the static energy has to be taken 
into account. We observe that, since the energy function P (s)/s is convex, there exists a unique speed s∗ such that a task 
with any other speed s′ �= s∗ will consume more energy. Formally, we have the following definition:

Definition 1 ([10,9]). For the single core case, the critical speed is defined as: s� = arg mins
P (s)

s = α

√
γ

β(α−1)
.

Since tasks are available at time 0, the considered interval at each step will be in the following form [0, d j] for some 
task j. After removing this interval, the next interval will be in the following form [d j, di] for some tasks j < i. Since at 
each step, we find the maximum intensity interval of tasks, it means that the future intervals will have lower intensity (task 
execution speed). We then have the following proposition.

Proposition 1. The schedule returned by Algorithm 1 has a non-increasing running speed.

The idea is to consider the tasks in groups where the speed of a group is calculated as the minimum speed for these 
tasks to ensure that they can be completed before their deadlines. According to Definition 1, tasks should be scheduled at 
speed s� if it is possible. In particular, the strategy of speed selection is as follows:

• When the speed of a group of tasks is less than s� , we speed up the schedule in order to minimize the energy consump-
tion.

• When the speed is larger than s� , it means that it is not possible to decrease the speed (to s�) because it will violate the 
deadline constraints.
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Algorithm 1 Optimal algorithm for single core and common release time tasks.
1: Set t ← 0 and i ← 1.
2: Sort the set of tasks in non-decreasing order of their deadline
3: Compute the critical speed s� ← arg mins P (s)/s.
4: while i ≤ n do
5: Compute W i, j ← ∑ j

k=i wk, ∀i ≤ j ≤ n.

6: Compute j� ← arg maxi≤ j≤n
Wi, j
d j−t and s ← Wi, j�

d j� −t .

7: if s ≤ s� then
8: Schedule tasks {i, . . . , j�} at speed s� until d j� .
9: else

10: Schedule tasks {i, . . . , j�} at speed s until d j� .
11: end if
12: Set t ← d j� and i ← j� + 1.
13: end while

By combining the algorithms from [10,2] and the observation of Definition 1, we obtain Algorithm 1. After initializing 
in lines 1-2, we compute the critical speed of s∗ in line 3. Then we schedule the tasks in the while-loops (lines 4-13). For 
each iteration, we compute a group of consecutive tasks starting from the current task Ti with minimum speed s such that 
no deadlines are violated in lines 5-6. Then we schedule this group of tasks at speed s∗ if s ≤ s∗ (line 8); s, otherwise (line 
10). The iteration keeps looping until we have scheduled all the tasks. The analysis of Algorithm 1 is shown as follows.

Theorem 1. Algorithm 1 computes the optimal schedule in O (n2) time.

Proof. This algorithm is a direct consequence of the algorithm in [10]. The idea is to compute the critical intervals. When 
the density of tasks in an interval is larger than s� , i.e., the ratio between the total workload of the tasks over the length of 
the interval, then the tasks must be scheduled with speed equal to the density. However, when the density is smaller than 
s� , then they must be scheduled with a speed of s� because the energy consumption will be lower. For the running time, 
it is obvious that we have at most n while-loops (lines 4-13) since at least one task is scheduled in a while-loop (line 8 or 
10). For each iteration, the algorithm requires O (n) time to compute W i, j, ∀i ≤ j ≤ n in line 5, to compute j� in line 6, and 
to schedule tasks in either line 8 or 10. Thus, the total running time of Algorithm 1 is O (n2). �

We remark that Algorithm 1 can be applied to the case of γm > 0 by changing s� ← arg mins(P (s) + γm)/s in line 2. The 
optimality and the running time of the algorithm remain unchanged.

4. Multi-core case

In this section, we propose a polynomial-time approximation algorithm with a bounded performance guarantee. We first 
present an optimal algorithm when the task assignment is given in Section 4.1, then we propose an assignment algorithm 
that generates an approximate solution with a bounded ratio in Section 4.2.

