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Abstract In this paper we investigate dynamic speed scaling, a technique to reduce
energy consumption in variable-speed microprocessors. While prior research has fo-
cused mostly on single processor environments, in this paper we investigate multipro-
cessor settings. We study the basic problem of scheduling a set of jobs, each specified
by a release date, a deadline and a processing volume, on variable-speed processors
so as to minimize the total energy consumption.

We first settle the problem complexity if unit size jobs have to be scheduled. More
specifically, we devise a polynomial time algorithm for jobs with agreeable dead-
lines and prove NP-hardness results if jobs have arbitrary deadlines. For the latter
setting we also develop a polynomial time algorithm achieving a constant factor ap-
proximation guarantee. Additionally, we study problem settings where jobs have ar-
bitrary processing requirements and, again, develop constant factor approximation
algorithms. We finally transform our offline algorithms into constant competitive on-
line strategies.
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1 Introduction

With increasing CPU clock speeds and higher levels of integration in processors,
memories and controllers, power consumption has become a major concern in com-
puter system design over the past years. Power dissipation is critical not only in bat-
tery operated mobile computing devices but also in desktop computers and servers.
Electricity costs impose a substantial strain on the budget of data and computing
centers, where CPUs account for 50–60% of the energy consumption [11]. In fact,
Google engineers, maintaining thousands of servers, warned that if power consump-
tion continues to grow, power costs can easily overtake hardware costs by a large
margin [11]. In addition to costs, energy dissipation causes thermal problems. Most
of the consumed energy is eventually converted into heat, resulting in wear and re-
duced reliability of hardware components.

On an algorithmic level there are two mechanisms to save energy. (1) Speed scal-
ing: Microprocessors currently sold by chip makers such as AMD and Intel are able
to operate at variable speed. The higher the speed, the higher the power consumption
is. Speed scaling techniques dynamically adjust the speed of a processor executing
a set of tasks. The goal is to construct energy-efficient schedules that preferably use
low processing speeds and still guarantee a desired service. (2) Sleep states: When
a system is idle, it can be transitioned into a low-power sleep state. Here one has to
determine when to shut down the system, taking into account that a transition back to
the active mode requires extra energy.

This paper focuses on dynamic speed scaling algorithms. Initiated by a seminal
paper of Yao et al. [30] there has recently been considerable research interest in the
design and analysis of speed scaling strategies, see e.g. [1–3, 5, 7, 14–16, 20, 23, 24,
27, 30] and references therein. While a considerable body of the literature considers
single processor environments, in this paper we study multiprocessor settings. Multi-
processor speed scaling is a definite issue in desktop computers and servers that are
typically equipped with dual or multiple processors. The topic is also interesting in
laptops as computer manufacturers offer dual-core and quad-core notebooks. A gen-
eral trend in hardware design is to develop architectures with multiple CPUs. In fact,
Intel has done experiments with 80 cores on one chip [22].

We investigate a classical speed scaling problem in which jobs have deadlines.
Consider n jobs, where job i is specified by a release date r(i), a deadline d(i)

and a processing volume p(i). Job i can be feasibly scheduled in the time interval
[r(i), d(i)). The processing volume p(i) represents the amount of work that must be
finished to complete the job. The n jobs have to be assigned to m parallel processors,
each of which can independently operate at variable speed. The power consumption
function depending on speed s is defined as P(s) = sα , where α > 1 is a constant. If
a processor runs at speed s for δ time units, then a work of δs is finished and the con-
sumed energy is δsα . At any time a processor can handle only one job and each job
can be executed on one processor only. We allow job preemption, i.e. the processing
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of a job may be interrupted and resumed later. However, we disallow job migration,
i.e. over time a job may not be scheduled on several processors. This assumption is
motivated by the fact that job migration is an expensive operation in many parallel
processing environments. The goal is to find a feasible schedule that minimizes the
total energy consumed on all the processors.

Both offline and online scenarios are of interest. In the offline setting all jobs and
their characteristics are known in advance. In the online case, we learn about a job i at
its release date r(i). Following [29] we call an online algorithm c-competitive if, for
any sequence of jobs, the incurred energy is upper bounded by c times the optimum
energy for that sequence.

Previous Work The single processor variant of the speed scaling problem defined
above was introduced by Yao et al. [30] and has been investigated the most among
energy management problems, see [3, 4, 6, 8, 14, 15, 24, 30] for a selection of the rel-
evant literature. Yao et al. [30] showed that on a single processor optimal schedules
can be computed in polynomial time. They gave an efficient algorithm that repeat-
edly identifies time intervals of highest density. The density of an interval I is the
total work to be completed in I divided by the length of I . The algorithm repeatedly
schedules jobs in highest density intervals and takes care of reduced subproblems.
Yao et al. [30] also proposed two online algorithms, called Optimal Available and
Average Rate, and proved that Average Rate achieves a competitiveness of αα2α−1.
A nearly matching lower bound on the performance of Average Rate was presented
in [8]. Bansal et al. [3] analyzed Optimal Available and showed that its competitive-
ness is exactly αα . Additionally, Bansal et al. developed a new algorithm with an
improved competitive ratio of 2(α/(α −1))αeα . Further improved performance guar-
antees can be achieve for small values of α [6]. On the other hand, any randomized
speed scaling algorithm has a competitive ratio of Ω((4/3)α) [3]. For deterministic
online algorithms the lower bound is at least eα−1/α [6]. These lower bounds im-
ply that the exponential dependence on α is inherent in the algorithms’ performance
guarantees.

Much less is known for deadline-based scheduling in variable-speed multiproces-
sor environments. A simple reduction from 3-PARTITION implies that energy min-
imization is an NP-hard optimization problem if the jobs’ processing requirements
may take arbitrary values. This holds true even if all release dates and deadlines are
identical, i.e. r(i) = r and d(i) = d , for some r and d and all i. Another simple ob-
servation is that for this case of identical release dates and deadlines a polynomial
time approximation scheme can be derived using the PTAS for makespan minimiza-
tion on parallel machines developed by Hochbaum and Shmoys [21]. A faster 1.13-
approximation algorithm was given by Chen et al. [15]. They also showed that if
job migration among processors is allowed, an optimal schedule can be computed in
polynomial time.

Further related work studied scenarios where a variable-speed or a fixed-speed
processor is equipped with an additional sleep state [9, 10, 17, 24]. Moreover, recent
research has addressed the performance metrics of minimizing (a) the weighted sum
of energy consumption and job flow times [2, 4, 5, 7, 20, 25–27] and (b) the makespan
subject to an energy budget [13, 28].
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Our Contribution This paper represents the first algorithmic study of multiproces-
sor speed scaling if jobs may have individual release dates and deadlines. Most of
our paper concentrates on the offline scenario. In the first part of the paper we set-
tle the complexity of the problem with unit size jobs. We may assume w.l.o.g. that
p(i) = 1, for all i. We prove that if job deadlines are agreeable, an optimal multipro-
cessor schedule can be computed in polynomial time. Deadlines are agreeable if, for
any two jobs i and i′, relation r(i) < r(i′) implies d(i) ≤ d(i′). In practice, instances
with agreeable deadlines form a natural input class where, intuitively, jobs arriving
at later times may be finished later. We then show that if the jobs’ release dates and
deadlines may take arbitrary values, the energy minimization problem is NP-hard,
even on two processors. For a variable number of processors, energy minimization is
strongly NP-hard. Furthermore, for arbitrary release dates and deadlines we develop
a polynomial time algorithm that achieves a constant factor approximation guarantee
of αα24α .

