
J Comb Optim (2018) 35:860–894
https://doi.org/10.1007/s10878-017-0229-7

Race to idle or not: balancing the memory sleep time
with DVS for energy minimization

Chenchen Fu1 · Vincent Chau1,2 · Minming Li1 ·
Chun Jason Xue1

Published online: 22 December 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract Reducing energy consumption is a critical problem inmost of the computing
systems today. Among all the computing system components, processor and memory
are two significant energy consumers. Dynamic voltage scaling is typically applied to
reduce processor energywhile sleepmode is usually injected to trimmemory’s leakage
energy. However, in the memory architecture with multiple cores sharing memory, in
order to optimize the system-wide energy, these two classic techniques are difficult to
be directly combined due to the complicated interactions. In this work, we explore the
coordination of the multiple cores and the memory, and present systematic analysis
for minimizing the system-wide energy based on different system models and task
models. For tasks with common release time, optimal schemes are presented for the
systems both with and without considering the static power of the cores. For agreeable
deadline tasks, different dynamic programming-based optimal solutions are proposed
for negligible and non-negligible static power of cores. For the general taskmodel, this
paper proposes a heuristic online algorithm. Furthermore, the scheme is extended to
handle the problem when the transition overhead between the active and sleep modes
is considered. The optimality of the proposed schemes for common release time and

B Vincent Chau
vincentchau@siat.ac.cn

Chenchen Fu
ameliafu1990@gmail.com

Minming Li
minming.li@cityu.edu.hk

Chun Jason Xue
jasonxue@cityu.edu.hk

1 Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China

2 Shenzhen Institutes of Advanced Technology, Shenzhen, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-017-0229-7&domain=pdf
Peter Hu

Peter Hu

J Comb Optim (2018) 35:860–894 861

agreeable deadline tasks are proved. The validity of the proposed heuristic scheme
is evaluated through experiments. Experimental results confirm the superiority of the
heuristic scheme in terms of the energy saving improvement compared to the most
related existing work.

Keywords Schedule algorithm · Multi-core processor · Dynamic voltage scaling
(DVS) · Energy efficiency · Main memory

1 Introduction

Energy efficiency is a critical issue in most of the computing environments nowadays.
Among all components, processor and main memory typically dominate the energy
consumption of computing devices. Different systems or different architectures may
report different power consumer portions. But for most of them, the processor and
memory are the top three power consumers, while the processor can consume as
much as 50% energy consumption of the overall system (Ge et al. 2010; Wallace et al.
2013). Nowadays, the main memory is usually shared by multiple cores in servers,
personal computers, and even embedded systems.A conventional and effectivemethod
to reduce the energy consumption of the multi-core processor is Dynamic Voltage
Scaling (DVS). There are a series of works focusing on improving the energy savings
of the multi-core processors by applying DVS (Albers et al. 2015; Angel et al. 2012;
Bampis et al. 2014; Hanumaiah and Vrudhula 2014). However, the energy saving
problem of the shared memory in the multi-core architecture still remains. In this
work, by considering the interactions of the multi-core processor and the memory, we
propose techniques to optimize the overall system-wide energy consumption.

Among the overall memory energy consumption, leakage power, including the
refresh power and standby power, occupies a significant portion, as the memory chips
are becoming denser with smaller technology scales. For example, in DRAM, which
is widely used as main memory, leakage power can be as much as 10 times of the
dynamic read/write power on the memory chip using a process technology with the
size smaller than 50nm (Wilton and Jouppi 1996). Effectively reducing the leakage
power can significantly improve the memory energy efficiency.

To reduce the leakage power, the memory can be transformed from the active
state to the low power state, such as sleep state, power-down state, self-refresh state
(low refresh rate), etc. when it is not accessed (Chen et al. 2011; Liu et al. 2012;
Ware et al. 2010; Zhong and Xu 2008). In this work, we abuse the sleep mode to
represent any low power state. This is legal because we do not really apply low power
state when developing schemes in this paper, but try to maximize the time for low
power state. Based on this technique, a series of research works have been done on
different objectives. Most of these research works target at only reducing the memory
energy consumption, or reducing the energy of single-core processor system with
memory (Chen et al. 2011; Zhong and Xu 2007, 2008; Zhuo and Chakrabarti 2005).
The system-wide energy saving problem in multi-core processor with shared memory
remains blank. The main challenges of the system-wide energy minimization problem
of considering both the memory leakage power and the multi-core processor power lie

123

Peter Hu

862 J Comb Optim (2018) 35:860–894

in two aspects. On one hand, for the sake of cores, executing tasks in lower speed leads
to less power consumption. For the memory, however, the processor speed slowdown
may result in an increase of the memory accessing time, and thus may lead to the
increase of the memory static power, which might be very significant. Hence, balance
between the energy consumption of the cores and the memory needs to be achieved
for the overall energy minimization. On the other hand, each core may have specific
memory access pattern and the shared memory cannot sleep as long as any memory
access exists. Consequently, it is the common idle time of all the cores that determines
the sleep time of the shared memory, which is a different and new problem compared
to the existing multi-core DVS scheduling schemes.

To handle the above challenges, this work proposes optimal solutions to minimize
the system-wide energy consumptionwhen the interactions of themulti-core processor
and the memory are taken into account. To the best of our knowledge, this work is
the first attempt to obtain the optimal solution in minimizing the system-wide energy
consumption considering the multiple cores applying DVS and the shared memory.

In this paper,we conduct a systematic studyof the system-wide energyminimization
problem based on various system and taskmodels. The goal is to schedule tasks among
multiple independent DVS cores in proper speeds, while maximizing the time that the
shared memory can sleep, so as to minimize the overall energy consumption. Both
theoretical and practical techniques are proposed in this work. Experimental results
show that the proposed online algorithm can effectively reduce the overall energy
consumption compared to a state-of-the-art multi-core DVS scheduling scheme. The
main contributions of this paper are:

– We proved that it is NP-hard to minimize the system-wide energy consumption
when the number of cores is bounded by the number of tasks;

– When the number of cores is unbounded, for tasks with common release time,
optimal schemes are proposed for two cases where cores have negligible and non-
negligible static power, respectively;

– With unbounded number of cores, for agreeable deadline tasks (where later release
time implies a later deadline) two DP-based (Dynamic Programming) optimal
solutions are developed for negligible and non-negligible static power of cores,
respectively;

– An online heuristic algorithm is proposed considering the general task model. The
evaluation shows the effectiveness of the proposed algorithm;

– The energy overhead caused by mode transitions between active and sleep modes
of the memory and the cores are further considered. With the transition overhead,
the corresponding schemes over different models are presented.

The rest of this paper is organized as follows. The related work is presented in
Sect. 2. Section 3 presents the definitions of the system model and the target problem.
In Sect. 4, optimal schemes are proposed for common release time tasks. Optimal
solutions for agreeable deadline tasks are presented in Sect. 5. Section 6 proposes an
online heuristic algorithm for general tasks. In Sect. 7, the mode transition overhead
is analyzed. The experimental results are shown in Sect. 8. Finally we conclude the
paper in Sect. 9.

123

Peter Hu

J Comb Optim (2018) 35:860–894 863

2 Related work

In this section, we introduce three groups of the most related works. First, the schemes
focusing on minimizing the single core-based system-wide energy consumption are
discussed. Second, we introduce DVS scheduling on multi-core processors. Third, the
research works on the speed scaling with sleep state problem are presented.

Dynamic voltage scaling is a widely used energy management technique. Since
the power consumption of a processor increases with the voltage of the processor
increasing, energy can be saved by scaling the voltage of the processor. Researchers
have explored the system-wide energy cost in the architecture consisting of a single
DVS core and a single memory. Jejurikar and Gupta (2004) propose a heuristic algo-
rithm for minimizing the energy consumption of the discrete speed level single-core
processor system. The proposed method scales the speed of tasks to obtain the mini-
mum system-wide energy. Zhuo and Chakrabarti (2005) study the continuous speed
level single-core processor system, and propose a static speed setting policy, together
with an online slack distribution scheme. Zhong and Xu (2008) propose to reduce
the energy consumption of both the single processor and the memory. The authors
developed an offline optimal schedule for periodic jobs, which can be computed in
linear time. Furthermore, they propose a best possible online algorithm for sporadic
jobs. Zhong and Xu (2007) propose the lower bounds and approximation algorithms,
as well as some hardness results in minimizing system-wide energy.

DVS has been widely applied for multi-core processors in the recent decades. The
first algorithmic work is given by Chen et al. (2004). For jobs with common release
time and deadline, they propose approximation schemes for both with and without the
maximum speed constraint. For processors where each core has independent voltage
supply, Yang et al. (2005) propose a polynomial time optimal schedule for a given task
assignment with common release time and deadline. Albers et al. (2007) prove the
NP-hardness of the multi-core DVS problem when tasks cannot migrate and propose
several approximation algorithms for various special cases. For jobs with a common
release date or a common deadline, the approximation factor is 2(2 − 1/m)α , where
α is given from the power equation P(s) = sα . For arbitrary release dates and dead-
lines, a polynomial time algorithm is proposed with the approximation ratio of αα24α .
Bingham and Greenstreet (2008) study the problem when tasks can migrate between
cores and show that the optimal schedule can be obtained by Linear Programming,
when the release time and deadline of tasks are arbitrary. To develop a faster optimal
scheme towards the same problem, more recently, Albers et al. (2011, 2015) show
that in offline setting, optimal schedules can be computed in polynomial time in a
combinatorial way. In online setting, they extended two algorithms Optimal Available
and Average Rate proposed by Yao et al. (1995) to the multiple processor case. They
proved that Optimal Available is αα-competitive, as in the single processor case and
Average Rate is (3α)α/2 + 2α . Angel et al. (2012) work on the same problem inde-
pendently from the work (Albers et al. 2011; Bingham and Greenstreet 2008). The
authors propose an optimal algorithm, which can be faster than that of (Albers et al.
2011) when the precision is not highly required.

More recently, several scheduling algorithms focusing on DVS while considering
turning the processor to sleep statewere proposed. This problem is called speed scaling

123

864 J Comb Optim (2018) 35:860–894

with sleep state, which was first formally defined and discussed in Irani et al. (2007).
The main idea to handle the problem is to schedule tasks at an appropriate speed so
as to create an idle period in which the processor can be switched into the sleep state.
In this way, both static and dynamic energy consumptions of the processor can be
reduced. The energy minimization over speed scaling with sleep state problem on a
single-core processor is proved to be NP-hard for tree-structured tasks by Albers and
Antoniadis (2012). The authors also propose the best possible lower bound 4/3− for
the approximation factor in this problem. For the agreeable deadline tasks, Bampis
et al. (2012) propose a dynamic programming-based algorithm with time complexity
O(n3). Most recently, Antoniadis and Huang (2015) settle the complexity of this
problem to be weakly NP-hard by proposing a fully polynomial time algorithm. The
approximation ratio is reduced from 4/3− to 1 + ε. For multi-core processors, Chen
et al. (2006) propose polynomial approximation algorithms for periodic tasks. In this
work, by applying DVS on multi-core processors, maximizing the memory sleep time
is a new problem. It is more complicated than the speed scaling with sleep state
problem on multi-processors, because the idle interval of all cores should be adjusted
to be close to each other so that the memory sleep time can be maximized. In this
work, putting cores into sleep state is also taken into account.

3 Problem definition and analysis

In this section, system and task models that are used in this work are presented. Based
on the models, the target problem is formally defined. Furthermore, the complexity
analysis of the target problem when the number of cores is bounded is presented and
proved.
System model This paper targets at the real-time systems and explores energy-efficient
scheduling schemes for multiple homogeneous cores with shared main memory. We
assume that each core has individual voltage supply, which can be dynamically scaled.
For the systems with different voltage clusters, which allow a group of cores sharing
one voltage supply island (Herbert and Marculescu 2007; Marculescu and Choudhary
2006), we leave them as future work.

