
Exploring the Design Space of Fair Scheduling
Supports for Asymmetric Multicore Systems

Changdae Kim and Jaehyuk Huh ,Member, IEEE

Abstract—Although traditional CPU scheduling efficiently utilizes multiple cores with equal computing capacity, the advent of

multicores with diverse capabilities pose challenges to CPU scheduling. For such asymmetric multi-core systems, scheduling is

essential to exploit the efficiency of core asymmetry, by matching each application with the best core type. However, in addition to the

efficiency, an important aspect of CPU scheduling is fairness in CPU provisioning. Such uneven core capability is inherently unfair to

threads and causes performance variance, as applications running on fast cores receive higher capability than applications on slow

cores. Depending on co-running applications and scheduling decisions, the performance of an application may vary significantly. This

study investigates the fairness problem in asymmetric multi-cores, and explores the design space of OS schedulers supporting multiple

fairness constraints. In this paper, we consider two fairness-oriented constraints,minimum fairness for the minimum guaranteed

performance and uniformity for performance variation reduction. This study proposes four scheduling policies which guarantee a

minimum performance bound while improving the overall throughput and reducing performance variation too. The proposed

fairness-oriented schedulers are implemented for the Linux kernel with an online application monitoring technique. Using an emulated

asymmetric multi-core with frequency scaling and a real asymmetric multi-core with the big.LITTLE architecture, the paper shows that

the proposed schedulers can effectively support the specified fairness while improving overall system throughput.

Index Terms—Fair scheduling, asymmetric multicore, performance variance

Ç

1 INTRODUCTION

TRADITIONAL CPU scheduling by the operating system
efficiently utilizes multiple cores with the same comput-

ing capability. However, recent architectural changes pose
challenges for the CPU scheduling with the advent of cores
with different computing capabilities in a system. One
example of such architectural changes is the asymmetric
multi-core processor (AMP) with multiple types of cores,
supporting the same instruction-set architecture (ISA) with
different computing capabilities [1], [2], [3]. Furthermore,
process variation incurs different maximum frequencies for
cores in a multi-core [4], [5], and common dynamic voltage
and frequency scaling (DVFS) also allows a CPU to have
cores with different settings for computing capability and
energy consumption.

To fully exploit the potential of such asymmetric multi-
cores, scheduler support is crucial. While scheduling for
asymmetric multi-cores has been widely studied [1], [4], [6],
[7], [8], [9], [10], [11], [12], [13], most of the studies aim atmaxi-
mizing overall throughput by exploiting asymmetry and
application behaviors. Such throughput-maximizing schedul-
ing assigns fast cores to applicationswith high relative perfor-
mance gainswith fast cores compared to slow cores.

However, an important but neglected aspect of CPU
scheduling in the prior studies is fairness of CPU provision-
ing. As we will show in Section 4, throughput-maximizing
scheduling often sacrifices the fairness much more than its
benefit on throughput. Furthermore, such fairness has
become critical as recent cloud computing environments are
required to provide consistent performance for their guest
machines in consolidated systems. Although there have
been several studies to improve fairness for asymmetric
multi-cores [7], [8], [11], [13], the schedulers do not support
minimum performance guarantee, which is essential for
such consolidated systems.

In this paper, we explore two different aspects of fairness.
The first one is to guarantee a minimumperformance regard-
less of uneven core capability. Such minimum fairness
guarantee sets the lower bound of performance for each
application. The second aspect is to reduce relative perfor-
mance variance. For each application, fair scheduling must
reduce the variation of performance degradation normalized
to an ideal isolated run. These aspects support two different
goals of fair scheduling, first, setting a certain limit in possible
performance degradation by asymmetry in core capability,
and second, reducing performance variation. Furthermore,
while aiming the two fairness-oriented goals, the overall
throughput must be improved to exploit the performance/
energy efficiency from asymmetric cores. Prior throughput-
maximizing schedulers often sacrifice fairness of CPU provi-
sioning excessively to gain only a small amount of extra
throughput.

To investigate how fairness should be supported in
asymmetric multi-cores, this paper explores the design
space of fairness-oriented schedulers for asymmetric

� The authors are with the Department of Computer Science, Korea
Advanced Institute of Science and Technology, Daejeon 305-701, Republic
of Korea. E-mail: {cdkim, jhuh}@calab.kaist.ac.kr.

Manuscript received 31 Mar. 2017; revised 10 Jan. 2018; accepted 14 Jan.
2018. Date of publication 22 Jan. 2018; date of current version 7 July 2018.
(Corresponding author: Jaehyuk Huh.)
Recommended for acceptance by G. Min.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2018.2796077

1136 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 8, AUGUST 2018

0018-9340� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9895-5125
https://orcid.org/0000-0002-9895-5125
https://orcid.org/0000-0002-9895-5125
https://orcid.org/0000-0002-9895-5125
https://orcid.org/0000-0002-9895-5125
https://orcid.org/0000-0002-1742-047X
https://orcid.org/0000-0002-1742-047X
https://orcid.org/0000-0002-1742-047X
https://orcid.org/0000-0002-1742-047X
https://orcid.org/0000-0002-1742-047X
mailto:

multi-cores, which allow a certain level of fairness to be
guaranteed while improving throughput. The first sched-
uler, min-fair, always supports a fixed level of minimum
fairness constraint, guaranteeing that the performance of no
application is degraded beyond a preset limit compared to
the fair CPU allocation. The second scheduler, unifor-
mity-fair, supports a fixed level of performance variation
limit, providing the performance variation is within a preset
bound. The third scheduler, sim-fair, opportunistically
reduces performance variation of the prior throughput-
maximizing scheduler by relaxing the strict throughput-
oriented allocation. The final scheduler, combined-fair,
combines the aforementioned three schedulers. The fair-
ness-oriented schedulers provide the system administrator
with the mechanisms to choose different ways of setting
fairness requirements. All the schedulers still attempt to
improve the overall throughput as long as fairness con-
straints are satisfied.

To show such fairness-oriented schedulers are feasible,
we modified the CFS scheduler in Linux 3.10.96 to support
fine-grained scheduling for different core capabilities. We
implemented the scheduler to work effectively for two dif-
ferent core capabilities with dynamic voltage frequency
scaling. A challenge in its implementation is the estimation
of fast core speedup. In the prior work, the performance
gain with fast cores, fast core speedup, is estimated online or
offline indirectly. To improve the accurate estimation with
low overheads, we have implemented an exploration-based
fast core speedup estimation.

We evaluated our schedulers on two different setups
with uneven core capability. The first setup is an emulated
asymmetric multi-core processor using DVFS to mimic core
asymmetry. The second one uses a real asymmetric multi-
core processor with the ARM big.LITTLE architecture [3].
The results with various mixes show that our schedulers
guarantee the specified fairness and still improve the overall
throughput.

The remainder of the paper is organized as follows.
Section 2 defines fairness in asymmetric multi-cores, and
Section 3 presents the prior work. Section 4 quantitatively
analyzes the fairness problem of the prior throughput-maxi-
mizing scheduler. In Section 5, we propose the fairness-
oriented scheduling policies. Section 6 describes the imple-
mentation issues including the fast core speedup estimation
mechanism. The experimental results on real machines are
shown in Section 7, and Section 8 concludes this paper.

2 FAIRNESS FOR ASYMMETRIC MULTI-CORES

This section discusses the fairness aspects of scheduling on
asymmetric multi-cores. First, the definition of fair schedul-
ing is discussed. Unlike symmetric multi-cores, which the
amount of CPU cycles solely affects the application perfor-
mance in the perspective of scheduling, on asymmetric
multi-cores, the type of CPU cycles also affects the applica-
tion performance. Thus, the definition of fair scheduling
should be refined. Second, we also discuss base performance
which is required to define fair scheduling on asymmetric
multi-cores. Third, we discuss how to achieve such fair
scheduling state by adjusting the amount of CPU cycles for
each CPU types. Last, we discuss fairness metrics to evalu-
ate the scheduling on asymmetric multi-cores.