In the second part of the paper we address multiprocessor speed scaling where the
processing requirements p(i) may take arbitrary values. (Recall that the problem is
NP-hard even for identical release dates and deadlines.) For agreeable deadlines we
present constant factor approximation algorithms. If all jobs have a common release
date or have a common deadline, the approximation factor is 2(2−1/m)α . Otherwise
the ratio is αα24α . Finally, we show that our offline algorithms can be transformed
into online strategies attaining constant competitive ratios.

All our algorithms are simple and fast, which is an important aspect in energy-
efficient computing environments. In a first step the algorithms may divide jobs into
classes and then assign them to processors using classical dispatching rules such as
Round Robin or List scheduling. Once the assignment is done, each processor inde-
pendently computes its own schedule. Hence, our algorithms can also be applied in
fully distributed systems.

Subsequent Work After the conference publication of this paper, further results have
been obtained. Greiner et al. [19] showed that any c-approximation algorithm for a
single processor yields a randomized cBα-approximation algorithm for parallel pro-
cessors, where Bα is the α-th Bell number, i.e. the number of partitions of a set
of size α. Similarly, any c-competitive online algorithm yields a randomized cBα-
competitive algorithm for parallel processors [19]. These results give the first (ran-
domized) performance guarantees for jobs with arbitrary release dates, deadlines and
processing volumes. In the offline setting a deterministic Bα-approximation can also
be achieved [19]. A deterministic O(logα P )-competitive online algorithm was pre-
sented by Bell and Wong [12]. Here P is the ratio of the largest to smallest processing
volume. Finally we remark that our proposed approach of dividing jobs into classes
and applying Round Robin was subsequently used in [12, 26, 27].

2 Unit Size Jobs with Agreeable Deadlines

In this section we consider problem instances consisting of unit size jobs with agree-
able deadlines. We present a polynomial time algorithm that is essentially a Round
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Robin strategy. More specifically, jobs are first sorted according to their release dates
and are then assigned to processors using Round Robin. For each processor, given
the assigned jobs, an optimal schedule is computed using the algorithm by Yao et
al. [30].

Algorithm RR

1. Number the jobs in order of non-decreasing release dates. Jobs having the same re-
lease date are numbered in order of non-decreasing deadlines. Ties may be broken
arbitrarily.

2. Given the sorted list of jobs computed in Step 1, assign the jobs to processors
using the Round Robin policy.

3. For each processor, given the jobs assigned to it, compute an optimal schedule.

Theorem 1 For a set of unit size jobs with agreeable deadlines, RR computes an
optimal schedule.

In order to prove the above theorem we need a technical lemma.

Lemma 1 Let c > 0 and α > 1. Then the function

f (x) =
(

1

x

)α−1

+
(

1

c − x

)α−1

with x ∈ (0, c) takes its global minimum at x = c/2. The function is strictly decreas-
ing for x < c/2 and strictly increasing for x > c/2.

Proof Computing the derivative of f we find

f ′(x) = (1 − α)

((
1

x

)α

−
(

1

c − x

)α)

and x = c/2 is indeed a global minimum. �

Proof of Theorem 1 In this proof, for simplicity, we number jobs from 0 to n− 1 and
processors from 0 to m − 1. Moreover, the jobs are numbered as described in Step 1
of RR. We will show that there exists an optimal schedule in which job i is assigned
to processor i mod m, for 0 ≤ i ≤ n−1. This is exactly the job assignment computed
by Round Robin in Step 2 of RR. The theorem then follows because the algorithm by
Yao et al. [30] constructs optimal single processor schedules.

Consider an optimal schedule SOPT . We may assume without loss of general-
ity that in SOPT each processor j , 0 ≤ j ≤ m − 1, executes the assigned jobs non-
preemptively in order of increasing job number. While this is not the case and there
exists a processor j that executes a portion of a job i′ before a job i, with i < i′, is
completely finished, we can modify the schedule as follows. At those times where
jobs i and i′ are processed, we first schedule job i completely and only then sched-
ule i′. This modification maintains feasibility and does not increase the energy con-
sumption of the schedule.
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Furthermore, in SOPT we number the processors in non-decreasing order of start
times, where ties may be broken arbitrarily. The start time of a processor is the first
time it executes any job. Let processor j be the (j + 1)-st element in this sorted
order, 0 ≤ j ≤ m − 1. In particular, processor 0 is one with the earliest start time and
processor m−1 is one with the latest start time, among all processors. Let a(i) be the
time when the processing of job i starts and let b(i) be the time when the processing
ends, 0 ≤ i ≤ n − 1. We show inductively, for i = 0, . . . , n − 1, that the following
invariant holds.

(I) There exists an optimal schedule in which job k is scheduled on processor k mod
m, for 0 ≤ k ≤ i. On each processor the jobs are executed non-preemptively in
increasing order of job number. Furthermore a(i) ≤ a(l), for i < l ≤ n − 1, and
b(k) ≤ b(k + 1), for 0 ≤ k < i.

For i = n − 1, the invariant implies the desired statement.
We first prove the induction basis of (I), for i = 0. If SOPT executes job 0 on

processor 0, then (I) holds. Suppose that in SOPT the first job on processor 0 is
job i0, with i0 �= 0. Let j �= 0 be the processor processing job 0. Since each processor
executes jobs in order of increasing job number, job 0 is the first one on processor j . It
follows a(0) = a(i0): If a(0) > a(i0), then we would obtain a schedule with a strictly
smaller energy consumption by starting job 0 already at time a(i0). The new schedule
would be feasible as r(0) ≤ r(i0) ≤ a(i0). Now, since a(0) = a(i0), we can simply
swap processors 0 and j . Processors are still numbered in order of non-decreasing
start times and we obtain a(0) ≤ a(l), for 0 < l ≤ n − 1. Hence the schedule satisfies
invariant (I) for i = 0.

Suppose that invariant (I) holds for i and let SOPT be the corresponding schedule.
We prove that the invariant is also satisfied for i + 1. Let j = (i + 1) mod m. We first
show that we may assume that in SOPT processor j is one that first starts processing
any job k with k ≥ i + 1.

Lemma 2 There exists an optimal schedule that satisfies invariant (I) for value i and
in which processor j = (i + 1) mod m is one that, among all processors, first starts
processing any job l with l ≥ i +1. Processors are numbered in non-decreasing order
of start times.

Proof If in SOPT processor j is one that first executes any job l ≥ i + 1, then there
is nothing to show. So suppose that this were not the case and that, instead, proces-
sor j ′ with j ′ �= j is a processor satisfying this property. We distinguish two cases
depending on whether or not i + 1 ≤ m − 1.

