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Abstract

This work targets energy-efficient scheduling of periodic
real-time tasks over multiple DVS processors with the con-
siderations of power consumption due to leakage current. A
polynomial-time algorithm with a 1.283 approximation bound
is proposed when the overheads in turning on/off a proces-
sor are negligible. When the overheads are non-negligible, we
develop polynomial-time algorithms with a 2 approximation
bound. A series of simulation experiments was done for the
performance evaluation of the proposed algorithms. The sim-
ulation results show that the proposed algorithms could derive
schedules very close to optimal solutions.

Keywords: Leakage-aware scheduling, Real-time and em-
bedded systems, and Task partitioning.

1 Introduction

With the advance technology of VLSI circuit designs,
a modern processor might operate at different supply volt-
ages. Technologies, such as Intel SpeedStep R© and AMD
PowerNOW!TM, provide dynamic voltage scaling for laptops to
prolong the battery lifetime. Different supply voltages lead to
different execution speeds on a dynamic voltage scaling pro-
cessor. Well-known example processors for embedded sys-
tems are Intel StrongARM SA1100 processor and the Intel
XScale. The power consumption of processors in the dynamic
voltage scaling part is a convex and increasing function of pro-
cessor speeds. The lower the speed, the less the power con-
sumption of the dynamic voltage scaling part is. Because a
lower processor speed in executing a task might stretch its ex-
ecution time, the energy consumption resulting from leakage
current will increase.

In the past decades, energy-efficient task scheduling with
various deadline constraints has received a lot of attention.

∗Support in parts by research grants from ROC National Science Council
NSC-94-2213-E-002-007 and NSC-94-2219-E-002-013.

Many studies have been done for uniprocessor scheduling [4,
6, 10, 11, 22]. Implementations of real-time systems with mul-
tiple processors are often more energy-efficient than those with
a single processor [2], because of the convexity of power con-
sumption functions. Various heuristics were proposed for en-
ergy consumption minimization under different task models in
multiprocessor environments [1, 5, 7, 9, 17, 21, 23, 24]. In par-
ticular, several energy-efficient scheduling solutions are pro-
posed based on list heuristics [9, 23] for real-time jobs with
precedence constraints. There are also heuristics for periodic
tasks in multiprocessor environments [1, 5]. Zhu, et al. [24]
explored on-line task scheduling with reclamation of slacks
from early completion of tasks during the run time. Mishra,
et al. [17] explored energy-efficient scheduling issues with the
considerations of the communication delay of tasks. In addi-
tion to the considerations of energy-efficient scheduling, An-
derson and Sanjoy [2] explored the trade-off between the to-
tal energy consumption of task executions and the number of
required processors, where all of the tasks in the proposed so-
lutions run at the same speed. There are some approxima-
tion algorithms for scheduling frame-based tasks in the mini-
mization of energy consumption, where tasks share the same
power consumption function [7] or are allowed to have differ-
ent power consumption functions [8]. Energy-efficient mul-
tiprocessor scheduling of frame-based task sets was also ex-
plored for chip-multiprocessor (CMP) architectures, in which
cores, i.e., processors, on a chip must share the same processor
speed at any given time moment [21].

Recently, researchers have started exploring energy-
efficient scheduling with the considerations of the non-
negligible power consumption of leakage current for current
and future circuit manufacture process [12]. In such a di-
rection, a processor might be turned off (or into a dormant
mode) whenever needed. For uniprocessor scheduling of
aperiodic real-time tasks, Irani, et al. [10] proposed a 2-
approximation algorithm for the minimization of energy con-
sumption with the considerations of leakage current, where
an α-approximation algorithm guarantees to derive a solution
with the energy consumption at most α times of an optimal
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solution. For periodic real-time tasks, Jejurikar, et al. [12]
and Lee, et al. [13] proposed energy-efficient strategies on a
uniprocessor by applying the procrastination scheduling to de-
cide when to turn the processor into the dormant mode. Xu, et
al. [20] considered multiprocessor leakage-aware scheduling
for the determination of the number of activated processors.

This paper considers energy-efficient scheduling of peri-
odic real-time tasks over homogeneous multiple processors.
The power consumption function of the dynamic voltage scal-
ing part of the processor is modeled as s3 [6, 10, 22], where
s is the execution speed. The power consumption result-
ing from the leakage current is assumed being a constant β
[20], and the power consumption function P () is modeled as
P (s) = s3 + β. We consider the possibility of turning each
processor into the dormant mode, whenever needed, to save
the energy consumption. Suppose that the activation of a pro-
cessor from the dormant mode could be done instantly but
might require additional energy consumption. A polynomial-
time 1.283-approximation algorithm is proposed for the min-
imization of energy consumption and the satisfaction of task
timing constraints, when the overheads in turning on/off a pro-
cessor are negligible, and there is no upper bound on the pro-
cessor speeds. When the overheads are non-negligible, opti-
mal solutions might require more than one processor for en-
ergy minimization, and the minimum available speed is 0, a
polynomial-time 1.667-approximation algorithm is proposed
to partition tasks on processors in an off-line manner and to
determine the activation/dormant time in an on-line fashion.
When the minimum available speed is more than 0, the pro-
posed algorithm has a 2 approximation bound. When there
is an upper bound on processor speeds, we take an artificial-
bound approach to minimize the energy consumption, which is
motivated by the constraint violation study introduced in [14].

The rest of this paper is organized as follows: Sec-
tion 2 defines the leakage-aware multiprocessor energy-
efficient scheduling problem. Section 3 presents our approxi-
mation algorithm when the overheads in turning on/off a pro-
cessor are negligible. When the overheads are non-negligible,
approximation algorithms are then proposed in Section 4. Ex-
perimental results for the performance evaluation of the pro-
posed algorithms are in Section 5. Section 6 is the conclusion.

2 System Models and Problem Definitions

Processor models We explore energy-efficient scheduling
over M homogeneous dynamic voltage scaling (DVS) mul-
tiprocessors, where the power consumption function of each
task remains the same for every processor. The dynamic power
consumption function Pd() of the dynamic voltage scaling part
of the processor is a function of the adopted processor speed s
[18]:

Pd(s) = CefV 2
dds, (1)

where s = κ (Vdd−Vt)
2

Vdd
, and Cef , Vt, Vdd, and κ denote the

effective switch capacitance, the threshold voltage, the supply
voltage, and a hardware-design-specific constant, respectively
(Vdd ≥ Vt ≥ 0, κ > 0, and Cef > 0). Pd() is a convex and
increasing function of processor speeds.1 When Vt is 0, the
dynamic power consumption function Pd(s) can be rephrased
as a cubic function of the processor speed s. As discussed in
the literature, e.g., [6, 10, 22], the dynamic power consumption
function can be phrased as a function proportional to sσ , where
σ is a constant between 2 and 3. To simplify the presentation,
we focus our discussions on the case that Pd(s) ∝ s3 = β1s

3,
which was adopted in many previous research results, e.g., [17,
20, 21]. Note that the to-be-proposed algorithms in this paper
could also be applied to systems with Pd(s) ∝ sσ for any σ
between 2 and 3.