In this paper, we assume that the speed of cores changes in a continuous manner.
The assumption is conventional in the field of DVS task scheduling, the same as in
the work (Angel et al. 2012; Yang et al. 2005; Yao et al. 1995; Zhong and Xu 2008).
A series of works have been proposed to effectively transform continuous voltage to
the most proper discrete voltage (Ishihara and Yasuura 1998). With these techniques
and with the number of voltage levels increasing in recent years, there will be no
big gap between the continuous voltage and discrete voltage. For the overhead of
the voltage adjustment, we firstly assume that it can be ignored in the theoretical
analysis. The ignoring of voltage transition overhead is not over-estimated. This is
because in the theoretical analysis the proposed schemes do not allow preemptions
and can guarantee that the speed of each task stays the same during execution. Hence
the voltage adjustment is actually not quite frequent. Furthermore, we remove the
assumption in the evaluation part. The experimental results show that the proposed

123

Peter Hu

J Comb Optim (2018) 35:860–894 865

scheme can effectively reduce the overall system energy when as well considering the
frequency transition overhead.

The dynamic power consumption Pd() of the core is a function of the core speed s
(Rabaey et al. 2002).

Pd(s) = Cef V
2
dds,

where s = κ
(Vdd−Vt)2

Vdd
, and Cef , Vt , Vdd and κ represent respectively the effective

switch capacitance, the threshold voltage, the supply voltage and a hardware-design-
specified parameter. Let sup represent the upper bound speed level of the processor.

It can be noted that Pd(s) is a convex and increasing function of the core speed s.
As analyzed in Chen et al. (2006), Irani et al. (2007) and Yao et al. (1995), the dynamic
power consumption Pd() can be represented proportional to sλ. In this work, we focus
on homogeneous cores, which have the same power function:

P(s) = α + Pd(s), (1)

where Pd(s) ∝ sλ = βsλ, λ > 1 Yao et al. (1995), and α denotes the static power of
the core (Chen et al. 2006). If α = 0, it means that the dynamic power dominates the
core power consumption and the static power of cores is negligible (Mishra et al. 2003;
Yang et al. 2005; Zhong and Xu 2008). Thus the cores do not consume energy when
idle. On the other hand, if α �= 0, it implies that the cores consume energy even when
no task is executing. Hence turning the cores into sleep state when idle is necessary. In
the following analysis, we use these two cases, α �= 0 and α = 0, to denote whether
the cores need to be turned to sleep or not when idle, respectively.

The static power for the shared main memory is denoted by αm , due to the leakage
current. The memory can be turned to sleep when it is not accessed by any core to save
the leakage energy. We assume the sleep and active mode transitions of the memory
can be done instantly, but require extra energy overhead (Chen et al. 2006; Fan et al.
2001). Conventionally, the transition energy overhead is represented as break-even
time, which is the length of the time interval where the memory working in the idle
but active mode consumes the same energy as the transition overhead (including both
of the active-to-sleep and sleep-to-activemode transitions). Let ξm represent the break-
even time of the memory. Likewise, denote the transition overhead of the core as ξ , if
α �= 0.
Task model Tasks, discussed in this work, are independent during executions. We
assume that a task accesses the memory during its whole execution period (Zhong and
Xu2007, 2008).We focus on the non-preemption and non-migration case, i.e. tasks are
not allowed to be preempted or migrate among cores once assigned (Yang et al. 2005;
Mishra et al. 2003). Given a set of n tasks, T1, T2, . . . , Tn , each task Ti is associated
with release time ri , deadline di , and non-negative workload wi . All tasks must be
completed before their deadlines. The time period [ri , di] of Ti , is called the feasible
region, denoted as Ii . To clearly state the features of the proposed technique, we define
a notation filled speed sfi for each task Ti . sfi represents the speedwhen Ti is executed to
occupy the entire feasible region [ri , di], i.e. sfi = wi|Ii | = wi

di−ri
. Note that when α = 0,

123

Peter Hu

866 J Comb Optim (2018) 35:860–894

the core scheduling task in the filled speed consumes the least energy while satisfying
the deadline constraint. W.l.o.g, we assume that each task can be completed before
its deadline when scheduled at the upper bound speed, i.e. sup ≥ sfi,∀i , otherwise the
problem will be meaningless.

In this work, we assume that each core is allocated a part of memory area, which
is disjoint from each other. In this way, access congestions from different cores can
be avoided. On the other hand, even though for the system of a traditional shared
memory, which cannot be divided, many techniques have been proposed and applied
to reduce the memory access delay under congestions (Jang and Pan 2011; Kim and
Kim 2007). Furthermore, techniques like bank-level parallelism, the NUMA (non-
uniform memory access) architecture, etc, guarantee the reasonable memory access
delay. Therefore, even though tasks have the potential to be scheduled concentratively
to access the memory in the target problem, we assume that the access delay can be
ignored, as this work mainly focuses on task scheduling issues. The analysis on the
memory access congestions and behaviors are left as future work.
Problem definition The goal of the explored problem in this work is to schedule tasks
by applying DVS on each core while turning the core to sleep (when α �= 0) when
necessary, and turning the memory to sleep when all cores are idle to minimize the
system-wide energy consumption. In this work, we define common idle time as the
time period when all cores are idle. It is equivalent to the sleep time of memory,
denoted as Δ. In contrast, the busy interval of core is the maximal interval when the
core is working, and the busy interval of memory means the maximal interval when
at least one core is working. In the following, if not otherwise specified, busy interval
refers to busy interval of memory.

Based on the above defined models, we define the target problem as Sleep and
DVS-aware system-wide Energy Minimization (SDEM) problem. For this problem,
we say a schedule is feasible if no task misses its deadline and a schedule is optimal
if it leads to the least system-wide energy consumption among all feasible schedules.

In this work, SDEM is analyzed for both bounded and unbounded number of cores
(Peter et al. 1997). Bounded means that the number of cores, denoted as C , is less
than the number of tasks, i.e.C < n, while unbounded means that the number of cores
is sufficient to schedule each task on an individual core, i.e. C � n. The following
theorem proves that SDEM problem is NP-hard for the bounded case, even with
the simplest task model and system model: all tasks have the same release time and
deadline, and the static power of cores α, as well as the memory mode transition
overhead ξm is negligible.

Our NP-hardness reduction is inspired by the reduction from Theorems 2 and 3
in (Albers et al. 2007), which uses the Partition and Multi- Partition problem.
Albers et al. (2007) proved that the energyminimizationproblemof scheduling tasks on
multiple DVS cores is NP-hard for arbitrary release time and deadline tasks. However,
there are some differences between their problem and ours. First, for their problem,
there exists an optimal polynomial-time algorithm for the common release time and
common deadline tasks. However, by considering the common idle time issue, the
above Theorem 1 proves that SDEM remains NP-hard even with common time con-
straints. Second, their problem remains NP-hard when task is of unit-size but in our

123

Peter Hu

J Comb Optim (2018) 35:860–894 867

problem, we did not consider the unit-size case and the hardness for this subcase is
unknown.

Theorem 1 SDEM is NP-hard when the number of cores 2 � C < n and C = n−nx ,
where nx = ω(1) is a super-constant, even for tasks with common release time and
deadline, α = 0 and ξm = 0.

Proof We transform the NP-hard problem Partition to this problem. An instance
of the Partition problem consists of a finite set A and a size s(a) ∈ Z+ for each
a ∈ A. The problem is to determine whether there is a subset A′ ⊆ A such that∑

a∈A′ s(a) = ∑
a∈A−A′ s(a).

Given an arbitrary instance of Partition, let A = {a1, a2, . . . , an}, s(a1),
s(a2), . . . , s(an) ∈ Z+. Create an instance of our problem by constructing a set τ

of n tasks, τ ={T1, T2, . . . , Tn}. We assume all the tasks have the same release time 0
and deadline D. The number of cores is 2 (n >> 2). Let the subset of tasks assigned
and scheduled on core 1 be represented by τ ′, where τ ′ ⊆ τ . And the tasks which are
scheduled on core 2 are in the subset τ − τ ′. The system-wide energy consumption
can be represented as

Esys = β

(∑
Ti∈τ ′ wi

|Ib|
)λ

|Ib| + β

(∑
Tj∈τ−τ ′ w j

|Ib|

)λ

|Ib| + αm |Ib|,

where Ib is the busy interval for each core (busy interval of memory). It is not hard to
notice that the length of busy interval for each core is equal in the optimal solution.
The busy interval length |Ib| that minimizes Esys can be obtained by derivation.

|Ib| =
⎛

⎝
(λ − 1)β

[
(
∑

Ti∈τ ′ wi)
λ + (

∑
Tj∈τ−τ ′ w j)

λ
]

αm

⎞

⎠

1
λ

(2)

The corresponding minimum energy consumption is

Emin_sys = α
λ−1
λ

m β
1
λ λ(λ − 1)

1−λ
λ

⎛

⎜
⎝

⎛

⎝
∑

Ti∈τ ′
wi

⎞

⎠

λ

+
⎛

⎝
∑

Tj∈τ−τ ′
w j

⎞

⎠

λ
⎞

⎟
⎠

1
λ

(3)

For our instance, we assume that there exists a subset τ ′ that satisfies
∑

Ti∈τ ′
wi =

∑

Tj∈τ−τ ′
w j ,

which leads to theminimum Emin_sys. The optimal solution is obtained if and only if we
find the subset τ ′ that satisfies the above condition, or in other words, find a workload-
balanced task assignment to two cores. If we find the solution to our problem, then it
can be used to solve an arbitrary instance of the Partition problem by constructing

123

868 J Comb Optim (2018) 35:860–894

Table 1 Subproblems of SDEM based on various system and task models

Task model System model Solutions Sections

Common release
time

α = 0, ξm = 0 Optimal solution (O(nlogn)) 4.1
α �= 0, ξm = 0, ξ = 0 Optimal solution (O(n2)) 4.2

Agreeable
deadline

α = 0, ξm = 0 DP-based optimal scheme
(O(n4 + n2))

5.1

α �= 0, ξm = 0, ξ = 0 DP-based optimal scheme
(O(n5 + n2))

5.2

General model α = 0(α �= 0), ξm = 0, ξ = 0 Online heuristic algorithm 6

All task models α = 0(α �= 0), ξm �= 0, ξ �= 0 Extended from corresponding
schemes

7

n tasks, and letting A = τ , and s(ai) = wi . Therefore, our problem is NP-hard when
C = 2.

When consideringC > 2, the problem can be similarly reduced from 3- Partition
and Multi- Partition (Albers et al. 2007). It remains hard to find a workload-
balanced partition to multiple cores for our problem, and the problem can only be
optimal when the partition is workload-balanced. It should be noted that when the
number of cores C is approaching to n, the problem is NOT NP-hard. For example,
if C = n − 1, exactly two tasks have to share a core. It is trivial as we only need
to test O(n2) possibilities to obtain the optimal solution. To eliminate the trivial
cases, we need to introduce nx = ω(1). When C = n − nx , the time complexity
is O(nnx) = O(nω(1)) = ω(nc), (where c is a constant) which is super-polynomial
time, i.e. exponential time. In this work, we say that our problem is NP-hard when
2 ≤ C < n and C = n − nx , where nx = ω(1).
�

Even though Theorem 1 proves theNP-hardness of the problem,we find that SDEM
is solvable in polynomial timewhen the number of cores is unbounded.Considering the
complexity of NP-hard problems, this paper focuses on the case of sufficient number
of cores (C ≥ n), named as the unbounded case. There are a series of related works
focusing on the unbounded case analysis in real-time system (Edwin Cheng et al.
2001; Feng et al. 2013; Khandekar et al. 2010; Peter et al. 1997). The unbounded case
is meaningful for the real-time system. Consider the scenario that tasks, the number of
which is more than the number of cores, burst at some time instant. For the real-time
system, it is difficult to guarantee the schedulability no matter with which scheduling
algorithm. Tasks cannot be scheduled at a speed as fast as possible due to themaximum
frequency limitation. Hence the number of tasks in execution at any time instant is
limited for the real-time system. We can assume that the overall number of tasks
is much more than the number of cores during a long period of time. But within a
short period of time, the unbounded case is common. The following analysis explores
the optimal results for tasks with common release time and agreeable deadlines, and
proposes a heuristic online scheme for general tasks. The subproblems of SDEM and
the corresponding solutions analyzed in each section are summarized in Table 1.