Since asymmetric multi-cores have advantages on the
power or area efficiency [1], most of the prior studies have
been focused on the throughput aspect of scheduling, and
proposed throughput-maximizing schedulers which we call
max-perf in the remainder of this paper. However, we still
need to consider fairness issues due to the following reasons.
First, exploiting efficiency from asymmetry is not always ben-
eficial enough. As we will show in Section 4, max-perf pol-
icy often sacrifices the fairness much more than its benefit on
throughput. Second, even though some systems adopt asym-
metric multi-cores due to its efficiency, the fairness among
threads in the system still may be the most important issue.
For example, cloud providers can adopt asymmetric multi-
cores to reduce power cost, but they always need to satisfy
service level agreements (SLA) on application performance
for users. In popular cloud services such as EC2, the SLA for
processors is represented with a normalized performance
unit. The underlying guarantee is to provide consistent per-
formance for the promised performance unit regardless of co-
runners.

Through this paper, we consider the following environ-
ment. First, our scheduler manages a physical system. It
does not span multiple physical systems. Second, to sim-
plify analysis and discussion, we consider only two types of
cores, fast core and slow core. Third, we assume that each
thread belongs to different applications. Note that the most
schedulers manage threads independently. We will discuss
how to support the multi-threaded applications in Section
7.6. Finally, we focus on non-real time applications. For real
time applications, meeting deadline is more important than
fairness. Also, as Linux scheduler which has a modular
scheduler design, we can use different schedulers for real
time applications.

2.1 Definition of Fair Scheduling on AMP

On symmetric multi-core processors (SMP), there is one
knob for schedulers, the amount of CPU share. Users set the
weight of threads (wi), and schedulers adjust the amount of
CPU share (ci) of each thread. The fair scheduling on SMP is
defined as the amount of CPU share is proportional to the
weight of thread [14], [15]. Let N be the number of threads
and C be the number of CPUs in the system

ci ¼ wiPN
j¼1 wj

C:

On asymmetric multi-core processors, another knob is
added, the type of CPU share. Schedulers adjust the
amount of fast core share (fi) and slow core share (si) of
each thread, and these values affect the performance of the
thread. Note that fi þ si ¼ ci by definition. The perfor-
mance depends on the characteristic of the thread, fast core
efficiency (ei). This represents the relative performance on a
fast core compared to that on a slow core. When the per-
formance of an application (perf i) is represented as the
inverse of the execution time (exectimei), fast core efficiency
is defined as follows:

ei ¼ perf i
fast

perf i
slow

¼ exectime i
slow

exectime i
fast

;

KIM AND HUH: EXPLORING THE DESIGN SPACE OF FAIR SCHEDULING SUPPORTS FOR ASYMMETRIC MULTICORE SYSTEMS 1137

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

Peter Hu

Peter Hu

where the subscript fast or slow means that the value is
extracted from the case that the application runs entirely on
a fast or a slow core.

Since the characteristic of a thread as well as its fast core
share and slow core share affect the performance of the
thread, it is necessary to set a performance baseline to define
a fair scheduling on AMP. We call the baseline as base perfor-
mance. For example, Van Craeynest et al. [13] used a perfor-
mance when an application always runs on a fast core in an
isolated environment for their base performance. Section 2.2
discusses base performance in detail.

Finally, we use the following definition for the fair sched-
uling state: a scheduling on AMP system is fair, if the amount of
CPU share of all threads are proportional to their weights and all
threads experience same slowdown or speedup from the base per-
formance. Then, we define max-fair policy as a scheduling
policy which achieves the fair scheduling state. How to
implement max-fair policy with the given base performance
will be explained in Section 2.3.

2.2 Base Performance

As discussed in the previous section, to define a fair sched-
uling state, the baseline performance for each application is
necessary, as the minimum fairness and uniformity metrics
use normalized performance against the base performance.

The performance with fast core or slow core has been
used as the baseline performance in the prior work [7], [13].
Fast only base assumes that all applications run on fast cores,
and takes their performance as the baseline performance.
Similarly, slow only base takes the performance when all
applications run on slow cores as the baseline. The base per-
formances have the absolute values and do not depend on
core configurations and the number of threads in a system.
Also, users can easily guess the performance if they know
what the baseline core is. Thus, using these base performan-
ces can facilitate the service-level agreement support. How-
ever, with fast only or slow only, the maximum achievable
value of minimum fairness depends on the combination of
applications in a system. For example, depending on the co-
running applications, 70 percent minimum fairness with
fast only base performance may not be achievable. In the
prior work, [13] targeted only uniformity as a fairness met-
ric and does not have such problems.

An alternative is fair share base performance, proposed
by Kwon et al. [11]. It is defined as the performance of appli-
cations when an equal core share for fast and slow cores are
assigned to all applications. In other words, all applications
have the same chance to use fast cores. It provides the exact
upper bound of minimum fairness regardless of the charac-
teristics of running applications. The maximum value of
minimum fairness is always 100 percent, and it can be
achieved by assigning core share as its definition. However,
fair share can be less attractive from the perspective of sup-
porting the service-level agreement on the application per-
formance. The number of active threads and the number of
cores for each type affect the base performance, as how
much fast core share can be assigned to an application is
dependent upon those numbers.

Therefore, in this paper, we explore three types of base
performances described so far. Cloud providers may use
fast only or slow only base performance to let users can easily

guess the provided performance while hiding the detailed
information about the system. The problem with changes in
the maximum achievable minimum fairness can be solved
by other ways. On the other hand, normal users who own
systems with asymmetric multicores may use fair share base
performance, if they want an exact control of their own sys-
tems regardless of characteristics of running applications.

Another issue in defining base performance is whether
the shared resource effect should be removed or not. Shared
resources such as shared last-level caches cause the perfor-
mance interference across applications on different cores.
The base performance by Craeynest et al. [13] excludes the
shared resource effect, while the base performance by
Kwon et al. [11] includes the performance interference.

In this paper, we decide not to consider the shared
resource effect for the base performance due to the follow-
ing reasons. First, we want to make a feasible scheduler on
the currently available systems. Estimating the performance
without the shared resource effect often requires the extra
hardware support or large sampling overhead. Second, the
interference from the shared resources can be solved at the
shared resources themselves, and is far from the major
role of CPU schedulers. Third, in most cases, the perfor-
mance gap between fast and slow cores have a primary
impact on application performance. Although our scheduler
designs do not consider the performance interferences, all
experimental results on real machines include the effect.

2.3 Achieving Fair Scheduling State

In this section, we describe how to achieve the fair schedul-
ing state for each base performance definition. Table 1 sum-
marizes the variables we use in this section. Also, we
assume that total core share of all threads are allocated pro-
portionally to their weight. The outcome of this analysis is
to find the fast core share for each thread which equalize the
normalized performance compared to the base perfor-
mance. For the slow core share, si ¼ ci � fi by definition.

For fair share base, the base performance defines the
amount of fast core share for the fair scheduling. To main-
tain the proportional fairness for total core share, the
amount of fast core share of thread i should be as follows:

fi ¼ ciPN
j¼1 cj

F:

For slow only base, the definition of fair scheduling on
AMP implies the following conditions:

8i; j; e
ifi þ si

ci
¼ ejfj þ si

cj
and

XN
i¼1

fi ¼ F:

The left condition represents that the speedup due to the
fast core share normalized to the slow core only

TABLE 1
Variables and Meanings

ei fast core efficiency of thread i N the number of threads
fi fast core share of thread i F the number of fast cores
si slow core share of thread i S the number of slow cores
ci total core share of thread i C the number of all cores

1138 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 8, AUGUST 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

performance should be equal, and the right condition indi-
cates that the total fast core share should be equal to the
total number of fast cores. Note that when we say the slow
core only performance as 1, the performance with given fi
and si can be presented as eifi þ si. Then, since the slow
core only performance is the performance when the applica-
tion consumes all of its core share on the slow cores, the
slow core only performance can be presented as ci.