The leakage power of each of the processor is a non-
negative constant, denoted as β2. The power consumption
function is the summation of the dynamic power consumption
and the leakage power. The power consumption function P ()
of a processor in this paper is (β1s

3 + β2), which is as the
same as the continuous power consumption function in [20].
The power consumption function is normalized as follows:

P (s) = s3 + β, (2)

where β is a non-negative constant. Each processor could be
turned into the dormant mode (or turned off) independently.
The power consumption of a processor is treated as 0 when
it is in the dormant mode [10, 12]. We consider processors
that could be turned on/off at instant. When needed, turning
the processor into the dormant mode might further reduce the
energy consumption. The energy consumption to turn off a
processor is assumed being negligible, but it might require ad-
ditional energy for the processor to be turned on for operations
[10].2 We denote Esw as the energy of the switching overheads
from the dormant mode to the active mode of a processor. For
the rest of this paper, we say that a processor is idle at time
instant t, if it does not perform any execution at time instant t.

In this study, we assume that each processor may operate
at any speed in [Smin, Smax], and the speed of each processor
can be adjusted independently. The number of CPU cycles
executed in a time interval is linear of the processor speed, and
the energy consumed for a processor in the execution of a task
at the processor speed s for t time units is t · P (s). Let the
number of CPU cycles completed for a task running at a speed
s for t time units be s · t.

1A function f() is convex if f(γx + (1− γ)y) ≤ γf(x) + (1− γ)f(y)
for any x, y, and γx + (1 − γ)y in the domain of f() and 0 ≤ γ ≤ 1.

2For processors with overheads to be turned off, the overheads could be
treated as part of the overheads to turn on the processor. Our algorithms and
their analysis also work well for systems with timing overheads in turn-on/off.
The procedure could be slightly modified with the same analytical results. The
detail is not included, due to the space limitation.
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Task models Tasks under discussions in this paper are pe-
riodic and independent in executions. A periodic task is an
infinite sequence of task instances, referred to as jobs, where
each job of a task comes in a regular period [15, 16]. Each task
τi is associated with its initial arrival time (denoted as ai), its
computation requirement in CPU cycles (denoted as ci), and
its period (denoted as pi). Note that ci denotes the maximum
number of CPU cycles required to complete the execution of
any job of τi. Given a set T of tasks, the hyper-period of T,
denoted as L, is defined as the least common multiple (LCM)
of the periods of tasks in T. Let the relative deadline of each
task τi be equal to its period pi in this paper. That is, the arrival
time and deadline of the j-th job of task τi are ai + (j − 1) · pi

and ai + j · pi, respectively. Throughout this paper, we focus
our discussions on the case in which all of the tasks arrive at
time 0. The number of jobs in the hyper-period of task τi is L

pi
.

Problem Definition We define the problem explored in this
paper as follows:

Definition 1 Leakage-Aware Multiprocessor Energy-Efficient
Scheduling (LAMS problem):

Consider a set T of independent tasks over M identi-
cal processors with a common power consumption function
P (s) = s3 + β, where β ≥ 0, and all tasks in T are ready at
time 0. Each periodic task τi ∈ T is associated with a com-
putation requirement in ci CPU-cycles and a period pi, where
the relative deadline of τi is pi. The energy of the switch-
ing overheads from the dormant mode to the active mode of a
processor is Esw, and a processor can operate at any speed
in [Smin, Smax]. The problem is to minimize the energy con-
sumption in the hyper-period L of tasks in T in the scheduling
of tasks in T without missing the timing constraints, where
each task is executed entirely on a processor.

A schedule of a task set is a mapping of the executions of
the tasks in the set to processors in the system with an assign-
ment of processor speeds for the corresponding time intervals
of the tasks. A schedule is feasible if all processor speeds as-
signed for its time intervals are valid, no task misses its tim-
ing constraint, and each task is executed entirely on a proces-
sor. The energy consumption of a schedule SC is denoted
as Φ(SC). A schedule is optimal if it is feasible, and its en-
ergy consumption is equal to the minimum energy consump-
tion of all feasible schedules. The following statement shows
the hardness of the LAMS problem.

Lemma 1 The LAMS problem is strongly NP-hard even
when Smax is ∞, and Esw and β are both 0.

Proof. It comes directly from a special case when Smax is
∞, Esw and β are both 0, and all of the tasks share a common
arrival time and deadline [7].

Due to the NP-hardness of the LAMS problem, we fo-
cus the study on approximation algorithms with a worst-
case guarantee on the energy consumption. Based on [19],

s
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00
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Figure 1. An illustrative example for P (s) and P (s)/s

a polynomial-time α-approximation algorithm for the LAMS

problem must have a polynomial-time complexity of the input
size and could derive a feasible solution with the energy con-
sumption at most α times of an optimal solution, for any input
instance, in which α is also referred to as the approximation
ratio (bound) of the approximation algorithm.

3 Approximation Algorithm for Negligible
Switching Overheads

This section first considers the case in which there is no
upper bound Smax on the available processor speeds for task
executions, i.e., Smax = ∞. An approximation algorithm is
proposed with a guaranteed approximation ratio. When sys-
tems with a maximum bound on the available processor speeds
are considered, i.e., Smax �= ∞, we could show that the pro-
posed algorithm can bound the maximum processor speed by
a constant factor.

3.1 Results for the Power Consumption Function

Critical speed Because P (s) is a convex and increasing
function of the processor speed s, an optimal solution for
scheduling tasks in T̂ on a processor must execute at a com-
mon speed s [4]. The energy consumption in the hyper-
period L to execute all of the tasks in T̂ at speed s is
P (s)(

∑
τi∈T̂

Lci

pi
)/s, which is proportional to P (s)

s . Although

P () is a convex and increasing function, P (s)
s is merely a con-

vex function. By solving d(P (s)/s)
ds = 0, we know that P (s)/s

is minimized when s is equal to 3

√
β
2 . As a result, no task

would execute at any speed lower than max{ 3

√
β
2 , Smin}, re-

ferred to as the critical speed s0 for the rest of this paper. (We
focus our study on the case s0 ≤ Smax.) In other words, exe-
cuting any task at any speed less than s0 would either consume
more energy than that at s0 or violate the speed constraint. The
function P (s) and the function P (s)/s are illustrated in Fig-
ure 1.