If i + 1 ≤ m− 1, then processor j = i + 1 contains no jobs numbered smaller than
i + 1 because (I) holds for i. Furthermore, for 0 ≤ k < i + 1, job k is scheduled as
first job on processor k. Since processors are numbered in non-decreasing order of
start times, processor j ′ satisfies j ′ < j and, again, contains only job j ′ among jobs
numbered smaller than i + 1. Now we swap the schedule on processor j with the
schedule on j ′ after time b(j ′). This is feasible because, by assumption, processor
j ′ is one that first executes any job l ≥ i + 1. After the swap processors are still
numbered in order of non-decreasing start times because, since (I) holds for i, a(i) ≤
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Fig. 1 Jobs i′ and i + 1 if b(i′) > b(i + 1)

a(l), for any i < l, and hence the start time a(i) of processor j −1 = i cannot be later
than the new start time of processor j = i + 1. Moreover, since processor j ′ was one
that first started executing any job l ≥ i + 1, the new start time of processor j = i + 1
cannot be later than the start time of any processor numbered at least i + 2.

If i + 1 > m − 1, then processors j and j ′ each have processed at least one job
numbered smaller than i +1. The last of these jobs executed on processor j is job i +
1 −m and, by the Round-Robin policy, the last of these jobs executed on processor j ′
is a job i′ with i +1−m < i′ < i +1. Since invariant (I) holds for i, we have b(i +1−
m) ≤ b(i′). Thus we can swap the work assignment on processor j after b(i +1−m)

with the work assignment on processor j ′ after b(i′). Again, this is feasible because
processor j ′ is one that first executes any job l ≥ i + 1 and the original schedule on
processor j after b(i + 1 − m) can safely be assigned to processor j ′. Conversely,
since b(i + 1 − m) ≤ b(i′), the work on processor j ′ after b(i′) can be moved to
processor j .

In either case, we obtain a feasible schedule satisfying the desired property that
processor j is one that first executes any job l with l ≥ i + 1. The start and finishing
times of the jobs have not changed so that invariant (I), for value i, also holds for the
modified schedule. �

Let SOPT be an optimal schedule satisfying the properties of Lemma 2. We next
show that job i + 1 can be scheduled on processor j . Suppose that job i + 1 is sched-
uled on processor j ′ �= j . If i + 1 ≤ m − 1, let i′ denote the first job executed on
processor j . If i + 1 > m − 1, let i′ be the first job executed on processor j after job
i + 1 − m. The latter one is the job with the highest number k < i + 1 on processor
j . Job i′ has the smallest number among jobs l ≥ i + 1 on processor j . Moreover,
a(i′) ≤ a(i +1) because processor j is first starting the execution of any job l ≥ i +1.
If b(i′) ≤ b(i + 1), we swap jobs i + 1 and i′ in the current schedule. This is feasible
because r(i + 1) ≤ r(i′) ≤ a(i′) and b(i + 1) ≤ d(i + 1) ≤ d(i′), i.e. job i + 1 is
started no earlier than its release date and job i′ is finished by its deadline As desired,
we obtain a schedule in which job i + 1 is scheduled on processor j .

We next consider the case that b(i′) > b(i + 1), cf. Figure 1. Recall that a(i′) ≤
a(i + 1). We then change the schedule as follows. We swap the schedule of processor
j starting at time a(i′) with the schedule on processor j ′ starting at time a(i +1). The
new starting time of job i′ is a′(i′) = a(i+1) and that of job i+1 is a′(i+1) = a(i′).
All other starting and finishing times of jobs remain the same. The modified schedule
is feasible because r(i + 1) ≤ r(i′) ≤ a(i′). If, originally, a(i′) = a(i + 1), then the
energy consumption of the schedule has not changed during the modification. Again
we obtain an optimal schedule in which job i + 1 is scheduled on processor j . We
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finally show that if a(i′) < a(i + 1), then the modified schedule has a strictly smaller
energy consumption than the original one, contradicting the fact that the original
schedule was optimal. Hence this scenario cannot occur. During the schedule modi-
fication, only the energy of jobs i + 1 and i′ changes. The energy consumed by jobs
i + 1 and i′ in the original schedule is

E =
(

1

b(i + 1) − a(i + 1)

)α−1

+
(

1

b
(
i′
) − a

(
i′
)
)α−1

while in the modified schedule it is

E′ =
(

1

b(i + 1) − a
(
i′
)
)α−1

+
(

1

b
(
i′
) − a(i + 1)

)α−1

.

Set c = b(i + 1) + b(i′) − a(i + 1) − a(i′) and x0 = b(i + 1) − a(i + 1). Moreover,
set x1 = min{b(i + 1) − a(i′), b(i′) − a(i + 1)}. Then E = (1/x0)

1−α + (1/(c −
x0))

1−α and E′ = (1/x1)
1−α + (1/(c − x1))

1−α . By assumption b(i′) > b(i + 1). If
a(i′) < a(i +1), we have x0 < x1 because x0 = b(i +1)−a(i +1) < min{b(i +1)−
a(i′), b(i′) − a(i + 1)} = x1, see again Figure 1. Furthermore, x1 ≤ c/2. Lemma 1
implies E′ < E.

As desired, we obtain an optimal schedule in which job i + 1 is scheduled on
processor j . Moreover, a(i + 1) ≤ a(l), for i + 1 < l ≤ n − 1, because processor j is
one that first starts processing any job l ≥ i + 1.

It remains to prove b(i) ≤ b(i + 1) which, together with the induction hypoth-
esis, implies b(k) ≤ b(k + 1), for 1 ≤ k < i + 1. Job i is scheduled on processor
(j − 1) mod m. By induction hypothesis, a(i) ≤ a(i + 1). Suppose b(i) > b(i + 1).
We modify the schedule as follows. We exchange the finishing times of job i

and i + 1, i.e. the new finishing time of job i is b′(i) = b(i + 1) and that of
job i + 1 is b′(i + 1) = b(i). Job i + 1 is still completed before its deadline be-
cause b′(i + 1) = b(i) ≤ d(i) ≤ d(i + 1). To obtain a feasible schedule we ad-
ditionally swap the work assignment on processor (j − 1) mod m after time b(i)

with the work assignment on processor j after time b(i + 1). If a(i) = a(i + 1),
then the energy consumption has not changed during the schedule modification. We
next show that if a(i) < a(i + 1), then the modified schedule consumes strictly
less energy than the original one, contradicting the fast that the original schedule
is optional. The energy consumption of jobs i and i + 1 in the original sched-
ule is E = (1/(b(i) − a(i)))1−α + (1/(b(i + 1) − a(i + 1)))1−α while that in the
modified schedule is E′ = 1/((b(i + 1) − a(i)))1−α + (1/(b(i) − a(i + 1)))1−α .
Set c = b(i) + b(i + 1) − a(i) − a(i + 1), x0 = b(i + 1) − a(i + 1) and x1 =
min{b(i + 1) − a(i), b(i) − a(i + 1)}. Using Lemma 1 we obtain E′ < E. We con-
clude b(i) ≤ b(i + 1) and the proof is complete. �

3 Unit Size Jobs with Arbitrary Release Dates and Deadlines

We consider problem instances consisting of unit size jobs with arbitrary release dates
and deadlines. We show that the problem of minimizing energy consumption on par-
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allel processors is NP-hard. Moreover, we develop a polynomial time algorithm that
achieves a constant factor approximation guarantee independent of m.

Theorem 2 Given a set of unit size jobs with arbitrary release dates and deadlines,
the problem of minimizing the total energy on two processors is NP-hard.

Theorem 3 Given a set of unit size jobs with arbitrary release dates and deadlines,
the problem of minimizing the total energy on m processors is strongly NP-hard.