4.1. Computing optimal schedule for a given task assignment

According to the assignment of the tasks, we compute the minimum energy consumption of each core with Algorithm 1. 
We aim to calculate the optimal length of the sleeping time of the shared memory, which is the length between the end 
of the schedule and the maximum deadline. We then divide the schedule into several intervals, which are delimited by 
different relevant completion times of each core. The rationale of this approach is that the energy consumption function is 
convex in the function of the memory sleeping time between two critical consecutive time points, which may not be the 
case overall. Thus, for our case, it is also crucial to find such a set of critical time points for separating the feasible domain 
of the memory sleeping time. We first consider the single-core case and observe the behavior of energy consumption when 
we increase the memory sleeping time.

Given a schedule on core i, by Proposition 1, let s1 > s2 > . . . > ski be the set of different speeds. We also let Zk be the 
set of tasks that are scheduled at speed sk , i.e., j ∈ Zk if and only if task j is scheduled at speed sk . We refer to the set of 
tasks running at the same speed as a block of tasks. Because of the convexity of the power function, each task is scheduled 
at a constant speed. Thus there are at most n different speeds in an optimal solution, and in particular, there are at most n
blocks of tasks.

A first observation is that when we increase the length of the sleeping time, only the execution speed of the last block of 
tasks increases. This comes from the fact that the last block has the slowest speed among all blocks of tasks, and increasing 
the execution speed of another block of tasks will incur a higher energy consumption. Therefore, we only need to find out 
how far we can increase the sleeping time until the last block’s speed reaches the second last block’s speed. When the 
execution speed of the last block is equal to the speed of the second last block, they are merged into a new block. See Fig. 1
for an illustration of the different completion times. In the first schedule, we increase the speed of the last block of tasks 
until the execution speed is equal to the execution speed of the second last block of tasks (with hatched lines). We can 
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Fig. 1. Illustration of different ending time when we modify the speed of the last block of tasks. From the first schedule, we increase the execution speed 
of the last block until it has the same execution speed as the previous block, and we get the second schedule as well as the completion time e2.

Fig. 2. The set � is the union of different completion times of 2 cores.

obtain the completion time e2 at this moment. Similarly, we can obtain the completion time e1 by changing the execution 
speed of the second last and the last blocks of tasks.

Thus, we can compute the different completion time in the following way: let ek−u be the completion time of the 
schedule if we only use the speeds in {s1, s2, . . . , sk−u} and we have:

ek−u =
∑k

j=k−u

∑
i∈Z j

wi

sk−u
+

k−u−1∑
j=1

∑
i∈Z j

wi

s j
where 1 ≤ u ≤ k. (2)

We apply the same principle to the multiple cores case. See Fig. 2 for an example on two cores.

Definition 2. Let � be the set of relevant completion times on all cores.

� =
p⋃

i=1

{eni−u | 1 ≤ u ≤ ni}

At each step, we increase the speed of the last block of tasks. If there are ni tasks on core i, then such a modification 
occurs at most ni − 1 times which creates ni − 1 new completion time. Thus adding the original completion time, we have 
ni for core i, which implies that the set � contains at most n completion time. Let t1 < t2 < . . . < t|�| be the time in �. We 
analyze each zone of � which is delimited by two consecutive time. In any interval [t	, t	+1], the time t	 corresponds to 
either an actual completion time of a core, or the time when one block’s speed reaches another block’s speed (see Fig. 1). 
Then, the cost of the schedule is a convex function depends on the makespan.

Proposition 2. The cost of the schedule is convex depending on the makespan for each interval [t	, t	+1] where 1 ≤ 	 ≤ |�|.

Proof. To simplify the notation, let Bi,k be the total workload of the k-th block of tasks on core i, ki be the number of 
blocks on core i and ci be the completion time of core i. Without loss of generality, assume that the cores are sorted in 
non-decreasing order of completion time, i.e., c1 ≤ c2 ≤ . . . ≤ cp . Since the core p has the largest completion time among all 
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Fig. 3. Illustration of how the sleeping time δ	 affects the schedule. Only the blocks of tasks with hatched lines are affected by the sleeping time.

cores, we know that the shared memory will be active until cp . Moreover, let si,b be the running speed of the b-th block 
on core i. The energy consumption of a schedule S can be defined as follows: E(S) = ∑p

i=1

∑ki
b=1

Bi,b
si,b

P (si,b) + γmcp .