Let SC be a feasible schedule of T for the LAMS problem.
SCm is the partial schedule of SC on the m-th processor, and
Tm denotes the set of tasks assigned to execute on the m-th
processor. In other words, ∪M

m=1Tm = T and Tm ∩ Tn = ∅
for any m �= n. As shown in [15], the earliest-deadline-
first (EDF) scheduling algorithm is an optimal uniprocessor
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scheduling algorithm for independent real-time tasks. When
the total utilization of a task set is no more than 100%, the
task set is schedulable on a uniprocessor by applying the EDF
scheduling algorithm, where the utilization of a task is defined
as its execution time divided by its period. When Esw is 0,
there must exist an optimal schedule ŜC that partitions T into
T̂1, T̂2, . . . , T̂M disjoint subsets with the following two prop-
erties for any partial schedule ŜCm of ŜC with 1 ≤ m ≤ M :

Lemma 2 (1) For every task τi in T̂m, all of the jobs of τi are
executed at one common processor speed. (2) The minimum
energy consumption schedule would execute all of the tasks in
T̂m at speed s0 if

∑
τi∈T̂m

ci

pi
≤ s0, or at speed

∑
τi∈T̂m

ci

pi
,

otherwise.

Proof. This lemma comes directly from the convexity of the
power consumption function and the optimality of the energy
consumption at the critical speed. The proof is similar to that
in [3, 4].

Energy Consumption For brevity, let φ(Tm) be the min-
imum energy consumption in the hyper-period L to complete
all of the tasks in Tm in time on the m-th processor. Since Esw

is 0 in this section, an optimal schedule would turn a processor
into the dormant mode if the processor is idle. By Lemma 2,
if

∑
τi∈Tm

ci

pi
≤ s0, φ(Tm) is L

s0
· (

∑
τi∈Tm

ci

pi
) · P (s0);

otherwise, φ(Tm) is L · P (
∑

τi∈Tm

ci

pi
). The energy con-

sumption in completing a set of tasks Tm in time with load
� =

∑
τi∈Tm

ci

pi
could be calculated by a function ψ(�), where

ψ(�) =
{

L(�3 + β), if � > s0;
�
s0

L(s3
0 + β), otherwise.

(3)

The following lemmas resulting from the convexity of the
power consumption function will be widely used for algorith-
mic analysis in this section:

Lemma 3 ψ(γx+(1−γ)y) ≤ γψ(x)+(1−γ)ψ(y), for any
non-negative reals x, y and 0 ≤ γ ≤ 1.

Lemma 4 Suppose that �m + �n = �′m + �′n and �m ≤
�′m, �′n ≤ �n. Then, ψ(�m) + ψ(�n) ≥ ψ(�′m) + ψ(�′n).

Proof. The proofs of the above lemmas are omitted due to the
space limitation.

Based on Lemma 4, executing each task τi on the i-th pro-
cessor at speed max{Smin,

ci

pi
} results in an optimal schedule

when |T| ≤ M . For the rest of Section 3, we shall consider
only non-trivial cases, i.e., those with |T| > M .

3.2 An Approximation Algorithm when Smax = ∞

In this subsection, we present a scheduling algorithm for
the LAMS problem when the maximum available processor
speed is infinite. Our proposed algorithm shown in Algorithm

Algorithm 1 : LA+LTF

Input: (T,M);
1: sort all tasks in T in a non-increasing order ci/pi for τi ∈ T;
2: derive the critical speed s0;
3: set �1, �2, · · · , �M to 0, and T1,T2, · · · , TM to ∅;
4: for i = 1 to |T| do
5: find the smallest �m; (break ties arbitrarily with 1 ≤ m ≤ M )
6: Tm ← Tm ∪ {τi} and �m ← �m + ci

pi
;

7: return the schedule SCLA+LTF which turns a processor into the
dormant mode instantly when it is idle, and executes all of the
tasks in Tm (1 ≤ m ≤ M ) in an earliest-deadline-first order
on the m-th processor at speed s0 if �m ≤ s0, or at speed �m,
otherwise;

1 (Algorithm LA+LTF) adopts the Largest-Task-First strategy
by considering tasks in a non-increasing order of their loads,
where the load of task τi is defined as ci/pi. For frame-based
real-time tasks with the same arrival time and a common dead-
line, the Largest-Task-First strategy was proved being a 1.13-
approximation algorithm when P (s) ∝ s3 and Smin = 0 in
[7]. In this paper, Algorithm LA+LTF is an enhancement for
systems with leakage power consumption considerations.

For the rest of this section, let task set T be a sorted set in
a non-increasing order of the ratio of the computation require-
ment to the period of each task, i.e., ci

pi
≥ cj

pj
if i < j. We

assume that tasks are indexed in such an order for the simplic-
ity of presentation (for the rest of this section). �m denotes
the load on the m-th processor. The load of a processor is de-
fined as the sum of the ratios of the computation requirement
to the period of all of the tasks assigned to that processor. Let
Tm denote the set of the tasks assigned to the m-th processor.
Algorithm LA+LTF tries to partition T into T1,T2, . . . ,TM .
Algorithm LA+LTF assigns a task to the processor with the
smallest load among these M processors in the task order in
T. After all, we take the task partition T1,T2, . . . ,TM as
our solution. The resulting schedule SCLA+LTF executes all
of the tasks in Tm (1 ≤ m ≤ M ) in an earliest-deadline-
first order on the m-th processor at speed s0 if �m ≤ s0, or at
speed �m, otherwise, where �m is defined as

∑
τi∈Tm

ci

pi
for

the rest of this section. Once a processor is idle, it is turned
into the dormant mode instantly. The time complexity of Al-
gorithm LA+LTF is O(|T| log |T|) since |T| > M . Since the
total utilization of the tasks assigned on each processor is at
most 100%, the earliest deadline first schedule could complete
all of the tasks in time.

We now show the approximation ratio of Algorithm
LA+LTF. We first derive a lower bound of the minimum energy
consumption. The approximation ratio can then be obtained
by comparing Φ(SCLA+LTF) to the lower bound of optimal
solutions for all input instances.