Obviously, the decision variants of the speed scaling problems under consideration
are in the class NP. The proofs of both Theorem 2 and Theorem 3 rely on a reduction
from the problem MULTI-PARTITION, which contains PARTITION and 3-PARTITION

as special cases.

Definition 1 Given a finite set A ⊂ Z
+ and a number m ∈ N there holds (A,m) ∈

MULTI-PARTITION if and only if there are subsets A1,A2, . . . ,Am such that⋃m
i=1 Ai = A and, for all i �= j ,

Ai ∩ Aj = ∅ and
∑
a∈Ai

a =
∑
a∈Aj

a.

We describe the reduction from an instance of MULTI-PARTITION to an instance
of our speed scaling problem. Let A = {a1, a2, . . . , an} ⊂ Z

+ and m ∈ N be an in-
stance of MULTI-PARTITION. We construct a set J of unit size jobs as follows. For
every ai ∈ A we generate a job i. We assign i a release date r(i) = ∑

j<i aj and a
deadline d(i) = r(i) + ai . Additionally we create m jobs n + 1, n + 2, . . . , n + m,
where r(n + 1) = r(n + 2) = . . . = r(n + m) = 0 and d(n + 1) = d(n + 2) = . . . =
d(n + m) = 3d(n).

For any job i with 1 ≤ i ≤ n+m, let l(i) = d(i)− r(i) be the length of i. Further-
more, let B = (

∑
a∈A a)/m. We can show that (A,m) ∈ MULTI-PARTITION if and

only if an optimal schedule for J incurs an energy of

EOPT =
n∑

i=1

(
1

l(i)

)α−1

+ m

(
1

3d(n) − B

)α−1

.

A detailed proof, which yields the two above theorems, is given in the Appendix.
We next develop a constant factor approximation algorithm. The algorithm, called

Classified Round Robin (CRR), first divides the given jobs into classes and then, when
assigning jobs to processors, applies the Round Robin strategy independently to each
class. Once the job assignment is done, for each processor, an optimal schedule is
computed. Recall that each job has a processing requirement of p(i) = 1. Let δi =
1/(d(i) − r(i)) be the density of job i, which corresponds to the minimum average
speed necessary to process the job in time if no other jobs were present. Let J be the
set of all jobs and � = maxi∈J δi be the maximum density of the jobs. We partition
J into classes Ck , k ≥ 0, such that class C0 contains all jobs of density � and Ck ,
k ≥ 1, contains all jobs i with density δi ∈ [�2−k,�2−(k−1)). Thus in each class job
densities differ by a factor of at most 2.
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Algorithm CRR

1. For each class Ck , first sort the jobs in non-decreasing order of release dates and
then assign them to processors according to the Round Robin policy, ignoring job
assignments done for other classes.

2. For each processor, given the jobs assigned to it, compute an optimal schedule.

We first present a lemma that relates energy consumptions in single-processor and
m-processor schedules.

Lemma 3 For any set of jobs, the energy of an optimal schedule on m processors is
at least 1/mα−1 times that of an optimal schedule on one processor.

Proof For the given set of jobs, let Sm
OPT be an optimal schedule on m processors. We

partition the time horizon of Sm
OPT into a set I of intervals such that for any I ∈ I ,

the speed does not change on any of the m processors throughout I . Let sI,j be the
speed of processor j in I and let sI = ∑m

j=1 sI,j be the total summed speed in that
interval. The energy consumption of Sm

OPT is

EOPT =
∑
I∈I

m∑
j=1

|I |(sI,j )α ≥
∑
I∈I

|I |m(sI /m)α = 1

mα−1

∑
I∈I

|I |sα
I , (1)

where the inequality follows from the convexity of the power consumption function.
Now consider the single processor schedule S1 in which the speed in interval I

is set to sI , Always processing the available job with the earliest deadline gives a
feasible schedule: At any time the total amount of work that can be finished in S1 is
exactly equal to that actually completed in Sm

OPT . In S1 we never run out of available
jobs because there are jobs available in Sm

OPT at that time. Thus the work completed
by S1 is exactly equal to that of Sm

OPT . Always sequencing available jobs according
to the Earliest Deadline policy yields a feasible schedule. The energy consumption
of S1 is

∑
I∈I |I |sα

I ≥ E1
OPT , where E1

OPT denotes the optimum energy of a single
processor schedule. Combining the last inequality with (1) we obtain the lemma. �

In the following we analyze CRR for an arbitrary set J of jobs. In a first step we
transform J into a set J ′. More specifically, for any job i ∈ J belonging to class Ck

we generate a unit size job i′ ∈ J ′ with release date r(i′) = r(i) and deadline d(i′) =
r(i′) + 2k/� in J ′. Hence the job’s density is δi′ = 1/(d(i′) − r(i′)) = �/2k , which
is the smallest density in class Ck . We have d(i) ≤ d(i′) because d(i) = r(i)+1/δi ≤
r(i′) + 2k/� = d(i′). Thus J ′ can be viewed as a relaxed problem instance in which
jobs have later deadlines. Under the described transformation jobs do not change
class and keep their original release date. Thus, CRR assigns jobs of J ′ to exactly the
same processors as jobs of J . We will analyze CRR on the schedule for J ′ and show
that its energy consumption E′

CRR is bounded by αα23α times the optimum energy
E′

OPT for J ′. Obviously, the optimum energy EOPT for the original set J is at least
E′

OPT . In a final step we will argue that the energy used by CRR on J is at most 2α

times that spent by CRR on J ′. This establishes an approximation ratio of αα24α .



414 Algorithmica (2014) 68:404–425

We concentrate on job set J ′. The relevant scheduling horizon is [0, T ), where
T = max{d(i′) | i′ ∈ J ′}. For any t ∈ [0, T ), call a job i′ active at time t if r(i′) ≤
t < d(i′). Let ck(t) be the number of jobs of J ′ that belong to Ck and are active at
time t . The next lemma shows that CRR constructs balanced processor assignments
with respect to each job class.

Lemma 4 For any time t , CRR assigns to each processor at most 
ck(t)/m� jobs
i′ ∈ J ′ from Ck active at time t .

Proof Fix a time t and a class Ck . All jobs of J ′ belonging to Ck are active for
exactly 2k/� time units. When CRR has sorted the class Ck jobs in order of non-
decreasing release dates, the jobs active at time t form a consecutive subsequence
in the sorted job list. When the subsequence is assigned to processors using Round
Robin, every m-th job is placed on a fixed processor. Thus each processor receives at
most 
ck(t)/m� jobs. �

When analyzing CRR on J ′, rather than the optimal schedules constructed in
Step 2 of the algorithm, we will consider schedules generated according to the Av-
erage Rate (AVR) algorithm by Yao et al. [30]. This algorithm sets processor speeds
according to job densities. For any processor j and time t , where 1 ≤ j ≤ m and
t ∈ [0, T ), let ckj (t) be the number of jobs from class Ck active at time t that have
been assigned by CRR to processor j . Set the speed of processor j at time t to

sj (t) =
∑
k≥0

ckj (t)�/2k. (2)

Sequencing available jobs on processor j according to the Earliest Deadline pol-
icy yields a feasible schedule. Let S′