Using si ¼ ci � fi, the left condition can be rearranged as
fi ¼ ðej � 1Þfj þ ðcj � ciÞð Þ= ei � 1ð Þ. By applying this to the
right condition, we can get the solution for fj

fj ¼
1

ej�1PN
i¼1

1
ei�1

F �
XN
i¼1

cj � ci

ei � 1

 !
:

Note that ej � 1 is the additional performance ratio
when a thread receives fast core share instead of slow
core share. Then, 1=ðej � 1Þ is the fast core share ratio to
equalize the additional performance. The second term in
the parenthesis reflects the proportional fairness in total
core share with the consideration of the fast core effi-
ciency of applications.

For fast only base, we should consider the following con-
ditions:

8i; j; e
ifi þ si

eici
¼ ejfj þ sj

ejcj
and

XN
i¼1

fi ¼ F:

The conditions are similar to slow only base, but the
denominator in the left condition is eici, which represents
the performance when the application consumes its total
core share on fast cores.

We can use the similar procedure with slow only base to
get the final solution. The result is as follows:

fj ¼
ejcj

ej�1PN
i¼1

eici

ei�1
F � 1

ej
ejcj

ej � 1

� �
þ

ejcj

ej�1PN
i¼1

eici

ei�1

XN
i¼1

1

ei
eici

ei � 1

� �
:

The first term of the solution is similar to slow only base
case, but the numerator here is eici. It means that the addi-
tional performance is normalized to the performance on fast
cores. The second and third terms are needed since the per-
formance from slow core share is not directly proportional
to slow core share. It also depends on the fast core efficiency
with fast only base. The second term substracts the perfor-
mance interchangeable with slow core share as assuming
that threads receive fast core share by the first term, and the
third term re-distributes the summation of the interchange-
able performance to equalize the additional performance
from fast core share.

Unfortunately, the solutions for fast only and slow only
base performance might give infeasible values, such as
fi < 0 or fi > 1. This is similar to infeasible weight prob-
lem [15], [16] on SMP scheduling. Depending on the dis-
tribution of the fast core efficiency, it may be impossible
to make a fair scheduling. For such cases, we make
fi ¼ 0 if fi < 0 in the solution, and fi ¼ 1 if fi > 1 in the
solution. Then, we exclude the exceptional threads with
the core share they receive, and calculate the solution
again.

2.4 Fairness Metrics

To evaluate our scheduling policies, we use the following
metrics. We define T i, the throughput of an application i as
the performance normalized to the base performance
(perfbase). With our definition of the fair scheduling on
AMP, if a scheduling is fair, throughputs of all applications
should be same. For the system-wide throughput metric, T ,
we use the arithmetic mean as follows:

T i ¼ perf i

perf i
base

T ¼ 1

n

X
T i:

With this metric, we define max-perf scheduling which
maximizes the system-wide throughput without consider-
ing fairness. Suppose the number of fast cores is F . Then,
max-perf selects the F applications with the highest fast
core efficiency, and schedules them on the fast cores. The
rest of applications are scheduled to the slow cores.

For fairness, we use two different metrics, minimum

fairness (minF) and uniformity. Minimum fairness
mandates the limit of maximum performance degradation
compared to the base performance of each application. Uni-
formity is how uniform the performances of applications
are relatively to the base performances respectively. Mini-
mum fairness, the minimum performance relative to the
base performance, is defined as follows. Note that T i is the
performance normalized to the base performance

minF ¼ minðT 1; T 2; . . . ; TNÞ;
where N is the number of applications. The range of mini-
mum fairness value is affected by base performance.

Second, the uniformity metric is the fairness metric pro-
posed by Van Craeynest et al. [13]. It is based on a standard
deviation of normalized performance of each application.
Uniformity is defined as follows:

Uniformity ¼ 1� ðsTi=mTiÞ;
where sTi is the standard deviation of application through-
puts and mTi

is the average of application throughputs. For
the normalization point, the original study [13] uses an esti-
mated isolated performance on fast cores. In this paper, we
use the more general form, the base performance.

3 PRIOR WORK

Kumar et al. proposed an asymmetric multi-core processor
design and showed its potential to improve area and energy
efficiency [1], [17]. Recently, AMPs have been realized in
academic and commercial designs such as FabScalar proj-
ect [2] and big.LITTLE architecture [3]. Furthermore, pro-
cess variation incurs different maximum frequencies for
cores in a system and results in unintended asymmetric
multi-cores [4], [5]. Scheduling mechanisms for asymmetric
multi-cores have been studied to exploit the potential of it.
In the rest of this section, we will discuss prior fairness
aware schedulers for asymmetric multi-cores in detail, then
summarize the other work.

3.1 Prior Fairness-Aware Schedulers

There have been some studies to incorporate fairness into
the scheduling problem of asymmetric multi-cores. First,

KIM AND HUH: EXPLORING THE DESIGN SPACE OF FAIR SCHEDULING SUPPORTS FOR ASYMMETRIC MULTICORE SYSTEMS 1139

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

scaled load balancing proposed by Li et al. [7], [8] pro-
vides an equal computing capacity to each thread without
considering how to support performance efficiency. It
argues that if threads have the same priority, they should
receive the same share of core processing power. Since cores
differ in their processing capacity, the proposed scheduler
adjusts CPU shares for different core types with a fixed scal-
ing ratio. The ratio for load scaling is empirically obtained
by the benchmark suite performance. However, this study
focuses only on how to support fair shares of CPUs with a
real system implementation, without considering through-
put efficiency of asymmetric multi-cores.

Second, Kwon et al. discussed an equal share fairness
definition [11], which is same as max-fair with fair share in
our study. With their definition, the applications get the
same chance to improve their performance by receiving the
same share of fast cores. In addition, they also proposed an
R%-fair scheduler, which runs applications fairly in R%
of time, and uses max-perf policy for the rest of time quan-
tum. Although it cannot guarantee a specific performance
target, it attempts to improve fairness while still increasing
the overall throughput. Using a scheduler implementation
added to an open source hypervisor, the study showed the
feasibility of such schedulers in virtualized systems.

Third, a study by Van Craeynest et al. investigated three
fairness aware schedulers for AMP [13]. In this simulation-
based study, they rely on an estimated performance of each
application with an isolated fast core as the baseline perfor-
mance to aim for the fairness. To obtain the estimated per-
formance, they used a hardware-based performance model
requiring some changes in performance monitoring [12].
They define fairness with the uniformity metric defined in
the previous section. As a fair scheduling policy, they pro-
posed an equal-progress scheduler, which provides an
actual equal instruction throughput progress for each appli-
cation by assigning appropriate shares of fast and slow
cores. Their guaranteed-fairness scheduler aims to
improve both throughput and fairness, by running as a
throughput-maximizing scheduler until fairness drops
below a given threshold, and as an equal-progress

scheduler for the rest of scheduling period. However, this
study does not discuss minimum fairness guarantee, and
was conducted with architectural simulation with a special
hardware change.

Last, this paper extends our prior work [18] in terms of
supported base performance and guaranteed fairness met-
rics. We study three types of base performance for asym-
metric multi-cores, and propose scheduling mechanisms to
support complete fairness for each base performance. In
addition, our scheduler can guarantee the specified level of
uniformity as well as minimum fairness. Moreover, we fur-
ther analyze max-perf policy, most prior work considered,
by investigating the correlation of performance/fairness
metrics with the application characteristics.

Table 2 compares the three prior schedulers to our sched-
ulers proposed later in this paper. Scaled load balanc-

ing provides fair assignment of fast and slow core shares to
support fairness, but it does not exploit different efficiencies
of applications to improve the overall throughput. R%-

fair adds the limited application-awareness to scaled

load balancing by combining throughput and fairness
goals with the selected R ratio. However, it does not pro-
vide any guaranteed fairness and how to select the R factor
was not fully investigated. The guaranteed fairness

scheduler warrants the uniformity as fairness, but requires
new hardware supports for efficiency estimation. Their
study is based on architectural simulation. The scheduler
proposed in this paper can guarantee the target minimum
fairness while improving both throughput and uniformity,
being implemented for a real Linux system.