Let k∗ be the largest index satisfying M ≤ k∗ ≤ 2M and
ci+M

pi+M
≥ 1

2
cM−i+1
pM−i+1

for all 1 ≤ i ≤ k∗ − M . Tf represents

the set of the first k∗ tasks of T. Note that, if |Tf | < 2M

and T \ Tf �= φ, we know
c|Tf |+1

p|Tf |+1
< 1

2

c2M−|Tf |
p2M−|Tf |

. We relax
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the constraint of the LAMS problem so that any task in T \Tf

could be executed on more than one processor simultaneously.
We denote such a relaxed problem as the SEMI-LAMS problem.
Unlike the hardness of the LAMS problem, an optimal solution
of the SEMI-LAMS problem could be derived efficiently.

Here let us show an optimal schedule of the SEMI-LAMS

problem: First, we assign the tasks in Tf by applying Algo-
rithm LA+LTF. Let �′m denote the load of the m-th processor
after the task assignment is done. Let λ be the positive value
that satisfies

M∑
m=1

max{λ − �′m, 0} =
∑

τi∈T\Tf

ci

pi
. (4)

Since task migration and simultaneous execution of a task on
multiple processors are allowed for the tasks in T \ Tf , we
can distribute the computation of these tasks among the pro-
cessors. For 1 ≤ m ≤ M , if λ > �′m, we distribute load
λ − �′m of the tasks in T \ Tf to the m-th processor, and the
resulting �′m is equal to λ. For the m-th processor, �′m is ei-
ther greater than or equal to λ. Let SC∗ denote the resulting
schedule, where Φ(SC∗) =

∑M
m=1 ψ(�′m). We now prove the

optimality of SC∗ and the relation of the loads in SC∗ and
SCLA+LTF.

Lemma 5 SC∗ is optimal for the SEMI-LAMS problem.

Proof. For any three tasks τi, τj , and τk in Tf , the following
equation holds when (1) k is greater than i, or (2) k is no less
than 2M − k∗ + 1:

ci

pi
+

cj

pj
≥ ck

pk
. (5)

As a result, in SC∗, task τi in Tf is assigned to the i-th pro-
cessor when i ≤ M or the (2M − i + 1)-th processor when
i > M . Let SC be any feasible schedule of the SEMI-LAMS

problem. We prove this lemma by transforming SC into SC∗

without increasing the energy consumption of Φ(SC). For
brevity, let Tf,1 be {τi | 1 ≤ i ≤ 2M − k∗} and Tf,2 be
{τi | 2M − k∗ + 1 ≤ i ≤ k∗}.

We first show that we could transform SC into another
schedule which assigns at most two tasks in Tf on a processor.
Let Tsc

m and �sc
m be the set of tasks in Tf and the load assigned

on the m-th processor in SC, respectively. Suppose that there
are 3 tasks in Tsc

m for some m-th processor. By the pigeon hole
principle, there must be another task set Tsc

m′ consisting of at
most one task in Tf,2, where m �= m′.

Let task τj be any task in Tsc
m . Below, we show that

the move of τj to the m′-th processor along with a load
reassignment does not increase the energy consumption. Let
Tsc′

m be Tsc
m \ {τj} and Tsc′

m′ be Tsc
m′ ∪ {τj}. By Equation (5),

we know that both
∑

τi∈Tsc′
m

ci/pi and
∑

τi∈Tsc′
m′

ci/pi are

between
∑

τi∈Tsc
m′

ci/pi and
∑

τi∈Tsc
m

ci/pi. Let �m+m′

be �sc
m + �sc

m′ − ∑
τi∈Tsc

m∪Tsc
m′

ci

pi
. Let λ′

m+m′ be the value

that satisfies (max{λ′
m+m′ − (

∑
τi∈Tsc′

m
ci/pi), 0} +

max{λ′
m+m′ − (

∑
τi∈Tsc′

m′
ci/pi), 0}) = �m+m′ .

�sc′
m and �sc′

m′ are max{λ′
m+m′ ,

∑
τi∈Tsc′

m
ci/pi} and

max{λ′
m+m′ ,

∑
τi∈Tsc′

m′
ci/pi}, respectively. Both of

�sc′
m and �sc′

m′ are between �sc
m and �sc

m′ . As a result, by
Lemma 4, ψ(�sc

m) + ψ(�sc
m′) ≥ ψ(�sc′

m ) + ψ(�sc′
m′ ). We could

transform SC into another schedule which assigns at most
two tasks in Tf on a processor without increasing the energy
consumption.

By applying Lemma 4 and Equation (5), a similar argu-
ment could be made by showing that we could transform SC
into SC∗ without increasing the total energy consumption. We
omit the detail proof due to the space limitation.

Lemma 6 For the m∗-th processor with �′m∗ > λ, �m∗ is
equal to �′m∗ . For the m-th processor with the maximum load
�m̂ among all of the m̂-th processors with �′m̂ = λ, �m is at
most 3

2�min, where �min is the minimum load of the M proces-
sors derived from Algorithm LA+LTF.

Proof. Once we consider task τi in T \ Tf in the loop
from Step 4 to Step 6 in Algorithm LA+LTF, there must be
another processor with load less than the m∗-th processor by
the pigeon-hole principle. Hence, Algorithm LA+LTF never
assigns any task in T \ Tf to the m∗-th processor. Namely,
�m∗ is equal to �′m∗ .

We now prove the second statement. Two cases have to
be considered: (1) �′m = �m and (2) �′m < �m. Let the n-th
processor be the processor with load equal to �min. For the first
case, �n must be equal to �m, and the proof is done. For the
second case, suppose that τk is the last task inserted into Tm

when we execute Algorithm LA+LTF for T. Since �′m = λ <
�m, τk is in T\Tf . Since τk is inserted into Tm instead of Tn,
we also know that �m − ck

pk
≤ �n. If Tm \ {τk} has only one

task, ck

pk
is less than 1

2 (�m − ck

pk
) since τk is not in Tf , and the

index of the task in Tm is less than 2M−|Tf |+1. If Tm\{τk}
has more than one task, ck

pk
is no more than 1

2 (�m− ck

pk
) because

of the largest task first strategy. Hence, ck

pk
≤ 1

2�n. As a result,

�m ≤ 3
2�n = 3

2�min.
The following lemma is required to show the approximation

ratio of Algorithm LA+LTF.

Lemma 7 Suppose f(y) = μ·ψ(3y)+(M̂−μ)ψ(2y)

M̂ψ( Λ
M̂

)
for positive

numbers M̂ and Λ, and a non-negative number μ, where 0 ≤
y, 0 ≤ μ ≤ M̂ and μ · 3y + (M̂ − μ) · 2y = Λ, then f(y) ≤
1.283.

Proof. We have to consider three cases: (1) 3y < s0, (2) s0 <
2y, and (3) 2y ≤ s0 ≤ 3y. For the first case, the numerator and
the denominator of f(y) are the same, and, hence, f(y) = 1.