123

Peter Hu

J Comb Optim (2018) 35:860–894 869

4 Common release time tasks

This section explores solutions for SDEM problem with common release time tasks.
Optimal solutions are proposed for both the α = 0 and α �= 0 cases. In this section,
we assume the transition overhead of the memory and the cores are both negligible.
Further analysis considering the transition overhead is presented in Sect. 7.

4.1 α = 0

In this subsection, we consider the case that the dynamic power dominates the core
power consumption, and the cores do not need to be turned to sleep (i.e. α = 0). For
this case, a faster scheme is proposed, with time complexity of O(nlogn).

Given a set of tasks with common release time, index the tasks in the increasing
order of their deadlines. Let Ii = [0, di] represent the feasible region of each task Ti ,
and I = In = [0, dn] be the maximal interval. Different from the definition in Sect.
4.2, we use

δi = dn − di ,∀i ∈ [1, n − 1]

to represent the time period right after each task’s feasible region. The corresponding
input task model and notations are given in the left part of Fig. 1.

Define each case under the assumption of δi � Δ < δi−1 as Case i . Without vio-
lating the time constraints, tasks from T1 to Ti−1 should be scheduled in their own
filled speed, while tasks from Ti to Tn are scheduled to finish at time |I | − Δ. The
task schedule for case i is presented in the right part of Fig. 1.

For case i , the system energy consumption can be represented as

Ei = αm(|I | − Δ) + β

i−1∑

j=1

wλ
j |I j |1−λ + β

n∑

k=i

wλ
k (|I | − Δ)1−λ

I1

I2

Ii

Ii+1

I=In

Memory

δi

δi+1

δ2

δ1

...
...

Act

T1

T2

Ti

Ti+1

Tn

δi

δi+1

δ2

δ1

Δ

. ..
.. .

Act Slp

Fig. 1 Common release time task models with α = 0

123

870 J Comb Optim (2018) 35:860–894

The extreme value that minimizes Ei can be obtained by derivation.

Δmi = |I | −
(

β(λ − 1)
∑n

j=i w
λ
j

αm

) 1
λ

(4)

By examining whether Δmi falls inside or outside the feasible domain [δi , δi−1),
we can obtain the local optimal solution for Case i , denoted as Emin _i . The formal
equation for developing the local optimal solution is just the same as that in Lemma
2 (the notations should be replaced with the ones in this subsection).

In the following theorem, for a given task set, a binary search-based efficient scheme
is proposed to find the global minimum energy

Em = min{Emin _i }, ∀i ∈ [1, n].

To clearly describe the theorem, we call Δmi valid when Emin _i chooses Δmi as its
solution, and call Δmi just-fit when Emin _i chooses δi . When δi−1 is chosen as the
solution to Emin _i , Δmi is called invalid. This can be referred to the corresponding
results in Eq. (9).

Theorem 2 The optimal solution can be obtained by going through all n cases from
Case n to Case 1. For each Case i , the global optimal result is obtained when Δmi

is valid or just-fit. When Δmi is invalid, the scheme goes to the next Case i − 1, and
checks in the same way. Note that when some task’s speed exceeds sup in Case k, stop
and report Δmk as the optimal solution.

Proof First of all, it can be noted from Eq. (4) that for the same task set,

Δmi > Δm(i−1)∀i ∈ [2, n] (5)

In the following analysis, we prove this theorem by induction. Set a counter k to
represent the case that is currently discussed, and initialize it to n. For the base case
when k = n, ifΔmn < δn−1, according to Eq. (5), it means that fromΔm1 toΔm(n−1),
they are all smaller than δn−1, which implies thatΔmi in each case is just-fit. According
to the corresponding conditions showed in Eqs. (9), (10) and (11), it can be noted that
under this case, ∀i ∈ [2, k − 1]

Emin _i = Ei (δi) < Ei (δi−1) = Ei−1(δi−1) = Emin _(i−1) (6)

and

En(Δmn) < En(δn−1) = Emin _(n−1)

Therefore, the local optimal values in all the other cases cannot be less than En(Δmn).
Then the global minimum energy is obtained as Em = En(Δmn). Otherwise, when
Δmn � δn−1, the other cases cannot be guaranteed to be smaller or larger than the

123

Peter Hu

J Comb Optim (2018) 35:860–894 871

local optimal of Case n without further analysis. So we let k = n − 1 and go to the
next case.

In the induction steps, we assume Case k = i + 1 satisfies Theorem 2 and the
scheme goes to Case k = i , which implies that Δm(i+1) is invalid. For Case k = i ,
if Δmi is valid or just-fit, then all the Δmk , where k ∈ [1, i − 1], are just-fit and can
never lead to less energy value than Ei (Δmi) (it can be analyzed in the similar way
by applying Eq. (6)). So the global optimal solution can be obtained accordingly. In
this way, Case i is proved to satisfy Theorem 2 as well. For the worst case, the scheme
goes to Case 1 at last, then it stops and obtains the global optimal result according to
Eq. (10).

Next, to prove that it is feasible to stop checking the next case when the cur-
rent solution is valid or just-fit, we prove that there is only one Δ that leads to the
global minimum energy consumption. Assume that there are two solutions, Δmin and
Δ′

min that both lead to the optimal results. Without loss of generality, we assume
δi � Δmin < δi−1, δi ′ � Δ′

min < δi ′−1, δi−1 � δi ′ and Ei (Δmin) = Ei ′(Δ′
min). It can

be noted that Δmin (respectively Δ′
min) equals either Δmi (respectively Δmi ′) or δi

(respectively δi ′) (Eq. (9)). If Δmin = Δmi , Δ′
min = Δmi ′ , then we have Δmin > Δ′

min
according to Eq. (5) (note that i − 1 � i ′ from the assumption δi−1 � δi ′), which vio-
lates the assumptionΔmin < Δ′

min. IfΔmin = δi ,Δ′
min = δi ′ , Ei (δi) cannot be equal to

Ei ′(δi ′) unless δi = δi ′ , which violates the assumption δi−1 < δi ′ . We also can deduce
that if Δmin = δi and Δ′

min = Δmi ′ , Ei (δi) cannot be equal to Ei ′(Δmi ′), and vice
versa. Hence the optimal solution is unique and the optimality is proved. The proof
corresponds to the speed sup is straightforward and is omitted here.
�

The above optimal scheme can be further accelerated by applying binary search, as
stated in Lemma 1. In this way, the time complexity can be improved to O(nlogn).

Lemma 1 For each Case i , if Δmi is just-fit, then the binary search should go on the
side of Case i to Case n; if Δmi is invalid, then the binary search repeats on the side
of Case i to Case 1. Otherwise the valid Δmi is the optimal solution. Note that if the
binary search ends without finding a valid Δmi , then the just-fit solution is the global
optimal solution.

Proof To prove the effectiveness of the binary search, the key point is to prove that the
optimal solution is obtainedwhen finding a valid solution in some case. In other words,
if Δmi is valid in Case i , then other cases (to be more specifically, other cases from
Case i + 1 to n), cannot have valid or just-fit solutions. For the sake of contradiction,
assuming that for both Case i and Case j , Δmi and Δmj are valid. W.l.o.g, let i > j ,
then δi < δ j , and Δmi < Δmj . However, according to Eq. (5), we have Δmi > Δmj ,
which leads to a contradiction. The contradiction still holds when Case i obtains the
just-fit solution, and Case j obtains the valid result, with i > j . In this way, the unique
valid solution is proved to be the global optimal solution. The binary search direction
is guided by the cases of just-fit and invalid. The analysis is directly based on the
feature of the original scheme, and thus is omitted here.
�

123

872 J Comb Optim (2018) 35:860–894

4.2 α �= 0

In this subsection, we discuss a general problem, by considering that the static power
of the core is non-negligible, i.e. α �= 0. It implies that each core can be independently
turned into sleep state according to the completion time of the task loading on it. The
memory can be turned into sleep state during the common idle time for all cores. In the
following analysis, critical speed is firstly presented to guide the proposed scheme,
and then the optimal solution is presented.
Critical speed Consider a system only consisting of a single core. By executing
an arbitrary task Ti , the energy consumption of the core can be represented as
Ecore = βsλ wi

s + α
wi
s . The minimum energy is obtained when the execution speed

is λ

√
α

β(λ−1) , denoted as sm , which is independent from Ti (Irani et al. 2007). As each

task cannot violate its time constraint or the upper bound speed level, we define the
critical speed

s0 = min{max{sm, sfi}, sup}.

It can be noted that this guarantees that sfi ≤ s0 ≤ sup, and thus tasks can always be
feasibly scheduled when executing at critical speed s0.

Given n tasks with common release time, without loss of generality, we assume that
all tasks arrive at time 0 and each task has an individual deadline. Let these tasks be
executed at the critical speed s0. Index them in the increasing order of their completion
time, denoted as ci , where ci = wi

s0
. We set

δ
(α)
i = |I |(α) − ci ,

where the interval length |I |(α) = |cn|. Denote the sleep length of memory as Δ(α).
The input task model is given in the left part of Fig. 2.

Assume that the optimal solution is obtained when the memory sleeps for a length
of Δ(α) in the right hand side of I (α). It can be noted that the memory sleep time Δ(α)

is the only determining factor to obtain the optimal solution. Intuitively, in the optimal

s0
s0

s0

Memory

δ(α)i

δ(α)i+1

δ(α)2

δ(α)1

. ..
. ..

s0

s0

Act

T1

T2

Ti

Ti+1
Tn

s0 δ(α)i

δ(α)2

δ(α)1

Δ(α)

. ..
...

s0

s0

Act Slp

Fig. 2 Common release time task models with α �= 0

123

Peter Hu

J Comb Optim (2018) 35:860–894 873

solution, tasks that satisfy |I |(α) − ci > Δ(α) maintain the critical speed on their cores,
while the other tasks with |I |(α) − ci � Δ(α) need to increase their execution speed to
align the sleep time of their cores to that of the memory to minimize the energy. The
corresponding task schedule is presented in the right part of Fig. 2.

In the proposed scheme, we construct n(α) cases based on the length of the Δ(α).
For each case i (α), let

δ
(α)
i � Δ(α) < δ

(α)
i−1,∀i ∈ [1, n(α)] (let δ(α)

n = 0, δ(α)
0 = ∞).

For simplicity, we call [δ(α)
i , δ

(α)
i−1) the feasible domain of Δ(α).

The following optimal scheme aims to obtain the best memory sleep time Δ(α)

leading to the optimal solution. The system energy for case i (α), excluding the cores
loading tasks whose |I |(α) − ci > Δ(α) is represented in Eq. (7). It can be used to
obtain the optimal solution to the overall system (including all cores), because the
tasks with |I |(α) − ci > Δ(α) do not affect the optimal solution Δ(α).

E (α)
i = [(n − i + 1)α + αm](|I |(α) − Δ(α)) +

n∑

j=i

βwλ
i (|I |(α) − Δ(α))1−λ (7)

The extreme value Δ
(α)
mi that leads to the minimum system energy can be obtained as

Δ
(α)
mi = |I |(α) −

(
β(λ − 1)

∑n
j=i w

λ
j

(n − i + 1)α + αm

) 1
λ

(8)

Note that the extreme value Δ
(α)
mi should fall inside the feasible domain [δ(α)

i , δ
(α)
i−1)

assumed for Δ(α). Otherwise the local optimal solution is achieved at one of the
boundary values δ

(α)
i and δ

(α)
i−1. In this way, the local optimal solution for Case i (α)

can be obtained, denoted as Δ
(α)
opti . In this local optimal solution, all tasks from Tn to

Ti are executed to finish at |I |(α) − Δ
(α)
opti , and other tasks maintain the critical speed.

Note that the speed of each task should not exceed the upper bound level sup. This
constraint is guaranteed in Theorem 3.

Without loss of generality, we denote each case under the assumption of
δ
(α)
i � Δ(α) < δ

(α)
i−1 as Case i

(α) with the local minimum energy consumption E (α)
min _i .