3.2 Other Schedulers

Most of the other prior work to investigate schedulingmecha-
nisms for asymmetric multi-cores aim at maximizing system
throughput [1], [6], [9], [10], [11], [12], with policies similar to
max-perf in this paper. To pick the highest fast core effi-
ciency applications, they use an exploration technique [1],
architecture-independent signatures [6], and indirect estima-
tion techniques using performance counters [9], [10], [11].
Craeynest et al. proposed a hardware-based approach to get
an accurate fast core efficiency, but, it requires a special hard-
ware and is highly dependent on themicroarchitecture [12].

Another aspect of scheduling threads on asymmetric
multi-cores is to support multi-threaded applications, and
several prior studies attempted to improve the parallel scal-
ability by running a bottleneck thread on a fast core. The
identified bottlenecks are sequential phases [9], [19],
delayed threads [20], and critical sections [21], [22].

For commercial processors targeting mobile systems
such as the ARM big.LITTLE architecture, CPU utilization-
based schedulers have been developed, as the mobile work-
loads exhibit severe fluctuations of CPU utilization.

4 ANALYSIS OF THROUGHPUT-MAXIMIZING POLICY

In traditional SMP, fairness in CPU provisioning can be
achieved by adjusting the amount of CPU cycles of applica-
tions. At the same time, CPU utilization can be maximized
by preventing cores from being idle while there are tasks to
run. Throughput maximization and fairness support are
independent problems and can be achieved simultaneously.

On the other hand, on AMP, not only amount of CPU
cycles but also type of CPU cycles affect the application per-
formance. Thus, throughput maximization and fairness
support may not be achieved simultaneously.

TABLE 2
Comparison with Prior Approaches

scaled
load

balancing [7]

R%-fair
[11]

guaranteed-
fairness
[13]

combined-
fair

(proposed)

Aware application
characteristics?

NO YES YES YES

Implement on
real machine?

YES YES NO YES

Require extra
hardware support?

NO NO YES NO

Supported base
performance

slow
only

fair
share

fast only fair share
slow only
fast only

Guaranteed
fairness metric

- - uniformity minFairness
uniformity

1140 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 8, AUGUST 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

In this section, we analyze the throughput-maximizing
scheduling policy, max-perf, proposed by most of the
prior studies on asymmetric multi-cores. Both of through-
put and fairness aspects are quantitatively analyzed with
some ideal assumptions, and the causes of the results are
discussed.

4.1 Methodology

The analysis of max-perf scheduling in this section is based
on the following assumptions. First, we assume that the fast
core efficiency is known for each application. In real systems,
online fast core efficiency estimation may incur overheads
and possible inaccuracy. Second, we assume that sufficiently
fine-grained adjustment of CPU share is possible without any
overhead. This implies two things: CPU usage ratio for fast
and slow cores can be adjusted in any fine-grained way, and
there is no overhead from context switch and thread migra-
tion. Third, there is no shared resource effect. While these
assumptions are applied in the analysis in this section, our
real machine implementation and evaluation in Sections 6
and 7will remove the assumptions.

We model a hexa-core AMP, two fast cores and four slow
cores, using the GEM5 simulator [23]. The fast core is a
4-way out-of-order processor, and the slow core is a single
issue out-of-order processor. Each core has a 64 KB L1
instruction cache, 64 KB L1 data cache, and 2 MB L2 unified
cache privately. Thus, there is no interference from cache
sharing. To construct application mixes, we use all combina-
tions with repetition of 23 SPECCPU 2006 benchmark. Since
there are 6 cores, we use 6 applications for each mix and the
number of mixes is 23H6 ¼ 376; 740. For each application,
the simulation skips 1 billion instructions with fast-forward-
ing, and runs 100 million instructions. For the base perfor-
mance, fair share is used.

4.2 Fairness of Throughput-Maximizing Scheduling

Fig. 1 shows cumulative distributed function (CDF) with the
throughput, minimum fairness, and uniformity results of
max-perf. There are two lines per graph. Solid lines repre-
sent the results of all mixes. Dotted lines represent the
results of mixes whose throughput improvement from
max-perf policy is less than 5 percent, that is, whose
throughput is less than 1.05.

For all mixes, represented as solid lines, max-perf

shows performance improvement from the base perfor-
mance up to 1.26 and the median is 1.09, as shown in the
throughput graph. However, the strict max-perf schedul-
ing often sacrifices minimum fairness and uniformity signif-
icantly. In the case of more than half, minimum fairness is
lower than 0.7 and uniformity is lower than 0.6. The lower

limit of minimum fairness is 0.54, and one of uniformity is
0.37. For the minimum fairness results, there are only 23 dis-
crete minimum fairness levels, since 23 benchmark applica-
tions are used for this analysis, and thus there are the same
number of normalized throughput levels without any inter-
ference by co-running. This perfect scheduling analysis
does not have any random effect observed in real systems.

Note that the dotted lines are not much different from the
solid lines, even though it represents only the cases that the
throughput improvement from max-perf policy is less
than 5 percent. This means that max-perf seriously lowers
the fairness regardless of small throughput gains.

However, note that the base performance assumes that all
applications have some amount of fast core share. Max-perf
still improve system-wide throughput improvement up to 26
percent and the median of improvements is 9 percent. If we
use max-fair policy, we lose this amount of throughput to
support maximum fairness among applications.

Based on the observations in this section, this paper will
relax the max-perf policy which is based on a strict effi-
ciency order imposed even if the throughput gain is small.
Our schedulers guarantee fairness metrics with a lower
bound, and still improves the system-wide throughput.

4.3 Correlation between Fast Core Efficiency and
Fairness

To analyze further, we investigate the correlation between
the distribution of fast core efficiencies of applications in
each mix and its throughput, minimum fairness, and unifor-
mity results of max-perf. We use the sample correlation
coefficients (R-value) for analysis, For the efficiency distri-
butions, average, standard deviation, standard deviation
divided by average, and third top are used. The R-value has
values between �1 and 1. The absolute value of R means
how two are strongly correlated. Also, R-value is positive if
two are positively correlated, and is negative if two are neg-
atively correlated.

Table 3 shows R-values for each fast core efficiency distri-
bution and three metrics. The values with an asterisk mark
indicate the highest absolute value for each column. Note
that the highest absolute value for each column (metric) is
more than 0.94. The fast core efficiency distributions we use
explain the most portion of each metric.

As shown in the table, the throughput of max-perf is
highly correlated with the standard deviation of efficiencies
divided by the average of efficiencies. This means that max-
perf gains much throughput when the applications have
diverse characteristics but the average efficiency is low. The
diversity of applications promises throughput improve-
ment since it can exploit the diversity of core capabilities.
Note that the standard deviation itself is also highly

Fig. 1. Throughput and fairness of max-perf.

TABLE 3
Sample Correlation Coefficient (R-Value) Between the Fast
Core Efficiency Distribution and the Results of max-perf

efficiency distribution throughput minFairness uniformity

avg �0.215 �0.855 �0.994�
stdev 0.858 �0.224 �0.231
stdev/avg 0.945� 0.114 0.136
third top �0.204 �0.993� �0.840

KIM AND HUH: EXPLORING THE DESIGN SPACE OF FAIR SCHEDULING SUPPORTS FOR ASYMMETRIC MULTICORE SYSTEMS 1141

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

correlated with the throughput. (Refer to the second row.)
However, when the average efficiency is high, some high
efficiency applications is scheduled on slow cores. Then, the
applications show low performance compared to the base
performance, which is throughput, and they lower the sys-
tem-wide throughput, the average value of all application’s
throughput.

The third column of the table shows that minimum fair-
ness is determined by the third top efficiency application.
Since we use two fast cores and four slow cores, the third
top efficiency application has the highest fast core efficiency
among the applications receiving only slow core share by
max-perf, and it shows the lowest throughput.