For the second case, f(y) = μ((3y)3+β)+(M̂−μ)((2y)3+β)

M̂(( Λ
M̂

)3+β)
≤

μ(3y)3+(M̂−μ)(2y)3

M̂( Λ
M̂

)3
≤ 1.13, where the last inequality comes

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06) 
0-7695-2516-4/06 $20.00 © 2006 IEEE Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 27,2023 at 08:00:37 UTC from IEEE Xplore.  Restrictions apply. 



from the proof in [7][Theorem 5]. For the rest of the proof,
we focus our discussions on the cases that 2y ≤ s0 ≤ 3y and
2y ≤ Λ

M̂
≤ 3y. We have two sub-cases: (1) s0 ≤ Λ

M̂
and (2)

s0 ≥ Λ
M̂

.

By the definition, μ is Λ−2yM̂
y . For the first sub-case,

f(y) =
Λ−2yM̂

y ((3y)3+β)+ 3yM̂−Λ
y

2y
s0

(s3
0+β)

M̂(( Λ
M̂

)3+β)
. Since s0 ≥ 2y,

we know that Λ−2yM̂
y β + 3yM̂−Λ

y
2y
s0

β ≤ M̂β. As a result,

f(y) ≤
Λ−2yM̂

y (3y)3+ 3yM̂−Λ
s0

2s3
0

M̂( Λ
M̂

)3
. By rephrasing ŷ as y

Λ/M̂
and

ŝ0 as s0

Λ/M̂
, we have f(y) ≤

M̂−2ŷM̂
ŷ (3ŷ)3+2 3ŷM̂−M̂

ŝ0
ŝ0

3

M̂
= g(ŷ),

and 2ŷ ≤ 1 ≤ 3ŷ. By solving g′(ŷ) = 0 and show-
ing g′′(ŷ) < 0 when 2ŷ ≤ 1 ≤ 3ŷ, we know that g(ŷ)

is maximized when ŷ is 3+ 2
√

9+12ŝ0
2

18 . As a result, f(y) ≤
1
2 + (3+4ŝ0

2)
√

9+12ŝ0
2

18 − ŝ0
2 ≤ 1.283 since ŝ0 ≤ 1, where the

last inequality comes from ŝ0 = 1. Similarly, we could have

f(y) ≤ (1
2 + (3+4ŝ0

2)
√

9+12ŝ0
2

18 − ŝ0
2)/ŝ0

2 ≤ 1.283 for the
second sub-case, where 1 ≤ ŝ0 ≤ 1.5 and the last inequality
comes from ŝ0 = 1. The proof is done.

Theorem 1 Algorithm LA+LTF is a 1.283-approximation al-
gorithm of the LAMS problem with Esw = 0.

Proof. Φ(SCLA+LTF) is equal to
∑M

m=1 ψ(�m) =∑M
m=1(ψ(�m)δ�′m>λ + ψ(�m)δ�′m=λ), where δb is 1 if b

is true; otherwise, it is 0. Φ(SC∗) is
∑M

m=1 ψ(�′m) =∑M
m=1(ψ(�′m)δ�′m>λ + ψ(�′m)δ�′m=λ). Based on Lemma 6

that �m is equal to �′m when �′m > λ and the fact that SC∗

is a lower bound of the optimal solution of the LAMS problem,
we know that the approximation ratio A is:

A ≤
∑M

m=1(ψ(�m)δ�′m>λ + ψ(�m)δ�′m=λ)∑M
m=1(ψ(�′m)δ�′m>λ + ψ(�′m)δ�′m=λ)

≤
∑M

m=1 ψ(�m)δ�′m=λ∑M
m=1 ψ(�′m)δ�′m=λ

.

Let Λ be the value of
∑M

m=1 �′mδ�′m=λ. It could be shown

that
∑M

m=1 �mδ�′m=λ is equal to Λ. Let M̂ be
∑M

m=1 δ�′m=λ,
which indicates the number of processors with loads equal to λ
in SC∗. Moreover,

∑M
m=1 ψ(�′m)δ�′m=λ is equal to M̂ψ( Λ

M̂
).

Let �min be the minimum load of some processor derived from
Algorithm LA+LTF. With Lemma 6, we know that �min ≤
�m ≤ 3

2�min for any m-th processor with �′m = λ. Let γm be
the value that satisfies γm�min + (1 − γm)3

2�min = �m. For
any m-th processor with �′m = λ, since �min ≤ �m ≤ 3

2�min,
γm must be a real number between 0 and 1, and ψ(�m) ≤
γmψ(�min) + (1 − γm)ψ(3

2�min) by Lemma 3. As a re-

sult, we know that
∑M

m=1 ψ(�m)δ�′m=λ ≤ γ̂ψ(�min) + (M̂ −
γ̂)ψ(3

2�min) with γ̂�min+(M̂− γ̂)3
2�min = Λ. With Lemma 7

by taking �min
2 as y, we know that the approximation ratio of

Algorithm LA+LTF is 1.283.

Corollary 1 Algorithm LA+LTF is a 1.13-approximation al-
gorithm of the LAMS problem when β and Smin are both 0.

3.3 Scheduling when Smax �= ∞

We now consider the LAMS problem with a constraint on
the maximum processor speed. For such a case, the deriva-
tion of a feasible schedule is NP-complete even when β is
0 [7]. Similar to the approach in [7], we show that Algo-
rithm LA+LTF is an artificial-bounded approach by adopting
the constraint-violation approach [14]. For such a case, we
first set an artificial upper bound on the processor speed and
then derive feasible schedules in the minimization of energy
consumption.

Theorem 2 Algorithm LA+LTF would not derive any sched-
ule which executes tasks at higher speed than (4

3 − 1
3M )Smax

for any input instance with a feasible schedule for the LAMS

problem.

Proof. The proof is omitted due to the space limitation.

4 A Two-Phase Scheduling Algorithm for Non-
Negligible Switching Overheads

In this section, we consider systems that have non-
negligible switching overheads in turning on/off a processor,
i.e., Esw �= 0. The partition method proposed in Section 3 is
adopted to assign tasks in an off-line manner with a task re-
assignment procedure. Each processor then individually de-
cides the moment to turn on/off the processor on the fly. When
a processor is idle, we have to decide whether we should turn
the processor into the dormant mode to reduce energy result-
ing from the leakage current or not. If Esw is 0, we could
turn off a processor instantly when the processor is idle, as
shown in Section 3. However, when Esw is not 0, we have
to make the decision carefully. If the idle period is not long
enough, the energy consumption resulting from the switching
overheads might be greater than that saved from the leakage
current. When Smax is not ∞, the artificial bound is as the
same as that in Section 3.3. We do not consider Smax in this
section.