Let δ	 denote the length of sleeping time of the new schedule, i.e., the period between the end of the schedule and 
the end of the zone 	. For a given interval [t	, t	+1], we can separate the cost into two parts: the first part is a constant 
according to the makespan, while the other part depends on the makespan. We denote p′ as the number of cores whose 
makespan is less than cp = t	+1. The energy consumption of the first p′ cores is not affected when the maximum makespan 
is in [t	, t	+1]. In fact, only the last block on cores p′ +1, . . . , p will be affected by the sleeping time δ	 (see Fig. 3). Therefore, 
the speed of the last block for each core will be increased when the length of sleeping time δ	 increases. More formally, the 
new speed will be si,ki (δ	) = Bi,ki

Bi,ki
si,ki

−δ	

. We are now able to define the energy cost function depending on δ	 ∈ [0, t	+1 − t	]

as follows:

E	(S, δ	) =
p′∑

i=1

ki∑
b=1

Bi,b

si,b
P (si,b) +

p∑
i=p′+1

ki−1∑
b=1

Bi,b

si,b
P (si,b)

+
p∑

i=p′+1

(
Bi,ki

si,ki

− δ	

)
P (si,ki (δ	)) + γm(cp − δ	).

Since the first part does not depend on δ	 , it is a constant. We only need to show that the second part of the cost function 
is convex on δ	 . In particular, we can show that the second derivative is positive.

f (δ	) =
p∑

i=p′+1

(
Bi,ki

si,ki

− δ	

)
P (si,ki (δ	)) + γm(cp − δ	)

=
p∑

i=p′+1

(
Bi,ki

si,ki

− δ	

)⎛
⎜⎝

⎛
⎜⎝ Bi,ki

Bi,ki
si,ki

− δ	

⎞
⎟⎠

α

+ γ

⎞
⎟⎠ + γm(cp − δ	)

=
p∑

i=p′+1

(
Bi,ki − si,ki δ	

si,ki

)(
Bi,ki si,ki

Bi,ki − si,ki δ	

)α

+
p∑

i=p′+1

γ

(
Bi,ki

si,ki

− δ	

)
+ γm(cp − δ	)

=
p∑

i=p′+1

Bα
i,ki

sα−1
i,ki

(Bi,ki − si,ki δ	)α−1 +
p∑

i=p′+1

γ

(
Bi,ki

si,ki

− δ	

)
+ γm(cp − δ	)

f ′(δ	) =
p∑
′

(Bα
i,ki

sα−1
i,ki

)(1 − α)(−si,ki )

(Bi,ki − si,ki δ	)α
− γm −

p∑
′

γ

i=p +1 i=p +1
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Algorithm 2 Optimal schedule for a given task assignment.
Require: Assignment of tasks to cores.
1: for each core i do
2: Apply Algorithm 1 and obtain schedule S .
3: end for
4: Compute different completion time on each core as defined in Eq. (2) which are then collected in �.
5: Compute the optimal solution E	(S) for each interval [t	, t	+1] s.t. t	, t	+1 ∈ �.
6: return mint	∈� E	(S)

Algorithm 3 Lower bound of an instance.
Require: Set of tasks.
1: for each task j do
2: Divide w j into p equal parts.
3: Assign each part to a different core with deadline d j .
4: end for
5: Apply Algorithm 2 on the new assignment of tasks.

=
p∑

i=p′+1

(Bα
i,ki

sαi,ki
)(α − 1)

(Bi,ki − si,ki δ	)α
− γm −

p∑
i=p′+1

γ

f ′′(δ	) =
p∑

i=p′+1

(Bα
i,ki

sαi,ki
)(α − 1)(−si,ki )(−α)

(Bi,ki − si,ki δ	)α+1

=
p∑

i=p′+1

(Bα
i,ki

sα+1
i,ki

)(α − 1)α

(Bi,ki − si,ki δ	)α+1 ≥ 0

From the construction of the completion time in �, we know that the starting time of a block is not in [t	, t	+1]. We 
show this by contradiction. Suppose that there exists a core such that the last block of tasks starts at a time t in [t	, t	+1]. 
When we increase the execution speed of the last block of tasks, the completion time e cannot be before t . However, there 
exists a time t	 < t < e < t	+1 such that the execution speed of the last block of tasks is equal to the execution speed of the 
second last block of tasks. We have a contradiction because e should have been computed and added to �. Thus, we have 
Bi,ki − si,ki δ	 ≥ 0 when δ	 ∈ [0, t	+1 − t	] which leads to a feasible solution. Thus, the function E	(S, δ	) is convex. �

Let E	(S) be the optimal solution when the makespan of the schedule is in [t	, t	+1]. Then, we have E	(S) =
minδ	∈[0,t	+1−t	] E	(S, δ	), ∀t	, t	+1 ∈ �. Combining everything, our optimal algorithm for this part is described in Algo-
rithm 2. In particular, we apply Algorithm 1 for the single-core case to each core in lines 1-3. Then we compute the 
completion time for each core in line 4, followed by the computation of the optimal solution in each interval, as shown in 
Proposition 2. Finally, we return the optimal schedule. The analysis of Algorithm 2 is listed as follows.

Theorem 2. Given an assignment of tasks to cores, Algorithm 2 computes the optimal solution in O (n2 p) time.

Proof. By Theorem 1, the schedule S can be obtained in O (n2) time for each core, the running time is O (n2 p) for lines 
1-3. Once the schedule S is obtained, the set � can be computed in O (n) time. Finally, the value E	(S) can be computed by 
solving a convex minimization problem using Newton’s method in O (n2) time. Thus, the overall running time is O (n2 p). �
4.2. Task assignment

As shown in Section 4.1, we can compute the schedule with the minimum energy consumption if the assignment of 
tasks is given. We now present a task assignment scheme that produces a bounded approximate solution.

Lower bound. We show a simple lower bound of our problem, which means that given a set of tasks, the cost of the optimal 
solution must be at least this cost. The algorithm that gives the lower bound is shown in Algorithm 3.

The intuition of our lower bound is to allow scheduling the same task on different cores at the same time. Since we relax 
a constraint of the problem, the energy consumption of such a schedule must be at least the optimal energy consumption 
of our problem. In particular, by relaxing this constraint, the workload of the cores will be balanced, and the execution 
speeds of the cores are identical at any time, so the energy consumption will be lower because of the convexity of the 
power function.

Approximation algorithm. Our approximation algorithm, as shown in Algorithm 4, is based on a simple task assignment 
method. Initially, we sort tasks in non-decreasing order of their deadlines in line 1. Then, we assign the task to the core 
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with the lowest load (i.e., the core with the least total assigned workload) one by one in lines 2-4. Note that this assignment 
is similar to the one proposed by Albers et al. in [8]. Finally, we apply Algorithm 2 on this assignment and generate the 
corresponding schedule in line 5. In the rest of this section, we will prove that Algorithm 4 has a constant approximation 
ratio.

Algorithm 4 Approximation algorithm.
Require: Set of tasks J
1: Sort tasks in non-decreasing order of deadline.
2: for each task j ∈ J do
3: Assign task j to the core with the lowest load.
4: end for
5: Apply Algorithm 2 on the assignment of tasks to compute minimal energy consumption.

First, we need to show that there is an upper bound of the speed of the cores when scheduling the last block of tasks.

Proposition 3. The execution speed of a core at the end of the schedule (the last block of tasks) such that any task of this block does 
not end at its deadline, is at most s�

m = α

√
γ +γm
β(α−1)

.

Proof. We prove this claim by contradiction. Suppose we have an optimal schedule, and the last block of tasks of a core has 
an execution speed, which is strictly higher than s�

m such that no task of this block ends at its deadline. By considering this 
particular core and the shared memory, we can decrease the total energy consumption by decreasing the execution speed to 
s�

m or until a task of this block reaches a deadline, which decreases the energy consumption. Thus we have a contradiction 
with the fact that the schedule is optimal. �
Theorem 3. Algorithm 4 has an approximation ratio of max

{
1 + γm

γ ,2α+2
}

.

Proof. The proof is divided into two parts: Part (a) is on the static energy while Part (b) is devoted to the cost induced by 
the dynamic energy. Then, the approximation ratio is bounded by the ratios obtained by either the ratio in static energy or 
the one in dynamic energy.