The formal equation for developing the local optimal solution for each Case i (α) is
given in Lemma 2. Based on Lemma 2, Theorem 3 presents and proves the global
energy minimization analysis.

Lemma 2 The local minimum energy consumption E (α)
min _i for Case i

(α) is obtained
as

E (α)
min _i =

⎧
⎪⎪⎨

⎪⎪⎩

E (α)
i (Δ

(α)
mi) i f δ(α)

i � Δ
(α)
mi < δ

(α)
i−1

E (α)
i (δ

(α)
i) i f Δ(α)

mi < δ
(α)
i

E (α)
i (δ

(α)
i−1) i f Δ(α)

mi � δ
(α)
i−1

(9)

123

Peter Hu

874 J Comb Optim (2018) 35:860–894

when 2 � i (α) � n − 1. Specifically, when Δ(α) � δ
(α)
1 ,

E (α)
min _1 =

{
E (α)
1 (Δ

(α)
m1) i f Δ(α)

m1 � δ
(α)
1

E (α)
1 (δ

(α)
1) i f Δ(α)

m1 < δ
(α)
1

(10)

and when Δ(α) < δ
(α)
n−1,

E (α)
min _n =

{
E (α)
n (Δ

(α)
mn) i f Δ(α)

mn < δ
(α)
n−1

E (α)
n (δ

(α)
n−1) i f Δ(α)

mn � δ
(α)
n−1

(11)

The proof is straightforward and is omitted here. The following theorem presents
that for a given task set, the global minimum energy can be obtained by going over
these n cases.

Theorem 3 The optimal solution can be obtained by going through all n cases as
defined in Lemma 2 from Case n(α) to Case 1(α). The local optimal result is recorded
when δ

(α)
i � Δ

(α)
mi < δ

(α)
i−1 or Δ

(α)
mi < δ

(α)
i . When Δ

(α)
mi � δ

(α)
i−1, the scheme skips the

recording and goes to the next case. The global optimal solution is obtained referring
to the minimum value of all the n(α) local optimal results. Note that when some task’s
speed exceeds sup in Case k(α), skip and go to the next case.

The proof is straightforward and is omitted here. The time complexity of the above
scheme isO(n2). For the special casewhen all tasks have the common release time and
common deadline, the global optimal solution can be directly obtained by applying
Eqs. (7) and (8), while setting i = 1, as all tasks share the same feasible region.
Furthermore, all the proposed schemes in Sect. 4 can be applied for heterogeneous
cores with different power functions, i.e. different α, β. Under this case, different cores
will have different critical speed s0; and when developing the optimal system energy
E (α)
i in Eq. (7) for Case i (α), the dynamic power of different cores should be added

up separately.

5 Agreeable deadline tasks

In this section, the optimal solutions for SDEM problemwith agreeable deadline tasks
are explored. Tasks that have agreeable deadlines satisfy the following condition. For
two arbitrary tasks Ti , Tj , if ri � r j , then di � d j . In the following two subsections,
SDEM problem for agreeable deadline tasks is analyzed for α = 0 and α �= 0 cases,
respectively. The transition overhead is discussed in Sect. 7.

5.1 α = 0

In this subsection, without turning the cores into the sleep state, an optimal solution
is proposed to minimize the system-wide energy consumption. The main idea of the
solution can be divided into two parts. In the first part, the local optimal solution of

123

J Comb Optim (2018) 35:860–894 875

a single task subset is obtained. Let τ ′ represent an arbitrary subset of the whole task
set, in which all tasks in τ ′ are scheduled in a single busy interval of memory. A local
optimal solution can be obtained by finding a proper busy interval of memory that
minimizes the energy consumption for these tasks. In the second part, for the whole
task set, a Dynamic Programming based method can be constructed to determine
the subset division, and the optimal solution can be developed accordingly. In the
following, we describe the proposed scheme in detail.

5.1.1 Local optimal solution of one task subset (α = 0)

Given a set τ of n tasks with agreeable deadlines, let τ ′ represent an arbitrary subset
τ ′ ⊆ τ consisting of n′ tasks. Tasks in τ ′ are scheduled within a single, continuous
busy interval. Note that the agreeable deadline property still holds in the subset. Index
tasks in τ ′ in the increasing order of deadlines. The interval that is covered by these
n′ tasks can be represented as [r1, dn′]. W.l.o.g, we set r1 = 0. Let s′ and e′ represent
the start and end points of the busy interval. Define the idle time before and after the
busy interval [s′, e′] as Δ1 and Δ2, where Δ1 = s′ and Δ2 = dn′ − e′.

Based on the above definitions, the processing interval of a task Tk can be classified
into one of the following 4 cases: (1) [s′, dk]; (2) [rk, dk]; (3) [s′, e′] and (4) [rk, e′].
Figure 3 presents an example to show these 4 processing cases. Limited by the property
of the agreeable deadline tasks, a task satisfying case (2) and another task satisfying
case (3) cannot be scheduled in a single busy interval. Otherwise the two tasks satis-
fying case (2) and (3) respectively will be nested rather than satisfying the agreeable
deadline property. According to the above observations, the detailed analysis is given
as follows.

Assume that s′ ∈ (ri , ri+1], and e′ ∈ (dn′− j , dn′− j+1]. We can obtain an (i, j) pair,
where i means the i th task from left to right (from T1 to Ti), and j denotes the j th task
from right to left (from Tn′ to Tn′− j+1). Note that if two tasks have the same release
time or the same deadline, s′ or e′ will become a specific time instant instead of falling
inside a range, which makes the following procedure much simpler. In this section,
we focus in the general case. The system energy consumption of the task subset can
be represented given an (i, j) pair, as shown in Eqs. (12), (13), (14) in Lemma 3.

Memory

Δ2
Act SlpSlp

Δ1

e's’

Ti+1~Tn’-j

T1~Ti

Tn’-j+1~Tn’

Memory

Δ2
Act SlpSlp

Δ1

e's’

Tn’-j+1~Ti

T1~Tn’-j

Ti+1~Tn’

(a) (b)

Fig. 3 Agreeable deadline tasks given an (i, j) pair. Case 1: [s′, dk]; Case 2: [rk , dk]; Case 3: [s′, e′] and
Case 4: [rk , e′]. a If i < n′ − j . b If i > n′ − j

123

876 J Comb Optim (2018) 35:860–894

In the following lemma, we first show how to develop the solution to minimize the
energy consumption for each (i, j) pair. Then the optimal solution for the subset τ ′
can be obtained by finding the one leading to the minimum energy among all (i, j)
pairs, accordingly.

Lemma 3 When Δ1 �= 0 and Δ2 �= 0, given a pair of (i, j) for a task subset τ ′, if
i < n′ − j , then each task in τ ′ satisfies one of the three processing cases (1), (2) and
(4), as shown in Fig. 3a. The system energy cost of tasks in τ ′ can be represented as:

Ei, j = αm(dn′ − Δ1 − Δ2) + β
∑i

k=1 wλ
k (dk − Δ1)

1−λ

+β
∑n′− j

k=i+1 wλ
k (dk − rk)1−λ

+β
∑n′

k=n′− j+1 wλ
k (dn′ − Δ2 − rk)1−λ

(12)

If i > n′ − j , then each task in τ ′ satisfies one of the three processing cases (1), (3)
and (4), as shown in Fig. 3b, with the system energy consumption:

Ei, j = αm(dn′ − Δ1 − Δ2) + β
∑n′− j

k=1 wλ
k (dk − Δ1)

1−λ

+β
∑i

k=n′− j+1 wλ
k (e

′ − s′)1−λ

+β
∑n′

k=i+1 wλ
k (dn′ − Δ2 − rk)1−λ

(13)

For the special case when i = n′ − j , then each task in τ ′ satisfies one of the two
processing cases (1) and (4).

Ei, j = αm(dn′ − Δ1 − Δ2) + β
∑i

k=1 wλ
k (dk − Δ1)

1−λ

+β
∑n′

k=i+1 wλ
k (dn′ − Δ2 − rk)1−λ

(14)

Note that when Δ1 = 0 or Δ2 = 0, the equations and the corresponding analy-
sis are similar. The solution leading to the minimum energy consumption for each
(i, j) pair can be obtained by finding the optimal solution (Δ

(0)
1 ,Δ

(0)
2) pair to the

above equations. In the meantime, the solution is guaranteed to satisfy the constraints
ri < Δ

(0)
1 � ri+1 and dn′ − dn′− j+1 � Δ

(0)
2 < dn′ − dn′− j . Otherwise, the boundary

points ri , ri+1, dn′ − dn′− j+1, dn′ − dn′− j should be set as the the minimum solutions
instead.
For each subset τ ′, the optimal solution is the one leading to the minimum energy
consumption among all the (i, j) pairs, with the constraints s′ = Δ1 � d1 and
e′ = dn′ − Δ2 � rn.

The proof to Lemma 3 is straightforward and hence is omitted here. The only issue
we need to verify is that the minimum solution does exist for each (i, j) pair, in the
range of Δ1 ∈ (ri , ri+1] and Δ2 ∈ [dn′ − dn′− j+1, dn′ − dn′− j). We take Eq. (12) as
an example. Equations (13) and (14) can be analyzed similarly.

To develop extreme values, let
∂Ei, j
∂Δ1

= 0 and
∂Ei, j
∂Δ2

= 0. We have

i∑

k=1

(
wk

dk − Δ1

)λ

=
n′

∑

k=n′− j+1

(
wk

dn′ − rk − Δ2

)λ

= αm

β(λ − 1)

123

J Comb Optim (2018) 35:860–894 877

The solution (Δ
(0)
1 ,Δ

(0)
2) pair to the above equation are the extreme values. For

the second derivative, we find that
∂2Ei, j

∂Δ2
1

> 0,
∂2Ei, j

∂Δ2
2

> 0, and
∂2Ei, j

∂Δ1∂Δ2
= 0. Hence

the solutions are extreme minimum values. When the minimum values are not in
the range of Δ

(0)
1 ∈ (ri , ri+1] and Δ

(0)
2 ∈ [dn′ − dn′− j+1, dn′ − dn′− j), the boundary

points ri , ri+1, dn′ − dn′− j+1, dn′ − dn′− j , should be used instead to obtain the local
minimum solutions.

In this way, by going over all the local optimal solutions for each (i, j) pair, we can
obtain the minimum energy consumption, denoted as Eτ ′

min for any task subset τ ′.

5.1.2 Dynamic programming-based subset division (α = 0)

Now that the optimal solution for any arbitrary task subset can be developed, the global
optimal solution for the whole task set depends on how to determine the subsets, in
which tasks are executing in a single busy interval. In the following analysis, we call
each busy interval, where a subset of tasks is scheduled, as the scheduling block.
Firstly, a lemma is presented to identify the execution order of tasks in blocks. Then
Dynamic Programming is applied based on the execution order to develop the global
optimal solution.

Lemma 4 Given n tasks sorted by their deadlines, there is an optimal solution, when
p < q, ∀p, q, task Tp is not scheduled in the block after the block where task Tq is
scheduled.

Proof Assume that there is an arbitrary optimal solution, denoted as OPT, where tasks
with earlier deadlines are scheduled in the block after the block where tasks with later
deadlines are scheduled. In the following, we prove that this optimal solution can be
transformed into a solution satisfying Lemma 4 while maintaining the optimality.