For any input instance T with
∑

τi∈T
ci

pi
≤ s0, it is not

difficult to see that the optimal schedule will use at most one
processor for the executions of T, and the LAMS problem is
reduced to a uniprocessor problem. On such a special case,
the 2-approximation algorithm in [10] could be adopted. For
the rest of this paper, we only consider input instances with∑

τi∈T
ci

pi
> s0. Our proposed algorithm consists of two

phases. In the first phase, Algorithm LA+LTF is adopted for
task assignment along with better re-assignment. For the sec-
ond phase, an EDF-based scheduling policy is adopted for
each processor to schedule its tasks.
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Algorithm 2 : FF

Input: (T,M,T†, M†);
1: mark each of the processors in M† as ”unused”;
2: for each unassigned task τi in T† do
3: if there exists a processor m in M† marked as ”used” with

�m + ci
pi

≤ s0 then
4: �m ← �m + ci

pi
, Tm ← Tm ∪ {τi};

5: else if there exists a processor m in M† marked as ”unused”
then

6: mark processor m as ”used”, �m ← ci
pi

, and Tm ← {τi};
7: else
8: return the task assignment of T resulting from

LA+LTF(T,M);
9: return the resulting task assignment of T† on these |M†| proces-

sors and the task assignment of T \ T† on the other M − |M†|
processors in SCLA+LTF;

4.1 No dormant-mode consideration

After applying Algorithm LA+LTF for task assignment, we
re-assign tasks on all of the m-th processors with �m < s0

to reduce the number of activated processors in the system.
Suppose that M† is the set of such processors with �m < s0.
Let T† be ∪m∈M†Tm. Tasks in T† are assigned onto these
|M†| processors by applying the first-fit algorithm (denoted
by Algorithm FF as shown in Algorithm 2): First of all, all
of the processors in M† are marked as unused. In each it-
eration, we assign an un-assigned task τi in T† to a proces-
sor marked as used if the resulting load of the tasks assigned
on the processor is no more than s0. If no such a processor
marked as “used” exists, and all of the processors in M† are
marked as “used”, then Algorithm FF returns the task assign-
ment derived from Algorithm LA+LTF; otherwise, we mark an
“unused” processor in M† as “used“ and assign τi to the pro-
cessor. The time complexity of the above task re-assignment
is O(|T†||M†|). Again, let T1,T2, . . . ,TM be the resulting
task partition of T after applying Algorithms LA+LTF and FF,
and �m be

∑
τi∈Tm

ci

pi
.

For the second phase, an EDF-based scheduling policy
could be adopted in each processor to schedule tasks assigned
onto it. For the m-th processor with

∑
τi∈Tm

ci

pi
≥ s0, the

execution of task τi in Tm at speed
∑

τi∈Tm

ci

pi
in an earliest-

deadline-first order would result in a feasible uniprocessor
schedule of Tm under 100% utilization with the minimum en-
ergy consumption because of Lemma 2. Let SCLA+LTF+FF
be the schedule by applying the following three rules: (1) turn
off the m-th processor with Tm = ∅ at time 0, (2) execute all
of the tasks in Tm (1 ≤ m ≤ M ) in an earliest-deadline-first
order on the m-th processor at speed max{s0,

∑
τi∈Tm

ci

pi
},

and (3) set the speed of the m-th processor to Smin when the
processor is idle and Tm �= ∅.

Let the total execution length of SCLA+LTF+FF be the sum
of the execution times of all of the tasks in T in the hyper-
period L. The total idle length of SCLA+LTF+FF is M ′L mi-

nus the total execution length of SCLA+LTF+FF, where M ′ is
the number of processors assigned to execute some tasks of T
in SCLA+LTF+FF. The following two lemmas show the rela-
tion between the total execution length and the total idle length
of SCLA+LTF+FF.

Lemma 8 When
∑

τi∈T
ci

pi
> s0, the total idle length

is no longer than the total execution length in schedule
SCLA+LTF+FF.

Proof. If the loads of all of the M ′ processors are no less
than s0, then each of the M ′ processors in SCLA+LTF+FF
would have 100% utilization, and the total idle length is 0.
We consider another case in which the load of some of the M ′

processors is less than s0. If there is only one processor with
load strictly between 0 and s0, there must be another proces-
sor with load no less than s0 in schedule SCLA+LTF+FF, since∑

τi∈T
ci

pi
> s0. The total execution length must be at least L.

Hence, the idle length in such a case is less than L.
We now consider the case in which there are at least two

processors with loads less than s0, i.e.,
∑

τi∈T†
ci

pi
> s0. |T†|

must be at least 2 in such a case. We claim that
∑

τi∈T†
ci

pis0

is at least 0.5(M ′ − (M − |M†|)). Hence, the total idle
length is no longer than the total execution length in sched-
ule SCLA+LTF+FF. The claim could be proved as follows:
Let T†

i be the subset of tasks in T† that consists of task
τi and those tasks assigned before τi is considered in Algo-
rithm FF. We show that if there are M ′

i processors marked
as used with M ′

i ≥ 2 when task τi is considered for assign-
ing in Algorithm FF,

∑
τj∈T†

i

cj

pj
is at least 1

2M ′
i . Clearly,

there must be at most one of the M ′
i processors with load

less than 1
2s0. Otherwise, the first-fit strategy is contracted.

Let �̂ be the minimum load of these M ′
i processors. The load

of each of the other M ′
i − 1 ”used” processors must be no

less than max{s0/2, s0 − �̂}. Otherwise, the solution con-
tradicts with Algorithm FF. We know that (

∑
τj∈T†

i

cj

pjs0
≥

�̂+(M ′
i−1)(max{s0/2, s0−�̂}) ≥ M ′

i/2) since M ′
i ≥ 2. As a

result, M ′
i ≤ 2

∑
τj∈T†

i

cj

pjs0
. We conclude that

∑
τi∈T†

ci

pis0

is at least 0.5(M ′ − (M − |M†|)). This lemma is proved.

Lemma 9 When maxm=1,2,...,M �mδ(�′m=λ) > s0, the total
idle length is no longer than the half of the total execution
length in schedule SCLA+LTF+FF, in which λ is defined in
Equation (4). δb is 1 if b is true. It is 0, otherwise.

Proof. For brevity, let �̂1, �̂2, . . . , ˆ�M be the loads on
the M processors right after applying Algorithm LA+LTF.
Since maxm=1,2,...,M �mδ�′m=λ > s0, we know that

maxm=1,2,...,M �̂mδ�′m=λ = maxm=1,2,...,M �mδ�′m=λ > s0.