AV R,j be the resulting schedule on processor j

and E′
AV R,j be the energy consumption of S′

AV R,j . As CRR computes an optimal
schedule for each processor, its total energy E′

CRR is bounded by

E′
CRR ≤

m∑
j=1

E′
AV R,j . (3)

We next estimate the energy volumes E′
AV R,j , 1 ≤ j ≤ m. To this end we consider

two energy bounds. Firstly, suppose that job i′ ∈ J ′ is processed at speed 1/(d(i′) −
r(i′)) throughout its active interval. The minimum energy necessary to complete the
job is (d(i′) − r(i′))1−α and hence the minimum energy necessary to complete all
jobs i′ ∈ J ′ is at least

E′
min =

∑
i′∈J ′

(
d
(
i′
) − r

(
i′
))1−α =

∑
k≥0

∑
i′∈Ck

(
2k/�

)1−α
. (4)

Secondly, we consider the single processor schedule S′
AV R constructed by AVR

for J ′. More specifically, at time t the speed is set to

s(t) =
∑
k≥0

ck(t)�/2k. (5)
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A result by Yao et al. [30] implies that the energy E′
AV R of S′

AV R is at most αα2α−1

times the energy of an optimal single processor schedule. Using Lemma 3 we obtain
that

E′
AV R ≤ αα2α−1mα−1E′

OPT . (6)

We will prove

m∑
j=1

E′
AV R,j ≤ 22α

(
E′

min + m1−αE′
AV R

)
. (7)

Combining inequalities (3), (6) and (7), and using the fact that E′
min ≤ E′

OPT , we
obtain E′

CRR ≤ ∑m
j=1 E′

AV R,j ≤ αα23αE′
OPT .

In order to prove (7), fix a processor j and a time t . Let K1 be the set of job class
indices k such that exactly one job i′ ∈ J ′ from Ck active at time t is assigned by
CRR to processor j . Set k1 = min{k | k ∈ K1}. Similarly, let K2 be the set of job class
indices k such that at least two jobs i′ ∈ J ′ from Ck active at time t are assigned by
CRR to processor j . Using (2) and Lemma 4 we obtain

sj (t) =
∑
k∈K1

�/2k +
∑
k∈K2

ckj (t)�/2k ≤ �/2k1−1 +
∑
k∈K2

⌈
ck(t)/m

⌉
�/2k

≤ �/2k1−1 +
∑
k∈K2

(
2ck(t)/m

)
�/2k.

Using (5) we find

sj (t) ≤ 4 max

{
�/2k1 ,

1

m
s(t)

}
. (8)

Note that �/2k1 is the minimum average speed necessary to complete the job
i′ ∈ J ′ from class Ck1 active at time t that was assigned by CRR to processor j .
Let J ′

j be the set of jobs assigned by CRR to processor j . We integrate sj (t)
α , first

over all t where the first term of the maximum of (8) is dominating, and then over
all t where the second term of the maximum of (8) is dominating. Integration of the
first term gives an upper bound on the energy consumption that is at most 4α times
the minimum energy necessary to complete jobs assigned to processor j , which is
4α

∑
k≥0

∑
i′∈Ck∩J ′

j
(2k/�)1−α . Integration of the second term gives an upper bound

of 4α 1
mα E′

AV R . Hence

E′
AV R,j ≤ 4α

(∑
k≥0

∑
i′∈Ck∩J ′

j

(
2k/�

)1−α + 1

mα
E′

AV R

)
.

Summing over all j and applying (4) we obtain (7). As argued above we may con-
clude E′

CRR ≤ αα23αE′
OPT . We finally observe that a job i ∈ J has a density that is

at most twice as high as that of the corresponding job i′ ∈ J ′. Hence a doubling of
the speeds in the schedules SAV R,j yields a feasible schedule for J . This establishes
the following theorem.
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Theorem 4 For unit size jobs, algorithm CRR achieves an approximation ratio of
αα24α .

4 Jobs with Arbitrary Processing Requirements

In this section we study the scenario that the jobs’ processing requirements p(i) may
take arbitrary values. We first assume that all jobs are released at time 0 and have
individual deadlines. We present a polynomial time algorithm that achieves an ap-
proximation factor of 2(2 − 1

m
)α . The strategy can also be used to handle jobs with

individual release dates and a common deadline. We then consider the setting with
agreeable deadlines.

Suppose that we are given jobs with r(i) = 0, for all i. The deadlines d(i) may
take arbitrary values. Our strategy combines Earliest Deadline and List scheduling to
assign jobs to processors. At any time, let the load of a processor be the sum of the
p(i)’s currently assigned to it.

Algorithm EDL

1. Number the jobs in order of non-decreasing deadlines, i.e. d(1) ≤ . . . ≤ d(n).
2. Consider the jobs one by one in the order computed in Step 1. Assign each job to

the processor that currently has the smallest load.
3. For each processor, given the jobs assigned to it, compute an optimal schedule

using the optimal offline algorithm for a single processor.

In the following we evaluate EDL and first give an outline of the analysis. For any
processor j , we define a speed function and prove that using this speed function all
jobs assigned by EDL to processor j can be completed by their deadline. As EDL
computes an optimal schedule for the jobs on processor j , its energy on processor j

cannot be larger than the energy Ej used by our speed function. In a second step we
show that

∑m
j=1 Ej is upper bounded by 2(2 − 1

m
)α times the total energy incurred

by an optimal solution.
We assume that every processor in EDL’s schedule processes at least one job since

otherwise every processor processes at most one job and the global schedule is opti-
mal. For any job i, let L(i) = ∑i

i′=1 p(i′) be the total processing volume up to job i.
Fix a processor j and let Sj be the set of jobs scheduled by EDL on processor j . In
order to define the speed function, we have to consider load densities over the entire
time horizon. The load density of an interval is the total work to be completed during
that interval divided by the length of the interval. We identify an integer sequence
λ

j

1 < λ
j

2 < . . . < λ
j
lj

such that the highest density occurs in interval [0, d(λ
j

1)) among

all [0, d(i)) with i ∈ Sj , the second highest density occurs in interval [d(λ
j

1), d(λ
j

2))

among all [d(λ
j

1), d(i)) with i ∈ Sj and so on. Formally, let λ
j

0 = 0, d(0) = 0 and

L(0) = 0. Suppose that λ
j

0 < . . . < λ
j
l have been defined and that λ

j
l is not equal to

the highest job number in Sj . Then λ
j

l+1 identifies a highest density interval after

Peter Hu
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d(λ
j
l ) assuming that a load of exactly L(λ

j
l ) is completed by d(λ

j
l ), i.e.

λ
j

l+1 = argmax
k∈Sj ,k>λ

j
l

L(k) − L(λ
j
l )

d(k) − d(λ
j
l )

.