Let LB (resp. AM S) be the lower bound of the schedule (resp. the schedule returned by the algorithm in [8]). Noted that 
in AM S , the static energy is not taken into account, so the execution speeds of the tasks are as slow as possible.

We construct a schedule S whose cost is higher than the cost of the schedule returned by the algorithm. The schedule 
S is constructed as follows. For each task, we select the maximum execution speed between AM S and LB . Since AM S is a 
feasible schedule, by scheduling tasks faster, the resulting schedule is still feasible. We recall that the energy consumption 
of the schedule from Algorithm 4 is no more than the energy consumption of S , since Algorithm 4 returns a schedule with 
minimum energy consumption for the same assignment of tasks.

Part (a). By construction, the execution speed of tasks in S is higher or equal to the execution speed of the same task in LB , 
then the static energy of the cores in S is at most the static energy of the cores in LB . Similarly, the energy consumption 
of the shared memory in S is at most γm/γ times the static energy of the cores in LB . It is because the makespan is 
at most the total running time of all cores, so by multiplying γm/γ (we schedule some tasks with speed s�

m if the initial 
speed was in [s�, s�

m]), we obtain an upper bound of the energy cost of the shared memory from Proposition 3. More 
formally, we have the following equations: S(s)

core ≤ LB(s)
core and S(s)

mem ≤ γm
γ LB(s)

core , where S(s)
core (resp. S(s)

mem) is the energy 

consumption of the static energy of the cores (resp. shared memory) in S , and LB(s)
core and LB(s)

mem are defined similarly. Thus 

LB(s)
core + LB(s)

mem ≤ S(s)
core + S(s)

mem ≤ LB(s)
core + γm

γ LB(s)
core . And the approximation ratio is 

LB(s)
core+ γm

γ LB(s)
core

LB(s)
core+LB(s)

mem
≤ LB(s)

core(1+ γm
γ )

LB(s)
core

= 1 + γm
γ .

Since the optimal static energy is at least LB(s)
core + LB(s)

mem , we have that the approximation ratio of the static energy is 
(1 + γm

γ ).

Part (b). On the other hand, we study the dynamic energy of the schedule S , i.e., the energy consumption induced by the 
execution speed of the cores. Clearly, we have AM S ≤ S(d) and LB(d) ≤ S(d) by construction.

We also know that the dynamic energy consumption is at most the sum of dynamic energy consumptions of AM S and 
LB . That is, S(d) ≤ AM S + LB(d) . Let LB(d)

AM S be the lower bound of the dynamic energy of AM S . Albers et al. [8] shows that 
LB(d)

AM S ≤ AM S ≤ 2α+1LB(d)
AM S . So we have the following equations:

LB(d) ≤ S(d) ≤ 2λ+1LB(d)
AM S + LB(d) and LB(d)

AM S ≤ S(d) ≤ 2α+1LB(d)
AM S + LB(d)

By summing these two equations, we have:
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LB(d) + LB(d)
AM S ≤ 2S(d) ≤ 2

(
2α+1LB(d)

AM S + LB(d)
)

LB(d) + LB(d)
AM S

2
≤ S(d) ≤ 2α+1LB(d)

AM S + LB(d)

Since the optimal dynamic energy is at least LB(d)+LB(d)
AM S

2 , the approximation ratio of the dynamic energy is 
2α+1 LB(d)

AM S +LB(d)

LB(d)+LB(d)
AM S

2

≤ 2α+2.

As the total energy consumption consists of both static and dynamic energy costs, combining the inequalities (3) and 
(4), the approximation ratio of Algorithm 4 is max

{
1 + γm

γ ,2α+2
}

. �
5. Conclusion

This paper considers the system-wide energy-efficient task scheduling problem in a system architecture equipped with 
the multi-core processor and the shared main memory. Especially, we focus on the case when the number of tasks is more 
than the number of cores, which has been proved to be NP-hard if the number of cores is at least 2. For the multiple cores 
case, based on the observation we gain from the single-core case, we devise a polynomial-time approximation algorithm 
with guaranteed performance.

As a future direction, considering the case with different release time will be great of interest.
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