The uniformity is strongly correlated with the average
efficiency. As seen before, the high average efficiency means
that some high efficiency applications show low through-
put. In addition, the applications running on fast core also
have high efficiency, and show high throughput. Thus, the
difference between high and low throughput becomes large,
and so the uniformity does.

5 DESIGN SPACE

In this section, we propose four fairness-oriented schedul-
ing policies pursuing throughput improvement under fair-
ness constraints. First, min-fair scheduling supports
minimum fairness guarantee by restricting the maximum
performance degradation from max-fair. The second
scheduler, uni-fair supports uniformity as a guaranteed
metric. It restricts the performance variance as the system
administrator sets. The third scheduler, sim-fair, opti-
mizes above two schedulers by equalizing the core share of
applications which have similar fast core efficiency. Finally,
combined-fair scheduling combines three scheduling
policies above.

In this section, we use the notation in Table 1. In addition,
we present the results with the same perfect scheduling
assumptions used in Section 4. Fair share is used as the
base performance for the analysis.

5.1 Minimum Fair Scheduling

The first scheduler, min-fair supports that a fixed level of
throughput is always maintained. The administrator can set
the maximum performance degradation (minF) compared
to the base performance. For the given minF setting, the
min-fair policy tries to improve throughput while sup-
porting the strict minimum fairness of each application. To
meet the minimum fairness requirement, every application
is guaranteed to have a sufficient fast core share. After the
minimum fairness is met, applications with the highest fast
core efficiencies monopolize the remaining fast core shares.
By doing this, min-fair guarantees T i � target for all i.

Algorithm 1 sketches the procedure of min-fair policy,
which determines fast and slow core shares for each thread
(fi and si). Note that we use the notation in Table 1. The
core part is required_f_share(). It calculates the amount of
fast core shares which is required to guarantee its own mini-
mum fairness target. To satisfy the minimum fairness limit,
the inequality in the function must be held. The main algo-
rithm begins from the scheduling of max-fair, to check
whether the target is achievable or not. If the system

administrator sets target which is not achievable, the sched-
uling uses max-fair policy. Then, it gives the portion of
fast core share to all threads as much as calculated by
required_f_share() so the minimum fairness limit is main-
tained. Then, the remaining portion is given to an applica-
tion with the highest fast core efficiency to improve
throughput. The maximum fast core share of an application
is limited by the number of threads (1 thread per application
in this work), and the process is repeated until the all taken
fast core shares are distributed.

Algorithm 1.Min-Fair Policy

required_f_share(i, target)
/* estimate the base performance */
perfbase ei � fi

base þ sibase
/* find the minimum fast core share to meet minF target */
Find f_minF satisfying the following

ei�f minFþðci�f minF Þ
perfbase

> target

return f_minF
sched_min_fair(target)
sched_max_fair()
if calculate_minFairness() < target then
/* target is not achievable even with max-fair */
return

end if
f_remain F
for each i in all threads do
share required_f_shareði, targetÞ
fi share
si ci� share
f_remain f_remain � share

end for
for each i in descending order of fast core efficiency do
share MINðci � fi; f remainÞ
fi fiþ share
si si� share
f_remain f_remain � share
if f_remain � 0 then
break

end if
end for

Fig. 2a shows the throughput results of min-fair(80
percent), min-fair(90 percent) and max-perf, and
Fig. 2d shows the minimum fairness results of the same
three configurations. As shown in the figures, min-fair(80
percent) and (90 percent) can effectively support the mini-
mum fairness limit. Furthermore, with min-fair(80 per-
cent), even if the system guarantees 80 percent performance
from the max-fair state, it can gain throughput similar to
max-perf. The max-perf policy may degrade minimum
fairness by up to 60 percent, even with little throughput
improvement (refer to Fig. 1). Such a modest target setting
of 80 percent can prevent significant minimum fairness vio-
lations by max-perf. This result reinforces our initial
observation that max-perf frequently sacrifices fairness
severely, even if throughput gain is none or minor. Mini-
mum fairness setting also results in uniformity improve-
ment, as Fig. 2g.

Optimality. min-fair policy provides the optimal
throughput under the minimum fairness constraints. We

1142 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 8, AUGUST 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

prove this by contradiction. Assume that there is an optimal
core share distribution other than min-fair, which yields
the higher throughput than min-fair and guarantee the
minimum fairness over the target. In the optimal distribu-
tion, at least one application receives less fast core share
than the distribution of min-fair. There are two cases for
the application. The first case is that the fast core share
of the application with min-fair is same with requir-
ed_f_share(). Then, with the optimal distribution, the appli-
cation receives fast core share less than required_f_share().
This makes the performance of the application less than the
minimum performance requirements and breaks the mini-
mum fairness target. The second case is that the fast core
share of the application with min-fair is larger than
requilred_f_share(). To yield the higher throughput, the
fast core share from the application should be given to the
higher fast core efficiency application. However, in the sec-
ond loop of Algorithm 1, the remaining fast core share is
given to applications in the descending order of fast core
efficiency. Thus, there is no higher fast core efficiency appli-
cation which can receive more fast core share. Therefore,
there is no such optimal core share distribution.

5.2 Uniformity Fair Scheduling

The second scheduler, uni-fair restricts uniformity, which
represents the inverse of performance variance, over the
user-defined level. The administrator can set the maximum
performance variance allowed as a uniformity value. For
the given uniformity target, the uni-fair policy tries to
improve throughput while guaranteeing the uniformity
level of a system. To meet the uniformity requirement, the
scheduler determines the portion of time max-perf can be
used without hurting the uniformity requirement. Then, it
runs as max-perf for the specified portion of time, and

runs as max-fair for the rest of time. The concept of this
scheduling is very similar to what Craeynest et al. [13] pro-
posed. It calculates the uniformity of a system for each very
short scheduling interval and determines what policy is
used for the next interval. However, changing the schedul-
ing at a fine-grained interval may be burdened on real
machines, and, estimating the fast core efficiency at fine-
grained interval is very hard without extra hardware sup-
port. Thus, our scheduler needs to assume long scheduling
interval (2s), and calculates the exact portion of time that
max-perf can be used to improve the throughput.

Algorithm 2 sketches the procedure of uni-fair policy.
After calculating the uniformity with max-perf policy, it
first assumes that the uniformity drops down linearly as the
portion of time max-perf is used. With the assumption of
the linear relationship, a, the portion of time max-perf is
used, should be ð1� targetÞ=ð1� uniformitymax�perfÞ. The
algorithm then finds the exact value of a by decreasing the
value by 1 percent at a time until the uniformity estimated
with a is greater than the target. At the end of the algorithm,
fast core share of a thread is the weighted average of fast
core share with max-perf and fast core share with max-

fair, where the weight is a.
Fig. 2b shows the throughput results of uni-fair(70

percent), uni-fair(85 percent) and max-perf, and
Fig. 2h shows the uniformity results of the same three con-
figurations. As shown in the figures, uni-fair(70 percent)
and (85 percent) can effectively support the uniformity
limit. However, as strictly limiting the performance vari-
ance, uni-fair scheduling does not exploit the diversity
of applications and the throughput gain drops down.
Reducing the performance variance results in the improve-
ment of minimum performance, and minimum fairness is
also improved, as Fig. 2e.

Fig. 2. CDF of throughput, minimum fairness, and uniformity with all possible 6 core combinations of 23 applications.