In the optimal solution, we assume task pair (Tp, Tq) is the first pair that violates
the lemma conditions, based on the increasing order of deadlines. In other words, Tp

is scheduled in the later block, while Tq is scheduled in the earlier block, with p < q .
Let pp and pq represent the processing time of two tasks. If pp � pq , then task Tq can
be moved forward to the later block, without affecting the schedulability, and leading
to the same or less energy than the previous scheduling. Similarly, if pp < pq , then
task Tp can be moved backward to be executed in the former block. All the task pairs
that violate the lemma conditions can be transformed in this way. Hence we can draw
the conclusion that there is an optimal solution, where any arbitrary task with earlier
deadline is not scheduled in the block after the block where a task with later deadline
is scheduled.
�

According to Lemma 4, a Dynamic Programming based algorithm is designed on
the order of increasing deadlines of tasks. Let OPT(Tp) represent the global optimal
solution for tasks from T1 to Tp. Then

OPT(Tq) = min∀p�q

{
OPT(Tp) + E

{Tp+1,...,Tq }
min

}
,

123

878 J Comb Optim (2018) 35:860–894

where E
{Tp+1,...,Tq }
min represents the minimum energy consumption for tasks from Tp+1

to Tq , obtained based on the analysis in Sect. 5.1.1. By applying the proposed DP, the
global optimal solution for tasks from T1 to Tq can be divided into two parts. The first
part includes tasks from T1 to Tp that are scheduled in the optimal way. The second
part consists of tasks from Tp+1 to Tq , that are executed in the same block. The time
complexity of the proposed Dynamic Programming based scheme is O(n4).

5.2 α �= 0

In this subsection, the SDEM problem of the agreeable deadline tasks is analyzed
when taking the static power of cores into consideration. The proposed scheme is
constructed based on two parts, similar as that in α = 0 case. The first part is to find
the optimal solution to a subset of tasks scheduled in one block, and the second part is
to construct the Dynamic Programming to divide the subsets and develop the global
optimal result. In the following analysis, a new definition memory-associated critical
speed is firstly presented to help guide the development of the scheme.

Memory-associated critical speed Consider a system consisting of a single core and
the main memory. When executing an arbitrary task Ti , the energy consumption of
the system can be represented as Ecm = βsλ wi

s + (α + αm)
wi
s . The minimum energy

is obtained when the execution speed is λ

√
α+αm
β(λ−1) , denoted as scm . As a task cannot

violate its deadline constraint or the upper bound speed level, we define the memory-
associated critical speed

s1 = min{max{scm, sfi}, sup}.

While s1 leads to the minimum energy consumption of the system consisting of a
single core and the memory, the critical speed s0 is the optimal solution to the energy
consumption of a single core. It is easy to note that s1 � s0. Based on the above
definition, the detailed analysis is given as follows.

5.2.1 Local optimal solution of one task subset (α �= 0)

Given a set τ of n tasks with agreeable deadlines, let τ ′ ⊆ τ represent an arbitrary
subset consisting of n′ tasks. Tasks in τ ′ are scheduled in a single busy interval. The
notations s′, e′,Δ1,Δ2 and (i, j) pair used in the following analysis are the same as
previously defined in the α = 0 case.

According to the analysis for the common release time tasks when α �= 0, we know
that in the final optimal solution, not all tasks are scheduled “aligned with” the busy
interval of memory. Here, “aligned with” means that the execution period of a task has
the same (i) start point, (ii) end point, or (iii) both start and end points, with the busy
interval [s′, e′] (Refer to the black rectangles in (i) Case 1, (ii) Case 4, and (iii) Case 3
in Fig. 4, respectively). Those tasks that are not “aligned with” the busy interval, are
scheduled in the speed s0. In the following, if not otherwise specified, the meaning of

123

J Comb Optim (2018) 35:860–894 879

s0

s0

s0

Memory

Δ2
Act SlpSlp

Δ1

e's’

Tn’-j+1~Ti

T1~Tn’-j

Ti+1~Tn’

Task of type I Task of type II

s0

s0

s0
s0

Memory

Δ2
Act SlpSlp

Δ1

e's’

Ti+1~Tn’-j

T1~Ti

Tn’-j+1~Tn’

Task of type I Task of type II

(a) (b)

Fig. 4 When α �= 0, tasks with speed less than s0 are scheduled at s0 after Step 2.When tasks are scheduled
at s0, classify them into Type-I. When tasks are scheduled aligned with the busy interval [s′, e′], denote
them as Type-II. a If i < n′ − j . b If i > n′ − j

Table 2 Classification of tasks, and the corresponding properties in the optimal solution

Type-I Type-II

Speed s0 [s0, s1]
Execution period Shorter than busy interval Aligned with the busy interval

Property Achieve the minimum energy Achieve the minimum energy for the memory

for the cores loading Type-I tasks and the cores loading Type-II tasks

aligned with the busy interval, without double quotations, is what we have explained
above.

Based on the above knowledge, in the following analysis we classify tasks into two
types: Type-I and Type-II, in terms of their execution cases in the optimal solution.
Here, in Sect. 5.2.1, the optimal solution means the local optimal solution for each
(i, j) pair. Tasks of Type-I execute at their critical speed s0. Tasks of Type-II are
scheduled aligned with the busy interval of memory. The execution period of the tasks
of Type-I is covered by that of Type-II tasks, which determine the busy interval. Here,
“execution period A (e.g. [As, Ae]) is covered by execution period B (e.g. [Bs, Be])”
means that As ≥ Bs , and Ae ≤ Be. Hence the main challenge of this problem is to
identify the two types of tasks to develop the minimum energy consumption given an
(i, j) pair. Table 2 summarizes the differences of these two types.

From Table 2, it can be noted that the speed of tasks of Type-II are within [s0, s1].
The reason is stated below. If any Type-II task Ti has speed larger than s1 in the
optimal solution, for the memory and the core who loads Ti , the energy consumption
is reduced if we slow down Ti to approach the speed s1. Now that Ti has been slowed
down and has a longer execution period, for the other tasks of Type-II with speed in
the range of [s0, s1], we can further prolong them. This is legal because for these tasks,
prolonging their processing time to approach s0 can minimize the energy consumption
of the cores loading them. In this way, considering both task Ti and the other tasks of
Type-II, we can gain benefit by prolonging them, until all tasks with speed lager than
s1 are slowed down to execute within [s0, s1].

123

880 J Comb Optim (2018) 35:860–894

Algorithm 1: For each (i, j) pair
while some task’s speed is less than s0 do
Step 1: assuming all tasks are aligned with the busy interval, find the solution minimizes Eq. (15);
Step 2: let tasks, whose speed are less than s0 to execute at s0;
Step 3: evict the tasks with speed s0;
if the solution obtained in Step 1 violates the constraints then
Set the boundary as the new solution, and quit;

end if
end while
Temporary output: task subset τex_s0 , where tasks have speed larger than s0.
while some task’s speed is larger than s1 do
Step 4: find a new solution minimizes Equation (15) just considering tasks with speed larger than s1;
Step 5: prolong other tasks’ processing time (whose speed within [s0, s1]) to be aligned with the new
busy interval. If some tasks’ speeds fall below s0 because of the prolonging. Set their speed as s0, and
evict them.
if the solution obtained in Step 4 violates the constraints then
Set the boundary as the new solution, and quit;

end if
end while

Output: tasks that are classified into two types, with the local optimal solution for the given (i, j) pair;

In the following analysis, given an arbitrary (i, j) pair, we identify the two types
of tasks in 5 iterative steps. The algorithmic flow and the details of the five steps are
described in Algorithm 1 and the following paragraphs.
Step 1 Assume that all tasks are scheduled aligned with the busy interval. Similar
to the α = 0 case, each (i, j) pair can divide tasks into 4 processing cases: (1)
[s′, dk]; (2) [rk, dk]; (3) [s′, e′] and (4) [rk, e′], with Case 2 and Case 3 not appearing
simultaneously in one block.

When Δ1 �= 0 and Δ2 �= 0, if i < n′ − j , the energy consumption for Case 1, 2
and 4 can be represented as

E (α)
i, j = αm(dn′ − Δ1 − Δ2)

+β
∑i

k=1 wλ
k (dk − Δ1)

1−λ + ∑i
k=1 α(dk − Δ1)

+β
∑n− j ′

k=i+1 wλ
k (dk − rk)1−λ + ∑n− j ′

k=i+1 α(dk − rk)

+β
∑n′

k=n′− j+1 wλ
k (dn′ − Δ2 − rk)1−λ

+ ∑n′
k=n′− j+1 α(dn′ − Δ2 − rk)

(15)

When i > n′ − j (i = n′ − j), the energy consumption for Case 1, 3 and 4 (Case
1 and 4) can be represented similarly, and is omitted here. A similar analysis can be
developed when either Δ1 = 0 or Δ2 = 0.

According to the above equations, the temporary solution (Δ
(α)
1 ,Δ

(α)
2) leading to

theminimum energy and the execution speed of all tasks can be obtained. Note that the
solution should satisfy the constraints ri < Δ

(α)
1 � ri+1 and dn′ − dn′− j+1 � Δ

(α)
2 <

dn′−dn′− j . Otherwise, the boundary points ri , ri+1, dn′ − dn′− j+1, dn′ − dn′− j should
be set as the the minimum solutions instead. After Step 1, the tasks’ scheduling states
are just the same as shown in Fig. 3.

123

J Comb Optim (2018) 35:860–894 881

Step 2 For tasks with speed smaller than s0, we accelerate them to s0 to achieve the
minimum energy cost, with no influence to other cores or the memory. For example,
tasks in Case 2 can be scheduled at s0 to minimize the energy consumption, which do
not affect the scheduling of other tasks. After Step 2, tasks are scheduled as shown in
Fig. 4.
Step 3 According to the above steps, now there are some tasks aligned with the busy
interval, and the other tasks are scheduled at speed s0. Tasks executing at s0 are ignored
in the following analysis, because they neither determine the busy interval nor affect
the optimal solution.

After excluding several tasks with speed s0, for the remaining tasks, a new busy
interval that minimizes Eq. (15) can be obtained. In this new busy interval, the speed of
some tasks might fall below s0. Hence we should go to Step 1 to repeat the three steps
until none of the tasks has speed lower than s0. If the new solution falls outside the
range of Δ

(α)
1 ∈ (ri , ri+1] and Δ

(α)
2 ∈ [dn′ − dn′− j+1, dn′ − dn′− j), set the boundary

values as the local optimal solution for the given (i, j) pair and quit the algorithm.
After the above three iterative steps, now all the remaining tasks have speed larger

than s0. Subsequent steps only focus on these remaining tasks. Denote the task subset
of the remaining tasks as τex_s0 .
Step 4 In the remaining task subset τex_s0 , some tasks may have speed within [s0, s1],
and some tasks may have speed larger than s1. For tasks whose speeds are larger
than s1, we apply Eq. (15) to these tasks to develop an optimal solution, i.e. a new
busy interval, which is longer than the previous one. The reason will be explained in
Lemma 5.
Step 5 For the other tasks in τex_s0 , i.e. tasks whose speeds are within [s0, s1], prolong
their processing time to be aligned with the new solution, which is developed in Step 4.
Some tasks’ speed might fall below s0 because of the prolonging. Set their speed to s0,
and exclude them in the following analysis. Stop the algorithm if the solution violates
the constraintsΔ

(α)
1 ∈ (ri , ri+1] andΔ

(α)
2 ∈ [dn′ − dn′− j+1, dn′ − dn′− j). Repeat Step

4-5 until no task has speed exceeding s1.
In this way, the proposed scheme ends with the optimal solution for an (i, j) pair,

where some tasks execute at s0, and the other tasks are aligned with the final busy
interval.

The proposed scheme reduces the energy consumption with the processing of itera-
tive steps. The first three steps obtain better solutions iteration by iteration. By evicting
tasks with speed less than s0, and setting their speed as s0, the system energy con-
sumption can be reduced. The latter two steps further reduce the system energy cost,
which can be explained in terms of two aspects. On one hand, by developing a new
busy interval for the tasks with speed larger than s1, it is proved in Lemma 5 that the
new busy interval is longer than the original busy interval when considering all tasks
in τex_s0 . With the speed of these tasks being smaller and approaching s1, the energy
cost for the memory and the cores loading these tasks is reduced. On the other hand,
for the tasks whose speed are within [s0, s1], it is better to prolong them to approach
the speed s0 to minimize the energy cost for the cores loading them. In this way, the
system energy consumption is reduced step by step.