Based on Lemma 6, we know that minm=1,2,...,M �̂m ≥
2
3 maxm=1,2,...,M �̂mδ�′m=λ > 2

3s0. Hence,
∑

τi∈T†
ci

pis0
>

2
3 |M†|. As a result, the total idle length is no longer than the
half of the total execution length in schedule SCLA+LTF+FF.
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Again, Φ(SC∗) is a lower bound of the LAMS problem with
non-negligible switching overheads. The following theorem
shows the performance guarantee of schedule SCLA+LTF+FF.

Theorem 3 The energy consumption of schedule
SCLA+LTF+FF is at most twice of the optimal energy
consumption of the LAMS problem for any input instance T
and M with

∑
τi∈T

ci

pi
> s0.

Proof. We prove this theorem by showing that
Φ(SCLA+LTF+FF) is at most twice of Φ(SC∗). Let the
total idle length of SCLA+LTF+FF be I . Since the en-
ergy consumption resulting from the executions of tasks in
SCLA+LTF+FF is equal to that in SCLA+LTF, we know that
Φ(SCLA+LTF+FF) is equal to I(S3

min +β)+Φ(SCLA+LTF),
in which Esw is 0 in SCLA+LTF. The approx-

imation ratio A is
I(S3

min+β)+Φ(SCLA+LTF)

Φ(SC∗) . Let
�max be maxm=1,2,...,M ′ �mδ�′m=λ, and �min be
minm=1,2,...,M ′ �mδ�′m=λ. There are three cases to consider:
(1) �min > s0, (2) �max ≤ s0, and (3) �min ≤ s0 < �max.

For the first case, T† is an empty set, and each of the M
processors executes some task at any time instant during the
hyper-period L. As a result, I is 0, and A is at most 1.283 by
Theorem 1 in such a case.

For the second case, Φ(SCLA+LTF) is equal to Φ(SC∗).
By applying Lemma 8, I is at most

∑
τi∈T

L
pi

ci

s0
, since the

total execution length in SCLA+LTF+FF in such a case is at
most

∑
τi∈T

L
pi

ci

s0
. As a result, we have

A ≤
∑

τi∈T
L
pi

ci

s0
(S3

min + β) + Φ(SCLA+LTF)

Φ(SC∗)

≤
∑

τi∈T
L
pi

ci

s0
(S3

min + β)∑
τi∈T

L
pi

ci

s0
(s3

0 + β)
+ 1 ≤ 2, (6)

where the last inequality comes from that Smin ≤ s0.
For the last case, since �max is greater than s0, with

Lemma 9, the total idle length I is at most 1
3 |M†|L. Hence,

we know that

A ≤
1
3 |M†|L(S3

min + β) + Φ(SCLA+LTF)
Φ(SC∗)

≤1 0.5 +
Φ(SCLA+LTF)

Φ(SC∗)
≤ 1.783. (7)

The second inequality, i.e., ≤1, in Equation (7) comes from
that the total execution length is at least 2

3 |M†|L, and, hence,
Φ(SC∗) is at least 2

3 |M†|L(s3
0 + β) ≥ 2

3 |M†|L(S3
min + β),

while the last inequality in Equation (7) comes from Theo-
rem 1 directly.

With the considerations of the three cases above, we know
that A ≤ 2, which is dominated by the second case.

We could have the following corollary with a similar proof
in Theorem 3.

Corollary 2 The energy consumption of schedule
SCLA+LTF+FF is at most 1.667 times of the optimal en-
ergy consumption of the LAMS problem for any input instance
T and M with

∑
τi∈T

ci

pi
> s0 when Smin is 0.

Proof. The proof could be done by taking Smin = 0 and
β = 2s3

0 into the calculation of A, in which A ≤ 5/3 in
Equation (6) and A ≤ 1/3 + 1.283 < 1.617 in Equation (7).

4.2 Considerations of the dormant mode

We could derive schedules which consume less energy than
the energy consumption of schedule SCLA+LTF+FF by turn-
ing the processor into the dormant mode on the fly in the sec-
ond phase. The idea behind the scheduling on the fly is to
lengthen and aggregate the idle period so that the idle time is
long enough to turn off the processor. When a processor is ac-
tive and is idle at a moment, the speed of the processor is set
to Smin. The power consumption in such a mode is S3

min + β.
Hence, if the idle period is greater than Esw

β+S3
min

, it is worth of
turning off the processor. The longer the idle period is, the
less the energy consumption. Let tθ be the threshold idle pe-
riod Esw

β+S3
min

for the rest of this paper.

The determination of idle periods could be done by procras-
tinating the arrival time of the next job to the system, such as
the study in [10, 12]. Our approach for Tm with 0 < �m < s0

is presented as follows: Let Zi be the length of time that the
arrival time of task τi could be procrastinated on the m-th pro-
cessor, in which Zi is (1 − ∑

τj∈Tm

cj

pjs0
)pi. By definitions,

Zi

pi
+

∑
τj∈Tm

cj

pjs0
= 1 for any task τi ∈ Tm. We schedule

tasks assigned onto the m-th processor in an earliest-deadline-
first order at speed s0. If a job completes at time instant t, and
no other job is ready for executions, we have to decide whether
the processor should be turned into the dormant mode or idle.
Let ri be the arrival time of the next job of τi after time in-
stant t for any τi in Tm. If (minτi∈Tm(ri + Zi)) − t < tθ ,
the processor remains on the active mode and is idle at speed
Smin. Otherwise, we turn the processor into the dormant
mode at time instant t, turn on the processor at time instant
(minτi∈Tm(ri +Zi)), and procrastinate the arrival time of the
next job of τj to (minτi∈Tm(ri + Zi)) for any task τj ∈ Tm

with rj ≤ (minτi∈Tm(ri + Zi)). When a job arrives at any
time instant t, it is assigned into a ready queue. All of the jobs
in the ready queue are executed in an earliest-deadline-first or-
der at speed s0. The on-line algorithm is denoted as Algo-
rithm PROCRASTINATION. The time complexity to determine
whether the processor should be turned into the dormant mode
and to calculate the time to procrastinate the arrival time of
the next jobs of some tasks is O(|Tm|). The following lemma
shows the feasibility of Algorithm PROCRASTINATION.

Lemma 10 Applying Algorithm PROCRASTINATION on the
fly always derives a schedule that completes all of the tasks
in Tm in time if

∑
τi∈Tm

ci

pi
< s0.
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Proof. The proof could be done with a similar argument in
[12].