KIM AND HUH: EXPLORING THE DESIGN SPACE OF FAIR SCHEDULING SUPPORTS FOR ASYMMETRIC MULTICORE SYSTEMS 1143

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2. Uni-Fair Policy

/* fi
max�perf: fast core share of thread i by max-perf */

/* fi
max�fair: fast core share of thread i by max-fair */

sched_uni_fair(target, fmax�perf, fmax�fair)
/* calculate uniformity of max-perf */
fi fi

max�perf for all threads

si ci � fi
max�perf for all threads

uniformity calculate_uniformity()

/* a is the time ratio of running with max-perf */
/* Assume that uniformity is linearly related to a */
a ð1� targetÞ=ð1� uniformityÞ
for each i in all threads do
fi fi

max�perf � aþ fi
max�fair � ð1� aÞ

si ci � fi

end for
uniformity calculate_uniformity()

/* to find the exact value of a */
while uniformity < target do
a a� 0:01 /* reduced by 1% */
for each i in all threads do
fi fi

max�perf � aþ fi
max�fair � ð1� aÞ

si ci � fi

end for
uniformity calculate_uniformity()

end while

5.3 Similar Fair Scheduling

The third scheduler, sim-fair does not guarantee any fair-
ness metric. Rather, it relaxes max-perf by equally distrib-
uting fast core shares to a group of applications with similar
fast core efficiencies. Assuming there are N fast cores, in
max-perf, the top N applications with the N highest effi-
ciencies monopolize the fast cores. On the other hand, in
sim-fair, the scheduler finds groups of applications
whose fast core efficiencies are similar, with less than a
similarity difference. The administrators can adjust the
relaxation level by setting similarity. Then, it assigns an
equal share of fast cores to every application in each group.
However, across groups, their fast core shares may differ
depending on the average fast core efficiencies of the
groups. The fairness support in sim-fair attempts to
reduce the negative artifact of the strict scheduling of the
max-perf policy to improve uniformity, although it may
potentially reduce the overall throughput.

Algorithm 3 presents the procedure of sim-fair. It
starts from the core allocation used by the max-perf pol-
icy. At each scheduling interval, for threads receiving more
fast core shares than the share assigned by the max-fair

policy, threads with similar efficiencies are grouped
together. Whenever the group formation is updated, the
fast and slow core shares are updated for each application
to the new average of fast and slow core shares in the group.

The rightmost column of Fig. 2 shows the results of sim-
fair. Fig. 2c presents the throughput results. The through-
put with sim-fair is slightly lower than that with max-

perf for some cases, but the differences are relatively small.
As the similarity setting gets smaller, the performance

differences are reduced. As shown in Fig. 2f, sim-fair fre-
quently improves minimum fairness as it distributes fast
core share equally for all high fast core efficiency applica-
tions. Note that the minimum fairness highly depends on
the third top fast core efficiency. Also, since sim-fair

makes similar efficiency applications gets same chance to
improve throughput, the uniformity is improved as shown
in Fig. 2i.

Algorithm 3. Sim-Fair Policy

/* fi
max�perf: fast core share of thread i by max-perf */

/* fi
max�fair: fast core share of thread i by max-fair */

sched_sim_fair(similarity, fmax�perf, fmax�fair)
/* start from max-perf schedule */
fi fi

max�perf for all threads

si ci � fi
max�perf for all threads

for each i in all threads such as fi � fi
max�fair do

group ¼ threads with efficiency difference � similarity
for each i in group do
fi ¼ average fi of threads in group
si ¼ average si of threads in group

end for
end for

5.4 Combined Fair Scheduling: Putting All Together

Finally, we propose combined-fair scheduler, which
combines min-fair, uni-fair, and sim-fair sched-
uers. The administrators can set three parameters, similar-
ity, minimum fairness, and uniformity. Then, combined-
fair guarantees minimum fairness and uniformity greater
than the targets and optimizes fairness based on the similar-
ity parameter.

Algorithm 4 sketches how combined-fair combines
three schedulers. First, it calculates the core share with
max-fair, which is needed for min-fair. Second, min-
fair policy works to guarantee the desired minimum per-
formance level. Third, combined-fair calls sim-fair to
consider the similarity parameter. However, sim-fair

here starts from min-fair instead of max-perf, and the
minimum fairness guarantee is kept. Last, combined-

fair considers the uniformity target by doing what uni-
fair does. One difference is that, for a portion of the time,
the scheduler runs min-fair + sim-fair, instead of
max-perf. Note that max-fair is used for the rest of time.
This does not hurt the minimum fairness guarantee.

5.5 Discussion: Efficiency Estimation Error

One of the considerations for the algorithms is the tolerance
of fast core efficiency estimation error, as the exact efficiency
estimation is so difficult with specialized hardware sup-
port [12]. Fig. 3 shows the difference in fairness metrics
with min-fair and uni-fair policy between the results
with and without the efficiency estimation error. The results
with the exact efficiency estimation are from the same
method in the Fig. 2. Then, we add 5�20 percent of the effi-
ciency estimation error to the algorithm and get the other
results. The results show that the minimum fairness

1144 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 8, AUGUST 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

guarantee of min-fair is broken upto 3.4 percent with 10
percent efficiency estimation error, and the uniformity guar-
antee of uni-fair is broken upto 5.6 percent with 10 per-
cent error in efficiency estimation. Note that our efficiency
estimation mechanism on real machines show 8.82 percent
error in the worst case (Section 7.5).

Algorithm 4. Combined-Fair Policy

sched_combined_fair(similarity, minF_target, uniformity_target)

sched_max_fair()
fi
max�fair fi for all threads

sched_min_fair(minF target)
/* let fmax�perf be the results of sched_min_fair() */

fi
max�perf fi for all threads

sched_sim_fair(similarity; fmax�perf; fmax�fair)

/* let fmax�perf be the results of sched_sim_fair() */

fi
max�perf fi for all threads

sched_uni_fair(uniformity target; fmax�perf; fmax�fair)

6 IMPLEMENTATION

We modified the Completely Fair Scheduler (CFS) sched-
uler of the Linux 3.10.96 kernel. The implementation
requires three components. First, the schedulers must be
able to estimate the fast core efficiency for each application
online with as little overhead as possible. Second, the sched-
uler should control the usage of fast and slow core shares of
applications to support fairness-oriented scheduling poli-
cies. Third, to avoid any performance overhead by schedul-
ing two types of cores, it must be work-conserving,
supporting that no core becomes idle when there are any
pending ready threads. Furthermore, no fast core must
become idle, when some tasks are running on slow cores,
except for a very short transition period.

6.1 Online Fast Core Efficiency Estimation

One of the critical issues for scheduling threads on asym-
metric multi-cores is to estimate the fast core efficiency of
each thread. There have been several previous studies to
estimate fast core efficiency [6], [9], [10], [11]. A common
approach is to approximate the fast core efficiency based on
instruction throughput or last-level cache (LLC) misses
while an application is running on either a fast or slow core.
The prior approaches assume that measuring fast core effi-
ciencies by trying each thread on both types of cores is
costly, as it requires to change core types periodically for
each application. Such an approximation-based method

may be able to provide approximate relative orders of effi-
ciencies among applications. For the max-perf scheduling
the prior estimation method is designed for, such rough
ordering is good enough to determine which applications
run on fast cores. However, to support the fine-grained fair-
ness control as proposed in this paper, a more accurate esti-
mation of fast core efficiency is necessary.

To support accurate estimation of fast core efficiencies,
we use a direct method of measuring fast core efficiencies
with an exploration-based approach. Instead of estimating
fast core efficiencies with indirect metrics such as LLC
misses, the proposed method measures the actual perfor-
mance in both fast and slow cores by running threads on
both cores periodically. A similar method with HW-based
scheduling was proposed by Kumar et al. [1], and evaluated
with simulation. We have implemented it on a Linux sys-
tem, validating its cost is sufficiently low for real SW-based
schedulers. Our fast core efficiency metric is as follows:

efficiency ¼ IPSfast

IPSslow
:

Instruction per second (IPS) is the primary metric of the
performance, measured with common performance moni-
toring counters in commercial processors. For each schedul-
ing interval, 2 seconds in our experiments, IPS on fast and
slow cores are individually measured and averaged.
Another benefit of this direct method is that it will work
independently from the architectural characteristics of fast
and slow cores. It measures the actual performance with
fast and slow cores, instead of using an approximation.

There are three potential sources of overheads for the fast
core efficiency estimation. First, to measure the actual per-
formance on both core types, all threads should be sched-
uled on both types of cores for each scheduling interval.
This forced scheduling can make applications run on less
optimal core types occasionally. However, since the forced
scheduling period for the estimation is short, the overhead
is negligible. Second, this method adds more context
switches even if an application should be scheduled to only
one type of core continuously. Third, using performance
monitoring units may have overheads. For optimization, we
virtualized the performance monitoring unit, and directly
read the machine specific registers (MSR) instead of count-
ing the number of interrupts [24]. As will be discussed in
Section 7.5, the proposed method can provide a highly accu-
rate estimation with negligible overheads on a real machine.