123

882 J Comb Optim (2018) 35:860–894

Specially, when the solution violates the constraints Δ
(α)
1 ∈ (ri , ri+1] and Δ

(α)
2 ∈

[dn′ − dn′− j+1, dn′ − dn′− j), the reason that we can stop the algorithm is presented as
follows. On one hand, the busy interval obtained in each iteration keeps being longer
with the advance of the algorithm, which is proved in Lemma 5. Therefore, once in
the current iteration, the solution has already violated the constraints, the following
iterations can only be farther from the constraint boundary. On the other hand, even
though we set the boundary values as the local optimal solution for one (i, j) pair,
the potential that the tasks need a longer busy interval can be examined in other (i, j)
pairs. In the following analysis, if not otherwise specified, the boundary cases are not
discussed.

Recall that in the optimal solution, tasks should be classified into two types: Type-I
and Type-II. To prove the optimality of the scheme, a lemma is firstly presented to
guarantee that the proposed scheme can come to an end, with a division of two types
of tasks.

Lemma 5 In the proposed scheme, once a task is identified to execute at s0 in some
iteration, it will never be scheduled in a speed larger than s0 in the following iterations.
Finally, the scheme outputs tasks that are classified into two types.

Proof The proof is conducted based on two parts. In the first part we explain Step
1–Step 3, and Step 4–Step 5 are analyzed in the second part.

For Step 1–Step 3, without loss of generality, we assume that in an arbitrary iteration
ρ, there are m tasks scheduled aligned with the busy interval. Define the length of the
busy interval of these tasks as |Ib(ρ)| = e′ − s′. Among these m tasks, we assume
that task Tk is executed with speed less than s0. Step 2 then squeezes the processing
time of Tk to make it scheduled at s0. In the next iteration ρ + 1, for the remaining
m − 1 tasks, Eq. (15) is applied to obtain the new busy interval length, denoted as
|Ib(ρ + 1)| = e′′ − s′′. In the following,we prove that interval Ib(ρ + 1) covers Ib(ρ),
and thus Tk will never need to be executed at a speed larger than s0 in next iterations.

In iteration ρ + 1, the m − 1 tasks are scheduled aligned with the busy interval
Ib(ρ + 1). The energy consumption of m − 1 cores and the memory achieves the
minimum value with Ib(ρ + 1) as the solution, as long as assuming all m − 1 tasks
are scheduled aligned with Ib(ρ + 1). Similarly, the energy consumption of m cores
and the memory is minimized under the assumption that m tasks are all scheduled
aligned with the interval Ib(ρ).

For the sake of contradiction, we assume |Ib(ρ)| > |Ib(ρ + 1)|. In iteration ρ, for
task Tk , it is better to accelerate it to approach the speed s0 for less energy consumption
of core k. Besides, as |Ib(ρ)| > |Ib(ρ + 1)|, for the otherm − 1 tasks, it is also better to
squeeze their processing time to approach |Ib(ρ + 1)|. Because the solution Ib(ρ + 1)
leads to theminimumenergy consumption for them − 1 cores and thememory.Hence,
all m tasks can be further squeezed to obtain less energy consumption, which violates
the fact that Ib(ρ) leads to the minimum energy consumption in iteration ρ. The above
proof results in a contradiction and thus the assumption fails. In this way it is proved
that |Ib(ρ)| � |Ib(ρ + 1)|, and it is straightforward that Ib(ρ + 1) covers Ib(ρ).

Similar analysis can be developed for Step 4 - Step 5. Each time when tasks with
speed s0 are excluded in the current iteration, the length of busy interval can only be
prolonged. In this way, as the busy interval keeps being longer iteration by iteration,

123

J Comb Optim (2018) 35:860–894 883

once Tk is set in speed s0 in some iteration, it never needs to be executed at a speed
larger than s0. By evicting tasks with speed s0 in each iteration, the task set is reduced,
and the algorithm can finally come to an end. All the evicted tasks can be eventually
executed at speed s0.
�

The following lemma and theorem prove the optimality of the proposed scheme.

Lemma 6 Given an optimal solution, we only consider the tasks of Type-II. Assume
that for a subset of i arbitrary Type-II tasks, the busy interval that minimizes the
energy consumption is I (i)

b . When adding one more arbitrary task to this subset, the

new solution leading to the minimum energy cost is I (i+1)
b . There is |I (i+1)

b | > |I (i)
b |,

for ∀i ∈ [1, n].
Proof When an arbitrary task T1 is aligned with the busy interval, denoted as I (1)

b ,
executing at s1 leads to the minimum system energy cost. When considering another
task T2, to minimize the energy, both of T1, T2 should be scheduled within [s0, s1],
which determines a longer busy interval I (2)

b . When introducing task T3, we assume

that the newly obtained busy interval |I (3)
b | < |I (2)

b |. Then for the memory and the

cores loading T1 and T2, the energy cost can be reduced if we prolong I (3)
b , and slow

down T1, T2 to approach the solution I (2)
b . Meanwhile, for the new comer T3, it is

also better to prolong its processing time to approach s0. Hence I
(3)
b should be longer,

which violates the fact that it is optimal for {T1, T2, T3}. The assumption fails, and
thus |I (3)

b | � |I (2)
b |. Analysis is similar for more tasks.

In this way, the busy interval becomes longer whenmore Type-II tasks are involved.
Besides, it is straightforward that the longer busy interval covers the shorter one, similar
to Ib(ρ + 1) covering Ib(ρ) in Lemma 5.
�
Theorem 4 Given an arbitrary task subset τ ′, the optimal solution leading to the
minimum energy consumption in a block can be obtained by the proposed scheme,
as described in the following. For each (i, j) pair, obtain the optimal solution by the
iterative five steps, and then choose the one leading to minimum energy consumption
among all (i, j) pairs.

Proof For each (i, j) pair, given an arbitrary optimal solution (denoted by OPT in
the following), tasks can be classified into Type-I and Type-II. Denote the proposed
scheme as SCM. According to Lemma 5, we denote all the evicted tasks with speed
s0 as tasks of Type-I scm in SCM, and the other tasks, who are aligned with the busy
interval are of Type-II scm. In the following, it is proved that all the Type-I scm tasks
found in SCM are the Type-II tasks in OPT; and all the Type-II scm tasks are the Type-II
tasks in OPT.

For the sake of contradiction, we assume some tasks are misclassified in SCM. For
simplicity, we call them “wrong Type-I scm tasks” and “wrong Type-II scm tasks” to
represent the tasks that should be of Type-II and Type-II, respectively. Let Case A
represent that there are wrong Type-I scm tasks, and Case B denote there are wrong
Type-II scm tasks in SCM, respectively. Figure 5 shows the tasks classification and the
main idea of the proof. Note that in SCM, all tasks of Type-I scm, which are correctly

123

884 J Comb Optim (2018) 35:860–894

Fig. 5 Task classifications in SCM and OPT, which guides the proof of Theorem 4

classified can be ignored in the following analysis, as they do not affect the solutions.
In the following, we prove the optimality based on the two cases.

If there is only Case A: tasks of wrong Type-I scm are executed in s0 in SCM, while
scheduled within [s0, s1] in OPT. The number of Type-II tasks in OPT is more than
the correct Type-II scm tasks in SCM. Denote the busy interval in SCM and OPT as
bscm and bopt, respectively. Based on Lemma 6, we have

|bscm| � |bopt|

On the other hand, while the wrong Type-I scm tasks (speed within [s0, s1]) are aligned
with busy interval bopt in OPT, bscm needs to cover a longer processing period of the
wrong Type-I scm tasks (at speed s0) in SCM. Therefore,

|bscm| > |bopt|

In other words, it is impossible for bscm, which is shorter, to cover a longer processing
period of the wrong Type-I scm tasks in SCM. This leads to a contradiction.
If there is only Case B: the proof is similar and is omitted here.

When themisclassification is bidirectional, i.e. both Case A andCase B exist: the proof
can be conducted as follows. While the wrong Type-II scm tasks (speed within [s0, s1])
are aligned with busy interval bscm in SCM, bopt needs to cover a longer processing
period of the wrong Type-II scm tasks (at speed s0) in OPT. In this way,

|bscm| < |bopt|

However, while the wrong Type-I scm tasks (speed within [s0, s1]) are aligned with
busy interval bopt in OPT, bscm needs to cover a longer processing period of the wrong
Type-I scm tasks (at speed s0) in SCM. Therefore,

|bscm| > |bopt|

123

J Comb Optim (2018) 35:860–894 885

Online algorithm (executes when a new task Ti arrives)
1: Record the time ti = ri ;
2: Delete all the completed tasks before ti , update the workload of all the existing tasks and reset their

release time as ti ;
3: Obtain the optimal solution for all tasks and memory using the analysis in Section 4.1 (4.2), and record

each task’s corresponding execution time p j ;
4: Mark the latest execution point for each task Tj as d j − p j ;
5: Keep the memory (and cores) in sleep state (from ti), and wake up the memory when the first task meets

its latest execution point;
6: All tasks begin to execute as long as the memory is waked up (wake up the core as long as the loaded

task begins to execute).

This leads to a contradiction and the assumption fails. Finally, the optimal solution for
the subset τ ′ is the one with the minimum energy consumption among all (i, j) pairs.

�
5.2.2 Dynamic programming-based subset division (α �= 0)

The Dynamic Programming part is the same as α = 0 case. To obtain the local optimal
solution in each block requires O(n3). The time complexity of the entire scheme is
O(n5).

6 Online algorithm for general tasks

The algorithms that have been presented in the previous sections are all optimal solu-
tions for specified task models. In this section, we explore the SDEM problem and
propose a solution in the realistic environment. Assume that tasks of the general model
are scheduled in the online scenario, and preemption is allowed for tasks. Based on
this model, an online heuristic algorithm is proposed.

The main idea of the algorithm is presented as follows. When a new task Ti arrives,
run the algorithm, and set all unfinished tasks’ release times the same as that of Ti . By
applying the scheme presented in Sect. 4.1 (Sect. 4.2), the local optimal solution can
be obtained for the current tasks. Keep the memory in the sleep state until a new task
arrives or some task has to be executed to guarantee the local optimality. The online
algorithm is applied for both cases of with and without considering the static power
of cores.

A detailed algorithmdescription by an example is given as follows.W.l.o.g., assume
the first task T1 arrives at time 0. We calculate the optimal memory sleep time Δon

1
as shown in Sect. 4.1 (4.2) but with the single task. Based on the optimal solution,
the execution time of T1 is p1 = d1 − Δon

1 . Considering that more tasks might come
later, postponing the execution of T1 is more likely to have a chance of obtaining a
longer execution overlap with other tasks. Hence we keep the memory (and cores) in
sleep state until T1 meets its latest execution point d1 − p1. If the second task arrives
before d1 − p1, the optimal solution should be re-calculated to deal with two tasks.
The analysis in Sect. 4.1 (4.2) can be used to obtain the optimal solution Δon

2 , and
similar processes are followed to calculate the latest execution time of two tasks. Once
one task meets its latest execution point, both tasks begin to execute and the memory

123

Peter Hu

886 J Comb Optim (2018) 35:860–894

(and cores) will be waked up. In this way, anytime a new task arrives, we re-calculate
the optimal solution for the existing tasks and keep the memory (and cores) sleep
before the first-met latest execution time.

7 Transition overhead analysis

In this section, solutions for SDEM are analyzed when the energy overhead caused
by transitions between active mode and sleep mode is not negligible, i.e. ξm �= 0
and ξ �= 0. Both optimal solutions for tasks with common release time, agreeable
deadline, and the online heuristic algorithm can be modified to apply in the system
with non-negligible mode transition overhead.

Common release time tasksAnew notion constrained critical speed is firstly proposed
to guide the modification of the scheme, and then the detailed analysis is presented.

Constrained critical speed When ξ �= 0, sm = λ

√
α

β(λ−1) is optimal only when

|I | − wi
sm

� ξ (recall that I = In = [0, dn] represents themaximal interval of the given
task set). Otherwise, the core consumes the least energy by executing Ti at sfi. In the
following, let sc represent the constrained critical speed of a task Ti . Set

sc = min{max{sm, sfi}, sup},

when |I | − wi
min{sm ,sup} � ξ , and sc = sfi otherwise.