Assuming that a load of exactly L(λ
j

l−1) is finished by time d(λ
j

l−1), a load of

L(λ
j
l ) − L(λ

j

l−1) has to be processed on the m processors between time d(λ
j

l−1) and

d(λ
j
l ) and, for l = 1, . . . , lj , we define

s
j
l = 1

m

L(λ
j
l ) − L(λ

j

l−1)

d(λ
j
l

) − d(λ
j

l−1)
(9)

as the minimum average speed to accomplish this. We observe that

s
j

1 ≥ s
j

2 ≥ . . . ≥ s
j
lj
, (10)

for, if there were an index l with s
j
l < s

j

l+1, then
L(λ

j
l+1)−L(λ

j
l )

d(λ
j
l+1)−d(λ

j
l )

>
L(λ

j
l )−L(λ

j
l−1)

d(λ
j
l )−d(λ

j
l−1)

and

hence

L(λ
j

l+1) − L(λ
j

l−1)

d(λ
j

l+1) − d(λ
j

l−1)
= L(λ

j

l+1) − L(λ
j
l ) + L(λ

j
l ) − L(λ

j

l−1)

d(λ
j

l+1) − d(λ
j
l ) + d(λ

j
l ) − d(λ

j

l−1)
>

L(λ
j
l ) − L

(
λ

j

l−1)

d(λ
j
l ) − d(λ

j

l−1)
,

contradicting the choice of λ
j
l . We are now ready to specify the speed function.

Speed function for processor j

1. Initial setting: For any l = 1, . . . , lj , set the speed in interval [d(λ
j

l−1), d(λ
j
l )) to

(2 − 1
m

)s
j
l .

2. Adjustment: For any i ∈ Sj with p(i) > L(i)/m consider the time interval
[0, d(i)). For any interval I ⊆ [0, d(i)) in which the speed is strictly lower than
(2 − 1

m
)p(i)/d(i) raise the speed to that value.

Lemma 5 Using the above speed function, all jobs in Sj are completed by their
deadline.

Proof On processor j we schedule the jobs in Sj in increasing order of job number.
Thus the jobs are scheduled in non-decreasing order of deadlines. We first consider
any job i ∈ Sj with p(i) ≤ L(i)/m and then any i ∈ Sj with p(i) > L(i)/m. In both
cases we will prove that the job is finished by its deadline.

Fix any i ∈ Sj with p(i) ≤ L(i)/m. We will show that after the initial speed setting
in Step 1 of the speed function definition, the job is finished by d(i). As the speed
can only increase in the adjustment Step 2, the lemma then holds for this job i. Let k
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be the largest integer such that λ
j
k ≤ i. By time d(λ

j
k) a total load of

k∑
l=1

(
2 − 1

m

)
s
j
l

(
d
(
λ

j
l

) − d
(
λ

j

l−1

))

=
(

2 − 1

m

) k∑
l=1

1

m

L(λ
j
l ) − L(λ

j

l−1)

d(λ
j
l ) − d(λ

j

l−1)
(d(λ

j
l ) − d(λ

j

l−1))

=
(

2 − 1

m

)
L

(
λ

j
k

)
/m (11)

can be completed on processor j . If i > λ
j
k , then between time d(λ

j
k) and d(i) a load

of

(
2 − 1

m

)
s
j

k+1(d(i) − d(λ
j
k)) =

(
2 − 1

m

)
1

m

L(λ
j

k+1) − L(λ
j
k)

d(λ
j

k+1) − d(λ
j
k

) (d(i) − d(λ
j
k))

≥
(

2 − 1

m

)
1

m

L(i) − L(λ
j
k)

d(i) − d(λ
j
k)

(d(i) − d(λ
j
k))

=
(

2 − 1

m

)(
L(i) − L

(
λ

j
k

))
/m (12)

can be completed. The inequality follows from the definition of λ
j

k+1. Combining

(11) and (12) we find that a total load of at least (2 − 1
m

)L(i)/m can be finished on
processor j by time d(i). It remains to argue that the total processing requirement
of jobs scheduled on processor j before job i and including p(i) is at most (2 −
1
m

)L(i)/m. To this end consider the event when EDL assigns job i to processor j .
As the job is placed on the least loaded processor, just after the assignment processor
j has a load of at most 1

m

∑
i′<i p(i′) + p(i) ≤ (2 − 1

m
)L(i)/m, and we are done

because jobs assigned to processor j at a later stage are scheduled after job i.
Next we examine a job i with p(i) > L(i)/m. After the speed adjustment in

Step 2 of the speed function definition, processor j runs at a speed of at least
(2 − 1

m
)p(i)/d(i) throughout [0, d(i)). Thus a total work of at least (2 − 1

m
)p(i)

can be finished by d(i). Again, when EDL assigns job i to processor j , the total load
on the processor is upper bounded by 1

m

∑
i′<i p(i′)+p(i) ≤ (2 − 1

m
)p(i) and this is

indeed the total work of jobs scheduled on processor j up to (and including) job i. �

We compare the energy incurred using our speed function to the energy of an
optimal solution. Let

E1
j =

lj∑
l=1

(
s
j
l

)α(
d
(
λ

j
l

) − d
(
λ

j

l−1

))
.
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This expression represents the energy consumed by processor j if a speed of s
j
l is

used in the interval [d(λ
j

l−1), d(λ
j
l )), for l = 1, . . . , lj . Hence, compared to the speed

function defined in the initial setting, the speeds are reduced by a factor of 2 − 1
m

.

Lemma 6 An optimal solution uses a total energy on the m processors of at least
mE1

j , for any 1 ≤ j ≤ m.

Proof Given an optimal schedule, let sl,opt be the average speed of the m processors

during the time interval [d(λ
j

l−1), d(λ
j
l )), for l = 1, . . . , lj . By the convexity of the

power function, the total energy used by the optimal solution is

EOPT ≥ m

lj∑
l=1

(sl,opt)
α
(
d
(
λ

j
l

) − d
(
λ

j

l−1

))
.

The speeds sl,opt must satisfy the constraint that at time d(λ
j
k) a load of at least

L(λ
j
k) is completed, for k = 1, . . . , lj . In the following let δ

j
l = d(λ

j
l ) − d(λ

j

l−1). We

next show that the speeds s
j
l , with 1 ≤ l ≤ lj , defined in (9) minimize the function

f (x1, . . . , xlj ) = m
∑lj

l=1 xα
l δ

j
l subject to the constraint

m

k∑
l=1

xlδ
j
l ≥ L

(
λ

j
k

)
, (13)

for k = 1, . . . , lj . This implies, as desired, EOPT ≥ mE1
j . Suppose (y1, . . . , ylj ) with

(y1, . . . , ylj ) �= (s
j

1 , . . . , s
j
lj
) is an optimal solution. Note that

m

k∑
l=1

s
j
l δ

j
l = L

(
λ

j
k

)
, (14)

for k = 1, . . . , lj . Thus there must exist a k with yk > s
j
k : If yl ≤ s

j
l held for l =

1, . . . , lj , then there would be a k′ with yk′ < s
j

k′ and hence m
∑k′

l=1 ylδ
j
l < L(λ

j

k′),
resulting in a violation of constraint (13) for k = k′. Let k1 be the smallest index such
that yk1 > s

j
k1

. We have yl = s
j
l , for l = 1, . . . , k1 − 1 since otherwise, using the same

argument as before, constraint (13) would be violated for k = k1 −1. Let k2 with k2 >

k1 be the smallest index such that yk1 > yk2 . Such an index exists because otherwise

invariant (10) implies yl > s
j
l , for l = k1, . . . , lj , and we find m

∑lj
l=1 ylδ

j
l > L(λ

j
lj
).

In this case we could reduce ylj , achieving a smaller objective function value f and
hence a contradiction to the optimality of the yl , 1 ≤ l ≤ lj .