6.2 Periodic Core Share Adjustment

Based on the estimated fast core efficiencies, our scheduler
determines fast and slow core shares determined by three
fairness policies. This occurs periodically, in our implemen-
tation, on every 2 seconds, and each share is written in the
thread context. This process is implemented as a user-level
program and it communicates with the kernel by syscalls. If
this is implemented in the kernel, the overhead can be fur-
ther reduced. However, Section 7.5 will show the share cal-
culation overhead is negligible even with the user level
implementation.

To support adjustable fast and slow core shares, we add
fast_round and slow_round for each thread, which represent

Fig. 3. Effect of efficiency estimation error on algorithms.

KIM AND HUH: EXPLORING THE DESIGN SPACE OF FAIR SCHEDULING SUPPORTS FOR ASYMMETRIC MULTICORE SYSTEMS 1145

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

howmany rounds the thread has run on each type of cores. In
addition, each thread has fast core share and slow core
share. The fast or slow round is incremented whenever a
thread completes to run on a fast or slow core for
fast or slow core share� 30ms time period, respectively.

The scheduler forces each thread to use fast and slow
cores as specified by fast and slow core shares, by maintain-
ing that fast and slow core rounds proceed together. When a
thread gets a timer tick on a fast core, the scheduler compares
its fast_round with slow_round. If fast_round is greater than
slow_round, the scheduler searches another thread on a slow
core whose fast_round is less than slow_round. If such a thread
is found, two threads swap their next core types to run.

7 EVALUATION

7.1 Methodology

To evaluate the proposed fairness-oriented schedulers, we
use two systems. The first one is an emulated AMP system.
This system has a 6-core AMD Phenom II X6 1055T Proces-
sor. Asymmetric multi-cores are emulated by the DVFS
mechanism. Two cores are configured to fast cores with their
frequency set to 2.8 GHz, and the remaining 4 cores are set to
slow cores with the frequency of 0.8 GHz. All six cores share
a 6 MB last level cache. Although the emulated asymmetric
cores differ only in their frequencies, this configuration exer-
cises effectively both the scheduler and online fast core effi-
ciencymonitoring components in this study.

The second one is a real AMP system with the ARM big.
LITTLE architecture. Our test platform is Odroid-XU3 Lite,
which has the Exynos5422 SoC with four Cortex-A15 (big)
cores and four Cortex-A7 (little) cores on a chip. Big cores are
3-way out-of-order cores running at 1.8 GHz, and little cores
are 2-way in-order cores running at 1.3 GHz. Four big cores
share a 2 MB L2 cache, and four little cores share another
512KB L2 cache. The device has two limitations. First, it does
not fully support hardware performance monitoring units.
Thus, we cannot use our online fast core efficiency estimation
mechanism, and offline values are used. Second, it has only
2 GB DRAM, which is not sufficient to run 8 benchmarks on
all the 8 cores. Thus, we use only two big cores and two little
cores, and turn off the remaining cores.

The workloads consist of mixes from SPECCPU2006, as
shown in Table 4. The mixes for an emulated AMP system
consist of 6 benchmarks as the system has 6 cores. We use the
reference input sets on this system. On the other hand, the
mixes for the big.LITTLE system have 4 applications and
train input sets are used due to the limitedDRAMcapacity.

Fig. 4 presents the fast core efficiencies of applications in
each mix we used for two systems. The efficiencies are mea-
sured by pinning an application on a fast or slow core for
each mix. In the naming, H, M, and L stand for high,
medium, and low efficiencies respectively. There are two
same benchmark application for each letter. For example,
MLL has two M-type applications which are gcc for both,
and four L-type applications where two of them are omnetpp
and two of them are mcf. One exception is the SAME mix,
which includes six instances of gcc.

Even for the same benchmark application across mixes,
the fast core efficiencies are different due to shared resource
effects. For example, the efficiency of milc in LLL is 1.78,
while the same application in HHL.b is 1.95. As the co-run-
ning applications can affect the actual fast core efficiency of
an application, the online efficiency estimation is necessary
as implemented in our schedulers.

We repeatedly run applications in a mix until all applica-
tions are finished at least once, to reduce the variability of
experimental results. We use the execution time of the first
run for the performance of each application. For the evalua-
tion, we use the throughput and fairness metrics explained
in Section 2.4.

7.2 Max-Fair and Max-Perf Behaviors

Before the proposed fairness-oriented schedulers are evalu-
ated, this section presents the behaviors of the two baseline
schedulers, max-fair and max-perf, comparing them
against the Linux default scheduler (unaware), which is
not aware of the uneven core capability. In addition, we
also show a static scheduler (static), which binds each
application to a core. For the static scheduling, we run three
different mapping settings between applications and core
types. The experimental results shown in this section use
fair share base performance.

Fig. 5 presents the unaware, static, and max-fair

results of HML.b and HLL.b workloads on the emulated
AMP system. The remaining mixes show similar trends. In
the figure, each bar represents the average throughput of a
workload mix, and circles represent the throughputs of
individual applications in the mix. The figure shows the

TABLE 4
Workloads

Emulated AMP system Big.LITTLE system

Name Benchmarks Name Benchmarks

HHH povray�2, namd�2, bzip2�2 HH gamess�2, bwaves�2
MMM zeusmp�2, gcc�2, leslie3d�2 MM h264ref�2, gromacs�2
LLL soplex�2, mcf�2, milc�2 LL gobmk�2, omnetpp�2
SAME gcc�6 ML.a bzip2�2, astar�2
MLL gcc�2, omnetpp�2, mcf�2 ML.b gromacs�2, sjeng�2
MML gcc�2, leslie3d�2, milc�2 HM.a GemsFDTD�2, h264ref�2
HMM povray�2, gcc�2, leslie3d�2 HM.b hmmer�2, gromacs�2
HHM namd�2, hmmer�2, gcc�2 HL.a GemsFDTD�2, omnetpp�2
HML.a namd�2, gcc�2, soplex�2 HL.b bwaves�2, gobmk�2
HML.b h264ref�2, astar�2, omnetpp�2
HHL.a namd�2, hmmer�2, soplex�2
HHL.b gamess�2, gromacs�2, milc�2
HLL.a hmmer�2, mcf�2, milc�2
HLL.b gobmk�2, GemsFDTD�2, mcf�2

Fig. 4. Fast core efficiency distributions of workloads.

1146 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 8, AUGUST 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

results from three independent runs for each scheduler, and
for static, each run uses a different affinity mapping. As
shown in the figure, the unaware scheduler shows high
variances in application throughputs, as the scheduler
assumes symmetric multi-cores, resulting in random sched-
uling effects. The static scheduler also exhibits high var-
iances in application performance for each different affinity
setting, depending on what applications are pinned to fast
cores. As the throughput of each application is normalized
to that with the max-fair scheduler, the max-fair sched-
uler shows the throughput of 1 for all applications, without
any significant random scheduling effect even in real runs.

Fig. 6 presents throughput results with max-perf. Each
column corresponds to a different mix. For each column,
empty circles on the line represent the throughputs of appli-
cations in the mix. The lowest throughput in the mix is the
minimum fairness of the mix, and represented as a triangle.
The bars show the system-wide throughput with each mix,
and uniformity is also shown as a filled circle.

Although max-perf aims to maximize the throughput,
it can achieve high throughput improvement when there
are high fast core efficiency differences among applications.
When applications in a mix have almost the same fast core
efficiencies, such as HHH, MMM, and LLL, max-perf does
not show noticeable throughput improvements. For work-
load mixes of diverse applications, max-perf improves
3�13 percent of system-wide throughput. However, they
frequently suffer from low uniformity and high minimum
fairness degradation.