Given a set of tasks with common release time and each executing at the speed
of sc, index the tasks in the increasing order of their completion time wi

sc
. The task

execution model, together with n cases, can be constructed similar to Sect. 4.2. For
each case, the system energy consumption function can be represented the same as
in Eq. (7), because the transition overhead is independent from the memory sleep
time, which means that it does not affect the optimal solution. Thus the local optimal
memory sleep time that leads to the minimum E (α)

i is the same as in Eq. (8). Each

local optimal solution Δ
(α)
mi classifies tasks into two types: Type-I tasks executing at

speed sc, and Type-II tasks executing aligned with memory busy time |I | − Δ
(α)
mi . For

any task Ti of Type-I , if |I | − ci � ξ , then the core can be directly turned to sleep
after this task completion and the execution of Ti does not affect the memory behavior.
In the following analysis, we ignore these tasks and the corresponding cores as their
behaviors are fixed. DenoteΔ

(ξ)
mi as the final local optimal memory sleep time for each

case. Let Δ(α)
mi = δ

(α)
i , when Δ

(α)
mi < δ

(α)
i .

Theorem 5 The optimal scheme goes over n cases in the decreasing order. For each
case, if Δ

(α)
mi < δ

(α)
i−1, the optimal memory sleep time can be obtained by referring to

Table 3, which presents the relationships amongΔ
(α)
mi and ξ , ξm. Otherwise the scheme

does nothing and enters the next case.

We only focus on the proof of the third case, as it is the most complicated and
other cases can be analyzed similarly. When ξm � Δ

(α)
mi < ξ , three subcases need

123

J Comb Optim (2018) 35:860–894 887

Table 3 Optimal results of

Δ
(ξ)
mi based on different cases

Cases Optimal results of Δ
(ξ)
mi

Δ
(α)
mi � ξ, ξm Δ

(ξ)
mi = Δ

(α)
mi

ξ � Δ
(α)
mi < ξm Δ

(ξ)
mi = 0, all cores executing tasks at sc

ξm � Δ
(α)
mi < ξ Δ

(ξ)
mi = one of {Δmi , ξ, 0} that minimizes E(α)

i

(when Δ
(ξ)
mi = 0, all cores executing tasks at sc

Δ
(α)
mi < ξ, ξm Δ

(ξ)
mi = 0, all cores executing tasks at sc

to be analyzed. (1) Turning the memory to sleep and keeping all cores active (idle
but not sleep) all the time. Then the memory sleep time that minimizes the energy
consumption is Δmi , which is defined in Eq. (4). If Δmi � ξm , then Δmi leads to the
local optimal solution for this case. Otherwise thememory should be kept active during
the whole interval to minimize the energy consumption. (2) Turning both the cores
and the memory to sleep state. For this subcase, it brings no benefit to keep the cores
sleeping for less than ξ time, which wastes extra energy overhead. Besides, the energy
consumption increases with the memory sleep time being larger than ξ , as the optimal
memory sleep time is smaller than ξ . Hence, the local optimal solutionΔ

(ξ)
mi should be

set as ξ . (3) Keeping the memory active all the time and executing tasks at the speed
of sc, which means that the memory sleep time is 0. There are no fixed relationships
among the above three subcases, hence the minimum energy consumption should be
set as the minimum value of {E (α)

i (Δmi), E
(α)
i (ξ), E (α)

i (0)}.
Agreeable deadline tasks When the transition overhead is considered for the agree-
able deadline tasks, the part of developing local optimal solution of a task subset
does not need to be changed for both α = 0 and α �= 0 cases. This is because the
single busy interval of the task subset leads to one mode transition (including both the
sleep-to-active and the active-to-sleep mode transitions), which is fixed. The Dynamic

Programming part needs to be revised. LetOPT(Tp) and E
{Tp+1,Tq }
min represent the same

meanings as in Sect. 5 respectively. For both α = 0 and α �= 0 case, we have the same
DP function

OPT(Tq) = min∀p�q
{OPT(Tp) + E

{Tp+1,Tq }
min + αmξm}.

Online heuristic algorithm For the online heuristic solution with transition overhead
considered, themain revision is briefly illustrated as follows. In each iteration, the local
optimal solution is obtained by applying the scheme regarding the common release
time tasks proposed in this section.

8 Evaluation

All the proposed schemes except the online heuristic algorithm, have been proved
to be optimal in energy minimization. In this section, we evaluate the effectiveness

123

888 J Comb Optim (2018) 35:860–894

of the proposed online heuristic algorithm compared with another online multi-core
DVS scheduling algorithm proposed in Albers et al. (2007), denoted asMBKP.MBKP
achieves satisfying results among multiple DVS-cores in terms of energy saving, but
does not consider the static processor power or the static memory cost. In the experi-
ment, we compare the following algorithms:

(1) the proposed scheme, denoted as SDEM-ON;
(2) the original MBKP, which does not turn memory into sleep state;
(3) a modified MBKP approach, denoted as MBKPS, which is applied with a simple

sleep transition scheme. This scheme turns the memory into sleep state whenever
the memory has an idle time as they do not target at maximizing the idle time.

These algorithms are compared over different core utilizations (Zhong and Xu 2008;
Zhuo and Chakrabarti 2005), memory static power settings (Zhuo and Chakrabarti
2005) and memory transition overheads.

8.1 Simulation setup

8.1.1 Benchmark

We firstly evaluate the scheme with two different benchmarks from DSPstone (Hsieh
and Huang 2008): FFT and matrix multiply. A task is an instance of either of these
two benchmarks (Pagani et al. 2015a, b). For the instance of FFT, the input is ran-
domly generated 1024-point discrete signals. For the matrix, the input is the randomly
constructed [X × Y], [Y × Z] matrices. The instance of each benchmark is released
sporadically. The time interval between the release time and deadline is set as the
processing time when the task instance executes at 16.5MHz, where the values are
collected based on the simulator xsim2101 of Analog Devices, provided in the DSP-
stone benchmark. The length of period is set to |di − ri | × U , where U is scaled in
the range of [2, 3, 4, 5, 6, 7, 8, 9] to simulate different utilizations. It can be noted that
larger U implies lower core utilizations.

8.1.2 Task set synthesis

Toobservemore features of the proposed scheme, besides the above two benchmarks, a
large set of randomgenerated tasks are conducted for evaluation. Randomly generating
tasks is a common validationmethod in the area of DVS-simulation (Aydin et al. 2001;
Chen et al. 2006; Yang et al. 2005; Zhong and Xu 2008; Zhuo and Chakrabarti 2005).
Based on the real life task sets, the workload of a task is set randomly in the range of
[2, 5] × 106 cycles (Zhong and Xu 2007). The feasible regions of tasks are randomly
set in the range of [10ms, 120ms] (Jejurikar and Gupta 2004).

Recall that the proposed online heuristic assumes that the number of cores is suffi-
cient for scheduling tasks. This assumption,which is important for theoretical analysis,
actually does not imply over-optimistic results in practice. The actual number of tasks
in execution at a time is reasonable and limited in the real time system. Because if
tasks, the number of which is more than the number of cores, burst at some time

123

J Comb Optim (2018) 35:860–894 889

Table 4 Parameter setting over
various core utilizations (1/x),
memory static power αm and
break-even time ξm

Point 1 2 3 4 5 6 7 8

x (ms) 100 200 300 400* 500 600 700 800

αm (W) 1 2 3 4* 5 6 7 8

ξm (ms) 15 20 25 30 40* 50 60 70

instant, the real-time system will most likely fail to schedule the task set no matter
with which scheduling algorithm. In the experiment, we set the number of cores to
be 8, and assume that tasks that are executed at any time instant is less than 8. Let x
represent the maximum inter-arrival time between two successive tasks. Assume that
the first 8 tasks are assigned to 8 cores separately, and the 9th task will be assigned to
the first core, so on and so forth. For a system with 100% utilization, all cores should
be occupied all the time. Under this case, the inter-arrival time between the 1st task
and the 9th task, which is at most 8x , should be close to the processing length of a task.
Considering that the processing time, which is determined by the execution speed, is
the variable we try to optimize and cannot be estimated beforehand, we use 0.8× the
task’s feasible region length instead. As the feasible regions of tasks are randomly
generated in the range of [10ms, 120ms], we set x = 120 ∗ 0.8 ≈ 100ms for a high
utilization system, which implies that all 8 cores are most likely to be used at any time,
and range x from 100ms to 800ms with a step size of 100ms to evaluate results based
on various utilizations. x = 800ms implies that a single core might be sufficient to
schedule all tasks.

8.1.3 System configuration

The system configurations are set based on the actual device specifications. The core
we simulate in the following experiment is ARM Cortex-A57 (ARM 2013), where
the power parameters are set based on ARM Cortex-A57 technical reference man-
ual (ARM 2013) and the power consumption data collected by AnandTech (ARM
2012). We set the dynamic power parameter β = 2.53 × 10−7 mW

MHz3
, static power

α = 310mW, and λ = 3, referring to Eq. (1). The minimum and the maximum fre-
quency of ARM Cortex-A57 is 700 and 1900MHz, respectively. Set the number of
the homogeneous cores to be 8.

The parameters of memory is modeled based on the 50nm DRAM, and are col-
lected using CACTI (Fu et al. 2014; Wilton and Jouppi 1996). The static power of
the memory is different with the memory size scales. We vary the memory static
power αm from 1W to 8W in steps of 1W. The break-even time of the memory is set
based on metric and values shown in Fan et al. (2001). Let ξm vary in the range of
[15, 20, 25, 30, 40, 50, 60, 70] ms. The detailed parameter setting is given in Table 4,
where ∗ represents the default value of each parameter when evaluating other param-
eters. Note that when evaluating the benchmark based tasks, αm and ξm are set as the
default values in Table 4 as well.

Thisworkmainly focuses on the static energy consumption of thememory, and does
not aim to reduce the dynamic power, which is mainly caused by memory accesses.

123

890 J Comb Optim (2018) 35:860–894

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9

MM
e

m
or

y
st

at
ic

 e
ne

rg
y

MBKP MBKPS SDVS-ON

(a)

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9

S
y s

te
m

-w
id

e
e

n e
rg

y

MBKP MBKPS SDVS-ON

(b)

Fig. 6 a Memory static energy saving of FFT and matrix multiply benchmark results over different uti-
lizations U . b System-wide energy saving of FFT and matrix multiply benchmark results over different
utilizations U

Hence the system-wide energy consumption shown in the following simulation results
only includes the energy cost of processor and the static energy consumption of mem-
ory.

8.2 Simulation result

In the experiment, the energy consumption results of SDEM-ONandMBKPSare com-
pared to the output ofMBKP, to show the energy saving overMBKP. The experimental
results of the compared three algorithms based on the benchmark are shown in Fig. 6.
All the schemes are scaled based on different utilizations U = [2, 3, 4, 5, 6, 7, 8, 9]
(recall that largerU implies lower utilization). Figure 7a, b shows the evaluations over
the synthesis tasks, in terms of the system-wide energy saving improvement ratio. To
generate convincing results, for each data point in all task sets, we randomly generate
10 different cases, and use the average value as the final evaluation result.

In Fig. 6a, it can be found that the proposed scheme SDEM-ON can turn the
memory into sleep state for a longer period thanMBKPS, bywhich, the static power of
memory can be reduced. Besides, the memory energy saving improvement of SDEM-
ON increases slightly with the utilization being lower. This indicated that the memory
can save much more energy when the system is not busy. The average memory saving
ratio is of SDEM-ON compared to MBKPS is 10.02%.

The system-wide energy saving is shown in Fig. 6b. The average system energy
saving ratio of SDEM-ON compared toMBKPS is 23.45%. In Fig. 6b, SDEM-ON has
a different trendwith the scaling of utilizations compared to that in Fig. 6a. SDEM-ON
performs better when the system has higher utilizations, in terms of the system-wide

123

J Comb Optim (2018) 35:860–894 891

Fig. 7 a The system-wide energy saving improvement over different parameters over memory static power
setting and core utilizations. b The system-wide energy saving improvement over different parameters over
memory transition overhead and core utilizations

energy saving. This indicates that for the system with high and normal utilizations,
SDEM-ON can obtain benefits for both the processor and memory. But when the
system is extremely idle (when U is large), the potential in improving the processor
energy saving is not much compared to MBKPS. This is because both of MBKPS and
SDEM-ON are most likely to schedule tasks at lower speed when the utilization is
low. The different between speeds is little.