Let SCLA+LTF+FF+PROC be the schedule by applying Al-
gorithms LA+LTF, FF, and PROCRASTINATION accordingly
for the LAMS problem. Clearly, the energy consumption of
SCLA+LTF+FF+PROC is no more than that of SCLA+LTF+FF.
We conclude this section with the following theorem.

Theorem 4 For any input instance T and M with∑
τi∈T

ci

pi
> s0, applying Algorithms LA+LTF, FF, and

PROCRASTINATION accordingly leads to a 2-approximation
algorithm for the LAMS problem when Smin > 0, and a
5
3 -approximation algorithm when Smin = 0.

Proof. This comes directly from Theorem 3, Corollary 2, and
Lemma 10.

5 Performance Evaluation

This section provides performance evaluation on the en-
ergy consumption of the proposed algorithms. Algorithm
LA+LTF+FF+PROC denotes that applying Algorithms LA+LTF,
FF, and PROC accordingly. Algorithm LA+LTF+PROC and Al-
gorithm LA+LTF+FF are defined in a similar way. We com-
pared the performance of Algorithm LA+LTF and Algorithm
LA+RAND. The difference between Algorithm LA+RAND and
Algorithm LA+LTF is that tasks under Algorithm LA+RAND

are not sorted before the assignment procedure.

5.1 Workload Parameters and Performance Metrics

The power consumption function of the processor speed s
was set as P (s) = s3 + β, where β was a variable between
0 and 5. Smin was set as 0. L was 1. For any given task
τi, ρi was an integral variable in [1, 6], which represented the
number of jobs of τi within L. Hence, pi is L/ρi. ci was a
random variable in [0, pi].

We simulated two cases for different numbers of processors
with different numbers of tasks to evaluate Algorithm LA+LTF

when β = 2 and Esw = 0. For the first case, we evaluated
algorithms for the effects on the ratio of the number of tasks
to the number of processors. For a given ratio η of the number
of tasks to the number of processors, the number of processors
M was an integral random variable between 10 and 30, and
the number of tasks was set as the floor function value of the
multiplication of η and M , i.e., 
η · M�. For the second case,
the number of processors ranged from 4 to 16, and the task-
set size ranged from 18 to 60. To evaluate the performance of
Algorithm LA+LTF+FF and Algorithm LA+LTF+FF+PROC, we
performed simulations for different task sets on 4, 6, 8, and 10
processors by setting β as 2 and Esw as 0.1 and 0.3.

The normalized energy was adopted as the performance
metric in the experiments. The normalized energy of an al-
gorithm for an input instance was defined as the ratio of the
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Figure 2. Simulation results when Esw = 0 and (a) β was
2, and η ranged from 1.2 to 4, stepped by 0.2, and (b) η was 3,
and β ranged from 0 to 5, stepped by 0.5
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Figure 3. Simulation results when β = 2 and Esw = 0, M
was in [4, 16], and N was in [18, 60]

energy consumption of the derived schedule to that of the op-
timal schedule SC∗ for the SEMI-LAMS problem derived in
Section 3. Since the LAMS problem is NP-hard, the perfor-
mance metric on the normalized energy aimed at the provid-
ing of an approximated index. Experimental results were con-
ducted with 128 independent runs for each configuration.

5.2 Experimental Results

Figure 2 shows the average normalized energy of Algo-
rithm LA+LTF by varying β and η when Esw was 0. In Figure
2(a), β was 2, and η ranged from 1.2 to 4, stepped by 0.2.
The average normalized energy was maximum when η was 3.
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Figure 4. Simulation results when M = 8 and β = 2: (a)
Esw = 0.1, and (b) Esw = 0.3
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When η was small, in most cases, most processors were as-
signed with only one task, and the assignment was almost as
the same as the optimal schedule. However, when the value of
η increased, the load of each processor was heavy enough even
in the optimal schedule SC∗. Hence, the average normalized
energy decreased when the ratio η increased with η > 3. In the
Figure 2(b), β ranged from 0 to 5, stepped by 0.5, by restrict-
ing η as 3. When β increased, the average normalized energy
decreased since the proportion of the energy consumption re-
sulting from leakage current to the total energy consumption
increased.

Figure 3 shows the average normalized energy when β was
2, Esw was 0, the number of processors ranged from 4 to 16,
and the task-set size ranged from 18 to 60. Algorithm LA+LTF

derived solutions close to optimal ones in Figure 3. Similar
to Figure 2(a), the average normalized energy was maximized
when the ratio of the number of tasks to that of processors was
close to 3.

The average normalized energy for Algorithms LA+LTF,
LA+LTF+PROC, LA+LTF+FF, and LA+LTF+FF+PROC was
shown in Figure 4(a)(/ 4(b)) by setting Esw as 0.1(/0.3), M
as 8, and β as 2. In both Figure 4(a) and Figure 4(b), Algo-
rithm LA+LTF+FF+PROC always outperformed the other eval-
uated algorithms, where the maximum average normalized
energy was less than 1.175. Algorithm LA+LTF+PROC out-
performed LA+LTF+FF in Figure 4(a), and vice versa in Fig-
ure 4(b). Since the value of tθ when Esw = 0.1 was less than
that when Esw = 0.3, Algorithm PROCRASTINATION could
save more energy when Esw = 0.1 by turning a processor
into the dormant mode. Similar observations were done when
M = 4, 6, 10. We omit the detail due to the space limitation.

6 Conclusion

This paper explores energy-efficient scheduling of peri-
odic real-time tasks in homogeneous multiprocessor environ-
ments in which the power consumption resulting from leakage
current is non-negligible. A processor might be turned into
the dormant mode to reduce energy consumption, whenever
needed, and the power consumption function P () is modeled
as P (s) = s3 + β, where s and β are the processor speed
and the power consumption resulting from leakage current, re-
spectively. When there is no upper bound on the processor
speeds, a 1.13-approximation algorithm is proposed for the
case in which β and the minimum available speed are both
0, and a 1.283-approximation algorithm is proposed where
the overheads in turning on/off a processor are negligible. 2-
approximation algorithms are also proposed when the over-
heads in turning on/off a processor are non-negligible. When
there is an upper bound on the available processor speeds,
we take an artificial-bound approach to minimize the energy
consumption. Compared to the previous work, this paper
is one of the pioneering studies that provide approximation
bounds for energy-efficient scheduling in multiprocessor sys-

tems with leakage current considerations. The proposed algo-
rithms could also be applied to systems with P (s) = sσ + β
for any σ between 2 and 3. Evaluations show that the proposed
algorithms could derive schedules close to optimal solutions.

For future research, we will explore energy-efficiency in
heterogeneous multiprocessor environments with leakage con-
siderations and tasks with resource competition.
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