We now decrease yk1 by ε and increase yk2 by εδk1/δk2 , where 0 < ε ≤ min{yk1 −
s
j
k1

, (yk1 −yk2)/(1 + δk1/δk2)}. We argue that constraints (13) are still satisfied. There
is nothing to show for k = 1, . . . , k1 − 1. Also for k = k2, . . . , lj there is nothing to

show because the work reduction in interval [d(λ
j

k1−1), d(λ
j
k1

)) is εδk1 while the work
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increase in interval [d(λ
j

k2−1), d(λ
j
k2

)) is δk2εδk1/δk2 = εδk1 , yielding a net change

of 0. By the choice of ε we have yk1 − ε ≥ s
j
k1

, and yl ≥ yk1 > s
j
k1

as well as (10)

imply yl > s
j
l for l = k1 + 1, . . . , k2 − 1. Using the fact that equations (14) hold we

obtain that constraints (13) are satisfied for l = k1, . . . , k2 − 1.
We finally show that the modification of yk1 and yk2 leads to a strict reduc-

tion in the value of f . The reduction is given by g(ε) = δk1(y
α
k1

− (yk1 − ε)α) −
δk2((yk2 + εδk1/δk2)

α − yα
k2

). This function is strictly positive for the considered
range of ε because g(0) = 0 and g(ε) is increasing since the first derivative g′(ε) =
αδk1((yk1 −ε)α−1 −(yk2 +εδk1/δk2)

α−1) is positive for ε < (yk1 −yk2)/(1+δk1/δk2).
We conclude that (y1, . . . , yll ) is not optimal. �

We now combine the speed functions for all processors j .

Lemma 7 An optimal solution uses a total energy of at least
∑m

j=1 E1
j .

Proof Using Lemma 6 and summing over all j , we find mEOPT ≥ m
∑m

j=1 E1
j ,

where EOPT is the energy of an optimal solution. Dividing by m we obtain the desired
statement. �

For any j , let S′
j be the set of jobs i with i ∈ Sj and p(i) > L(i)/m. Define

E2
j = ∑

i∈S′
j
(p(i)/d(i))αd(i).

Lemma 8 An optimal solution uses a total energy of at least
∑m

j=1 E2
j .

Proof Consider an optimal solution and suppose that it processes job i ∈ S′
j , with

1 ≤ j ≤ m, at speed s. Then the energy used to complete the job is sαp(i)/s =
sα−1p(i) and this expression is increasing in s. The minimum speed necessary to
finish the job in time is p(i)/d(i) and hence the energy used for job i is at least
(p(i)/d(i))α−1p(i) = (p(i)/d(i))αd(i) and the lemma follows by summing the lat-
ter expression for all i ∈ Sj and all processors j . �

Theorem 5 For arbitrary size jobs released at time 0, EDL achieves an approxima-
tion ratio of at most 2(2 − 1

m
)α .

Proof We first evaluate the total energy ESF used by the speed functions on all m

processors. For any processor j , the initial Step 1 of the speed function definition
requires a speed of (2 − 1

m
)αE

j

1 . The adjustment Step 2 requires a total energy of at

most (2 − 1
m

)αE
j

2 in the intervals modified. Thus ESF ≤ (2 − 1
m

)α
∑m

j=1(E
1
1 + E

j

2 )

and, using Lemmas 7 and 8, we find ESF ≤ (2 − 1
m

)α2EOPT, where EOPT is the
total energy of an optimal solution. In Lemma 5 we showed that the speed functions
give feasible schedules for any Sj . Algorithm EDL computes a feasible schedule with
minimum energy for any Sj . We conclude that the total energy of EDL is bounded by
ESF . �



Algorithmica (2014) 68:404–425 421

Obviously, by interchanging release dates and deadlines, EDL can also handle the
case of jobs with individual release dates but a common deadline.

Corollary 1 For arbitrary size jobs with individual release dates that have to be
finished by a common deadline, EDL achieves an approximation ratio of at most
2(2 − 1

m
)α .

We next consider the scenario where jobs have (general) agreeable deadlines.
Again the jobs’ processing requirements may take arbitrary values. It turns out that we
can apply the algorithm CRR presented in Section 3. We only have to generalize the
definition of job densities. Here, for any job i, the density is δi = p(i)/(d(i) − r(i)),
which represents again the minimum speed to finish the job in time. Let J be the
set of all jobs and � = maxi∈J δi be the maximum density. We partition J into
job classes as before. We can then apply CRR to a given job instance, where within
each class Ck jobs having the same release date are sorted in order of non-decreasing
deadlines.

Theorem 6 For arbitrary size jobs with agreeable deadlines, algorithm CRR
achieves an approximation ratio of αα24α .

Proof The proof is similar to that of Theorem 4 and we just sketch the difference.
Again we introduce a job set J ′. Here we just scale the job densities without changing
release dates or deadlines. More specifically, for any J of class Ck we introduce a
job i′ with r(i′) = r(i), d(i′) = d(i) and density δi′ = �/2k , i.e. p(i′) = (d(i′) −
r(i′))�/2k . Lemma 4 carries over. The proof of Lemma 4 for unit size jobs made
use of the fact that, for J , job deadlines are agreeable within each class Ck . In our
considered scenario with arbitrary size jobs the deadlines are agreeable anyway. In
the further analysis we also consider schedules constructed by Average Rate (AVR).
Let S′

AV R,j be the schedule generated by AVR on the job set J ′
j that is assigned to

processor j by CRR. Let S′
AV R be the single processor schedule of AVR on the entire

set J ′. The corresponding energy volumes of AVR’s schedule are denoted by E′
AV R,j

and E′
AV R , respectively. We can prove

∑m
j=1 E′

AV R,j ≤ 22α(E′
min + m1−αE′

AV R),
where

E′
min =

∑
i′∈J ′

(
p
(
i′
)
/
(
d
(
i′
) − r

(
i′
)))α−1

p
(
i′
) =

∑
k≥0

∑
i′∈Ck

(
2k/�

)1−α
p
(
i′
)

is the minimum energy to complete all jobs in J ′. We then derive E′
CRR ≤∑m

j=1 E′
AV R,j ≤ αα23αE′

OPT . Since δi and δi′ differ by a factor of at most 2, a dou-
bling of the speeds in S′

AV R,j yields optimal schedules for J . The theorem follows. �

5 Online Algorithms

The algorithms we have presented in the previous sections can be modified so that
they work in an online scenario where jobs arrive over time. More specifically, a
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job i together with its characteristics d(i) and p(i) becomes available at its release
date r(i). The job must be assigned to a processor without knowledge of future jobs
arriving at times t > r(i).

All our offline algorithms first assign jobs to processors and then, on each proces-
sor, construct an optimal schedule for the job set assigned to it. In the online setting,
we keep the assignment of jobs to processors but, instead of constructing optimal
schedules, apply a single processor online algorithm. For unit size jobs with agree-
able deadlines, we again assign the incoming jobs to processors using Round Robin.
On each processor we apply an online algorithm by Bansal et al. [3] that achieves a
competitive ratio of 2(α/(α − 1))αeα . Let RR-ON be the resulting algorithm.

Theorem 7 For unit size jobs with agreeable deadlines, CRR-ON achieves a com-
petitive ratio of 2(α/(α − 1))αeα .