Figure 7a shows the energy consumption reduction of the synthesis tasks, evaluated
over different system utilizations, and memory static powers. The average energy sav-
ing improvement of SDEM-ON compared to MBKPS is 9.74% including the memory
transition overhead. The evaluation results over different system utilizations andmem-
ory transition overhead are shown inFig. 7(b). The average energy saving improvement
of MBKPS is 10.52%.

123

892 J Comb Optim (2018) 35:860–894

MBKPS has close relationship with system utilizations as shown in Figs. 6b and 7a,
b. For a systemwith high utilization (x → 100ms orU → 2), MBKPS can barely idle
the memory, as it performs very close to the non-sleep version MBKP. SDEM-ON,
on the contrary, can develop the proper balance between the speed and sleep mode for
the system, and thus always outperforms MBKPS no matter how busy the system is.
For the transition overhead evaluated in Fig. 7b, there is basically no difference with
the varying of break-even time, for both of the schemes.

In conclusion, the proposed scheme SDEM-ON performs stably well over different
system configurations and execution status. Compared with MBKPS, SDEM-ON is
more proper to be applied in the real life.

9 Conclusion

In order to reduce the overall system energy consumption in a multi-core architecture,
this paper proposes scheduling schemes to apply DVS on each core and maximize the
memory sleep time, which is equal to the common idle time of all cores. When the
number of cores is bounded, we prove the problem to be NP-hard even for tasks with
common release time and deadline. Assuming that the number of cores is unbounded,
optimal schemes are proposed for tasks with common release time, and tasks with
agreeable deadlines. Furthermore, an online heuristic algorithm is developed for gen-
eral tasks. Both theoretical and practical solutions for the target problem based on
different system models are presented. Evaluations show that the proposed heuristic
algorithm can effectively reduce the overall system energy consumption compared to
a state-of-the-art work.

Acknowledgements The work described in this paper was partly supported by grants from the Research
Grants Council of the Hong Kong Special Administrative Region, China [Project No. CityU 117913] and
[Project No. CityU 11278316].

References

Albers S, Antoniadis A (2012) Race to idle: new algorithms for speed scaling with a sleep state. In: SODA,
pp 1266–1285

Albers S, Müller F, Schmelzer S (2007) Speed scaling on parallel processors. In: Proceedings of SPAA, pp
404–425

Albers S, Antoniadis A, Greiner G (2011) Onmulti-processor speed scaling with migration. In: Proceedings
of the twenty-third annual ACM symposium on parallelism in algorithms and architectures. ACM, pp
279–288

Albers S, Antoniadis A, Greiner G (2015) On multi-processor speed scaling with migration. J Comput Syst
Sci 81(7):1194–1209

Angel E, Bampis E, Kacem F, Letsios D (2012) Speed scaling on parallel processors with migration. In:
European Conference on Parallel Processing. Springer, Berlin, pp 128–140

Antoniadis A, Huang CC, Ott S (2015) A fully polynomial-time approximation scheme for speed scaling
with sleep state. In: SODA

ARM (2012) Arm a53/a57/t760 investigated by anandtech
ARM (2013) Arm cortex-a57 mpcore processor technical reference manual
Aydin H, Melhem R, Mossé D, Mejía-Alvarez P (2001) Determining optimal processor speeds for periodic

real-time tasks with different power characteristics. In: Proceedings of the 13th Euromicro conference
on real-time systems, ECRTS, pp 225–232

123

J Comb Optim (2018) 35:860–894 893

Bampis E, Dürr C, Kacem F, Milis I (2012) Speed scaling with power down scheduling for agreeable
deadlines. SUSCOM 2:184–189

Bampis E, KononovA, Letsios D, Lucarelli G, SviridenkoM (2014) Energy efficient scheduling and routing
via randomized rounding. arXiv preprint arXiv:1403.4991

Bingham B, Greenstreet M (2008) Energy optimal scheduling on multiprocessors with migration. In: ISPA,
pp 153–161. https://doi.org/10.1109/ISPA.2008.128

Chen JJ,HsuHR,ChuangKH,YangCL, PangAC,KuoTW(2004)Multiprocessor energy-efficient schedul-
ing with task migration considerations. In: ECRTS, pp 101–108. https://doi.org/10.1109/EMRTS.
2004.1311011

Chen JJ, Hsu HR, Kuo TW (2006) Leakage-aware energy-efficient scheduling of real-time tasks in multi-
processor systems. In: RTAS, pp 408–417. https://doi.org/10.1109/RTAS.2006.25

Chen M, Wang X, Li X (2011) Coordinating processor and main memory for efficientserver power control.
In: Proceedings of the international conference on Supercomputing. ACM, pp 130–140

Edwin Cheng T, Liu Z, YuW (2001) Scheduling jobs with release dates and deadlines on a batch processing
machine. IIE Trans 33(8):685–690

Fan X, Ellis C, Lebeck A (2001) Memory controller policies for dram power management. In: ISLPED, pp
129–134

Feng Q, Yuan J, Liu H, He C (2013) A note on two-agent scheduling on an unbounded parallel-batching
machine with makespan and maximum lateness objectives. Appl Math Model 37(10):7071–7076

Fu C, Zhao M, Xue CJ, Orailoglu A (2014) Sleep-aware variable partitioning for energy-efficient hybrid
pram and dram main memory. In: ISLPED, pp 75–80

Ge R, Feng X, Song S, Chang HC, Li D, Cameron KW (2010) Powerpack: energy profiling and analysis
of high-performance systems and applications. IEEE Trans Parallel Distrib Syst 21(5):658–671

Hanumaiah V, Vrudhula S (2014) Energy-efficient operation of multicore processors by DVFs, task migra-
tion, and active cooling. IEEE Trans Comput 63(2):349–360

Herbert S, Marculescu D (2007) Analysis of dynamic voltage/frequency scaling in chip-multiprocessors.
In: ISLPED, pp 38–43

HsiehMC,Huang CT (2008) An embedded infrastructure of debug and trace interface for the DSP platform.
In: Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE. IEEE, pp 866–871

Irani S, Shukla S (2007) Gupta R (2007) Algorithms for power savings. ACM Trans Algorithms 3(4):41.
https://doi.org/10.1145/1290672.1290678

Ishihara T, Yasuura H (1998) Voltage scheduling problem for dynamically variable voltage processors. In:
1998 international symposium on low power electronics and design, 1998. Proceedings. IEEE, pp
197–202

Jang W, Pan D (2011) Application-aware NoC design for efficient SDRAM access. TCAD 30(10):1521–
1533

Jejurikar R, Gupta R (2004) Dynamic voltage scaling for systemwide energy minimization in real-time
embedded systems. In: ISLPED, pp 78–81. https://doi.org/10.1109/LPE.2004.1349313

Khandekar R, Schieber B, Shachnai H, Tamir T (2010)Minimizing busy time in multiple machine real-time
scheduling. In: LIPIcs-Leibniz International Proceedings in Informatics, Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, vol 8

Kim T, Kim J (2007) Integration of code scheduling, memory allocation, and array binding for memory-
access optimization. TCAD 26(1):142–151

Liu S, Pattabiraman K, Moscibroda T, Zorn BG (2012) Flikker: saving dram refresh-power through critical
data partitioning. ACM SIGPLAN Not 47(4):213–224

Marculescu D, Choudhary P (2006) Hardware based frequency/voltage control of voltage frequency island
systems. In: CODES+ISSS, pp 34–39

Mishra R, Rastogi N, Zhu D,Mosse D, Melhem R (2003) Energy aware scheduling for distributed real-time
systems. In: IPDPS, p 21. https://doi.org/10.1109/IPDPS.2003.1213099

Pagani S, Chen JJ, Henkel J (2015a) Energy and peak power efficiency analysis for the single voltage approx-
imation (SVA) scheme. TCAD 34(9):1415–1428. https://doi.org/10.1109/TCAD.2015.2406862

Pagani S, Chen JJ, LiM (2015b) Energy efficiency onmulti-core architectures withmultiple voltage islands.
TPDS 26(6):1608–1621. https://doi.org/10.1109/TPDS.2014.2323260

Peter B, Andrei G, Han H, Mikhail KY, Chris P, Thomas T, van de Steef V (1997) Scheduling a batching
machine. Eindhoven University of Technology. https://doi.org/10.1002/(SICI)1099-1425(199806)1:
1<31::AID-JOS4>3.0.CO;2-R

Rabaey JM, Chandrakasan AP, Nikolic B (2002) Digital integrated circuits, vol 2

123

http://arxiv.org/abs/1403.4991
https://doi.org/10.1109/ISPA.2008.128
https://doi.org/10.1109/EMRTS.2004.1311011
https://doi.org/10.1109/EMRTS.2004.1311011
https://doi.org/10.1109/RTAS.2006.25
https://doi.org/10.1145/1290672.1290678
https://doi.org/10.1109/LPE.2004.1349313
https://doi.org/10.1109/IPDPS.2003.1213099
https://doi.org/10.1109/TCAD.2015.2406862
https://doi.org/10.1109/TPDS.2014.2323260
https://doi.org/10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R
https://doi.org/10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R

894 J Comb Optim (2018) 35:860–894

Wallace S, Vishwanath V, Coghlan S, Lan Z, Papka ME (2013) Measuring power consumption on IBM
BLUE Gene/Q. In: 2013 IEEE 27th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW). IEEE, pp 853–859

Ware M, Rajamani K, Floyd M, Brock B, Rubio JC, Rawson F, Carter JB (2010) Architecting for power
management: the IBM®powerTM approach. In:HPCA-162010 the sixteenth international symposium
on high-performance computer architecture. IEEE, pp 1–11

Wilton SJE, Jouppi N (1996) Cacti: an enhanced cache access and cycle time model. IEEE J Solid-State
Circuits 31(5):677–688. https://doi.org/10.1109/4.509850

Yang CY, Chen JJ, Kuo TW (2005) An approximation algorithm for energy-efficient scheduling on a chip
multiprocessor. In: DATE, pp 468–473. https://doi.org/10.1109/DATE.2005.51

Yao F, Demers A, Shenker S (1995) A scheduling model for reduced CPU energy. In: FOCS, pp 374–382.
https://doi.org/10.1109/SFCS.1995.492493

Zhong X, Xu CZ (2007) Frequency-aware energy optimization for real-time periodic and aperiodic tasks.
ACM SIGPLAN Not 42(7):21–30

Zhong X, Xu CZ (2008) System-wide energy minimization for real-time tasks: lower bound and approxi-
mation. TECS 7(3):28:1–28:24. https://doi.org/10.1145/1347375.1347381

Zhuo J, Chakrabarti C (2005) System-level energy-efficient dynamic task scheduling. In: DAC, pp 628–631.
https://doi.org/10.1109/DAC.2005.193887

123

https://doi.org/10.1109/4.509850
https://doi.org/10.1109/DATE.2005.51
https://doi.org/10.1109/SFCS.1995.492493
https://doi.org/10.1145/1347375.1347381
https://doi.org/10.1109/DAC.2005.193887

	Race to idle or not: balancing the memory sleep time with DVS for energy minimization
	Abstract
	1 Introduction
	2 Related work
	3 Problem definition and analysis
	4 Common release time tasks
	4.1 α=0
	4.2 αneq0

	5 Agreeable deadline tasks
	5.1 α= 0
	5.1.1 Local optimal solution of one task subset (α=0)
	5.1.2 Dynamic programming-based subset division (α=0)

	5.2 αneq0
	5.2.1 Local optimal solution of one task subset (αneq0)
	5.2.2 Dynamic programming-based subset division (αneq0)

	6 Online algorithm for general tasks
	7 Transition overhead analysis
	8 Evaluation
	8.1 Simulation setup
	8.1.1 Benchmark
	8.1.2 Task set synthesis
	8.1.3 System configuration

	8.2 Simulation result

	9 Conclusion
	Acknowledgements
	References