As for the algorithm CRR, we define jobs classes that are centered around δ1, the
density of the first incoming job. As usual, job densities within each class differ by
a factor less than 2. More precisely, for densities of at least δ1, there are job classes
[2kδ1,2k+1δ1), for k ≥ 0. For smaller densities there are classes [2−kδ1,2−(k−1)δ1),
for k ≥ 1. While jobs are assigned to processors, instead of computing optimal sched-
ules, which would be impossible, we apply the Average Rate algorithm [30]. Let
CRR-ON denote the resulting strategy. Our analyses of CRR in Sections 3 and 4 in
fact assumed that Average Rate is executed on each processor. Thus the proven ap-
proximation ratios do not increase.

Theorem 8 For unit size jobs with arbitrary release dates and deadlines and for ar-
bitrary size jobs with agreeable deadlines, algorithm CRR-ON achieves a competitive
ratio of αα24α .

6 Conclusions and Open Problems

This paper contains the first algorithmic study of classical deadline-based scheduling
in variable-speed multiprocessor environments assuming that jobs may have individ-
ual release dates and deadlines. We proposed simple algorithms based on job classifi-
cation and natural dispatching rules that can also be used in distributed environments.
The major open problem is to devise a deterministic constant-competitive online al-
gorithm for the general setting where jobs have arbitrary release dates, deadlines and
processing volumes, or to show that such a constant factor performance guarantee
is impossible. Another interesting working direction is to consider speed-bounded
processors as well as extended architectures where processors are equipped with an
additional sleep state into which they can be transitioned when idle.

Appendix

In this appendix we establish the NP-hardness results stated in Theorems 2 and 3
based on the reduction described in Section 3. Given a schedule S, let lS(i) be the

Peter Hu
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total length of intervals in S where job i is executed. The energy consumption of job
i is at least (1/lS(i))α−1. Furthermore, for a set S of jobs (or intervals in S) let l(S)

(lS(S), respectively) denote the sum of the lengths of all jobs (intervals) in S .
We will determine the minimum energy necessary to schedule J on m processors.

To this end we need two lemmas on the structure of an optimal schedule for J .

Lemma 9 In any optimal schedule S for J no two jobs numbered larger than n are
executed on the same processor.

Proof Consider an optimal schedule S and assume for the sake of contradiction there
were jobs i > n and i′ > n running on the same processor j . Then one of the two jobs,
say job i, is executed in intervals of total length at most 3d(n)/2 and incurs an energy
consumption of at least (2/(3d(n)))α−1. Furthermore, there must exist one processor
on which no job is executed in the interval [d(n),3d(n)) because we have only m

jobs with a deadline greater than d(n) and two of these are executed on processor j .
We can now schedule job i in this idle period, generating an energy consumption of at
most (1/(2d(n)))α−1 for job i. This is less than the initial consumption, contradicting
the optimality of the considered schedule. �

Lemma 10 In any optimal schedule S for J each job i, with 1 ≤ i ≤ n, is processed
continuously throughout its execution interval [r(i), d(i)).

Proof Consider any optimal schedule S. A first observation is that S does not contain
processor idle times, i.e. each processor executes jobs throughout [0,3d(n)): Suppose
there were some processor j and an interval I ⊆ [0,3d(n)) during which the proces-
sor would not execute any job. By Lemma 9 some job n + k, where 1 ≤ k ≤ m, is
executed in processor j . We now modify S by executing job n + k additionally dur-
ing I . Thereby we reduce the speed needed to process job n + k and hence the total
energy of the schedule.

Assume that in S some job i is not executed over its full possible interval I =
[r(i), d(i)), i.e. lS(i) = l(i) − ε for some 0 < ε < l(i). Since the execution intervals
of all jobs i′ with 1 ≤ i′ ≤ n are pairwise disjoint, no such job i′ �= i can be scheduled
in I . Hence, by the above observation, some job n + k, with 1 ≤ k ≤ m, is partially
executed in I on the processor where i is scheduled. As shown in Lemma 9 only this
one job is processed in I . Furthermore, lS(n + k) > 2d(n). Now we can construct a
better schedule by executing job i over its full possible length l(i) and reducing the
execution interval of job n + k by ε. This modified schedule has a strictly smaller
energy consumption because the energy consumed by jobs i and n + k satisfies

(
1

lS(i)

)α−1

+
(

1

lS(n + k)

)α−1

︸ ︷︷ ︸
energy consumption in initial schedule

>

(
1

lS(i) + ε

)α−1

+
(

1

lS(n + k) − ε

)α−1

︸ ︷︷ ︸
energy consumption in new schedule

.

This follows from Lemma 1, by setting c = lS(n + k) + lS(i) and x = lS(i). We
note that lS(i) < lS(i) + ε = l(i) < c/2 as l(i) ≤ d(n) and lS(n + k) > 2d(n). This
contradicts the assumption that schedule S was optimal. �
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Theorem 9 Let A ⊂ Z
+, m ∈ N and B = (

∑
a∈A a)/m. (A,m) ∈ MULTI-

PARTITION if and only if an optimal schedule for J incurs an energy of

EOPT =
n∑

i=1

(
1

l(i)

)α−1

+ m

(
1

3d(n) − B

)α−1

.

Proof By Lemma 10, in any optimal schedule each job i, with 1 ≤ i ≤ n, is pro-
cessed continuously throughout its execution interval [r(i), d(i)). Hence it requires
an energy of exactly (1/l(i))α−1, and the total energy spent for jobs 1, . . . , n is∑n

i=1(1/l(i))α−1. Thus the energy consumption of an optimal solution depends only
on the energy consumed by jobs n + 1, n + 2, . . . , n + m. Let k ∈ {1,2, . . . ,m}. By
Lemma 9, all these jobs are executed on separate machines. We assume w.l.o.g. that
job n + k is executed on processor k. Let Jk ⊆ {1,2, . . . , n} be the set of jobs sched-
uled on processor k. We can now easily compute the energy used by n + k as

(
1

lS(n + k)

)α−1

=
(

1

3d(n) − ∑
i∈Jk

l(i)

)α−1

.

By Lemma 1 we find that the sum of the energy consumptions of jobs n + 1, n +
2, . . . , n+m is minimal if and only if lS(n+1) = lS(n+2) = . . . = lS(n+m). This is
the case if and only if

∑
i∈J1

l(i) = ∑
i∈J2

l(i) = . . . = ∑
i∈Jm

l(i) = d(n)/m = B .
By our construction this is possible if and only if there exist sets A1,A2, . . . ,Am ⊆ A

with
⋃m

i=1 Ai = A and, for all i �= j , there holds Ai ∩ Aj = ∅ as well as
∑

a∈Ai
a =∑

a∈Aj
a. Finally, this is the case if and only if (A,m) ∈ MULTI-PARTITION. �

We are now ready to derive the desired NP-hardness results. Setting m = 2, the
NP-hard PARTITION problem [18] is a special case of our MULTI-PARTITION prob-
lem. Theorem 9 yields Theorem 2. Another special case of MULTI-PARTITION is
3-PARTITION. In this case A satisfies the property that there exists a B ∈ Z

+ such
that, for all a ∈ A, we have B/4 < a < B/2 and

∑
a∈A a = mB . Since 3-PARTITION

is strongly NP-hard [18], we obtain Theorem 3 as a consequence of Theorem 9.
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