There are two exceptional cases. First, SAME mix con-
sists of six copies of same worklod, gcc, but max-perf

improves 4.3 percent of system-wide throughput. The main
reason is that gcc consists of many phases with different fast
core efficiency. Second, HM.a mix on the big.LITTLE system
with max-perf shows slightly lower throughput than the
result with max-fair. This is due to the clustered cache
design of our experimental platforms. HM.a mix consists of
two copies of a cache sensitive workload, GemeFDTD, and
two copies of a cache insensitive workload, h264ref. With
max-fair policy, all workloads run both types of cores
and utilize two L2 cache clusters. However, max-perf

binds the cache-sensitive workloads on one L2 cache cluster,
limiting the throughput improvements.

7.3 Detailed Results

In this section, we present the effectiveness of the proposed
three schedulers in the emulated AMP system. Figs. 7, 8
and 9 show the results for min-fair, uni-fair and sim-

fair policies with fair share base performance. For each
mix, each column corresponds to a different policy. The fig-
ures show normalized throughputs of all applications and
the average of them, along with minimum fairness and uni-
formity results.

Fig. 7 shows the results of min-fair policy with the tar-
get minimum fairness level of 85, 90, and 95 percent. For
comparison, it also shows the results of max-perf. First,
the results show our implementation guarantees the speci-
fied minimum fairness level very effectively. Even for the
case that max-perf degrades minimum fairness up to 60
percent, min-fair(85 percent) maintains minimum

Fig. 5. Comparison of the max-fair scheduler to the default Linux
scheduler.

Fig. 6. Results of max-perf.

Fig. 7. Results of minimum fair on emulated AMP.

Fig. 8. Results of uniformity-fair on emulated AMP.

KIM AND HUH: EXPLORING THE DESIGN SPACE OF FAIR SCHEDULING SUPPORTS FOR ASYMMETRIC MULTICORE SYSTEMS 1147

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

fairness higher than 85 percent. Similarly, min-fair(90
percent) and min-fair(95 percent) also effectively
limit the performance degradation with the specified lower
bound.

However, for the system-wide throughput, the figure
shows the trade-offs in the throughput and minimum fair-
ness. To support the higher level of minimum fairness, the
system may exhibit the lower throughput for some mixes.
The first six mixes, HHH to MML, show little throughput
degradation, mostly smaller than 2 percent, with large mini-
mum fairness and uniformity improvements. Since differ-
ence on fast core efficiencies of applications in the mixes,
giving the required fast core share to all applications does
not affect the overall throughput. However, for the rest
mixes, throughput is degraded up to 6 percent to meet the
target minimum fairness level. The main reason is the co-
existence ofH and L applications. The low fast core efficiency
applications need some amount of fast core shares to guaran-
tee the minimum fairness level, but the fast core shares given
to such applications do not contribute effectively to the
throughput improvement. Moreover, stealing fast core
shares fromH largely hurts the throughput significantly.

One positive effect of supporting minimum fairness is
the improvement of uniformity. Throughout the mixes, uni-
formity is improved significantly compared to max-perf.
However, uniformity is not a guaranteed metric. For exam-
ple, the uniformity of HML.a with min-fair(90 per-

cent) is lower than min-fair(85 percent) in spite of
its higher minimum fairness target. For HML.a, more than
100 percent fast core share is required to support higher
than 85 percent minimum fairness target. Then, min-fair
policy picks up only one application, with the highest fast
core efficiency, to give all remaining fast core share. In com-
mon cases, there is a little disturbance in fast core efficiency
estimation, and the highest rank in fast core efficiency occa-
sionally changes between two copies of H application.
Unfortunately, when the experiment with min-fair(90

percent) runs, only one copy of them monopolizes the
remaining fast core share until ends. Min-fair policy does
not consider this and shows low uniformity.

Fig. 8 shows the results ofuni-fair policywith the target
uniformity level of 70, 80, and 90 percent. For comparison, it
also shows the results of max-perf. First, the results show
our implementation guarantees the specified uniformity level
very effectively, even for the case that max-perf degrades
minimum fairness up to 52 percent. In addition, if max-perf
already shows the high uniformity, such as LLL and SAME,
uni-fair keeps the uniformity level of max-perf.

As seen inMML, HHM, and HHL.a, uni-fair conserva-
tively guarantee the target uniformity level. since our imple-
mentation guarantees the uniformity target for each 2
seconds interval. For each interval, the scheduler estimates

the uniformity from max-perf. If it seems to be higher
than the target, the scheduler runs as max-perf and gets
the higher uniformity. Otherwise, uni-fair makes the
uniformity level same as the target. Therefore, the overall
uniformity can be higher than the target. This situation does
not occur on the big.LITTLE system, as we use the offline
fast core efficiency and do not change the core share of
applications during the entire run.

Fig. 9 shows the results of sim-fair with similarity of
0.2 and 0.5. The results of max-perf policy are also shown
for comparison. First, workload mixes which include simi-
lar fast core efficiency applications, such as HHH, HHM,
HHL.a, and HHL.b, benefit from sim-fairwith 0.2 similar-
ity. Except for HHM, the policy mostly improves the unifor-
mity with little change in performance. In addition, sim-fair
with 0.5 similarity works for HHH, MMM, MLL, and HML.
b, as more workloads in the mixes can be grouped with 0.5
similarity. On the other hand, sim-fair shows neither
throughput nor uniformity changes for the rest, since it fails
to make any groups due to the large difference in fast core
efficiencies among applications.

For MMM and HML.b, sim-fair with 0.2 similarity
shows higher throughput than max-perf policy. This is due
to the small error from our fast core efficiency estimation
mechanism. Since our implementation uses the estimated
fast core efficiencies, max-perf policy may run the second
highest efficiency applications on fast cores. However, as
sim-fair re-distributes the fast core share among high fast
core efficiency applications, the applications with actually
the highest efficiency get the chances of running on fast
cores. Note that the improvement is small and the error is
fixed with small (0.2) similarity. Our fast core efficiency esti-
mation mechanism show high accuracy as shown in Section
7.5. Finally, sim-fair with 0.5 similarity again degrades
the system-wide throughput since it is likely to give more
fast core share to actually low efficiency applications.

In summary, min-fair can provide a fixed performance
lower bound, although setting the lower bound very high
can degrade throughput significantly for some mixes. Even
with a relatively modest minumum fairness restriction of 85
percent, min-fair can avoid critical performance degrada-
tions from max-perf which are up to 60 percent. Uni-
fair can limit a performance variance under a specified
level, but it shows the trade-off between the uniformity
level and the throughput improvement. Last, sim-fair
improves uniformity effectively without any significant
effect on the overall throughput, except for two cases.

7.4 Summarized Results

In this section, we summarize all results from both of emu-
lated AMP and real AMP systems with three base perform-
ances, fast only, slow only, and fair share base. We use target

Fig. 9. Results of sim-fair on emulated AMP.

1148 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 8, AUGUST 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

parameters listed in Table 5 for sim-fair, min-fair, and
uni-fair scheduling. For combined-fair scheduling,
we use the parameters with asterisk marks in the table for
similarity and minimum fairness, and all of listed unifor-
mity parameters. Thus, the number of parameter combina-
tions for combined-fair scheduling is 3 for each base
performance. Finally, since the number of mixes is 14 for
emulated AMP system and 9 for real AMP system, the num-
ber of experiments is 462 for emulated AMP system and 297
for real AMP system.

For evaluation of the fairness aspects, the most important
thing is whether the desired target metrics is achieved or
not. We represent the amount of target achievement by the
following metric

achievementfairness ¼ value

MINðtarget; valuemax�fairÞ :

In the equation, value is a minimum fairness or unifor-
mity value, valuemax�fair is a value of the same metric with
max-fair policy. Note that when fast only or slow only base
performance is used, the maximum value of minimum fair-
ness and uniformity depends on the fast core efficiency dis-
tribution. If the specified target is larger than the maximum
value, our achievement metric uses the maximum achiev-
able value instead of the target.

Fig. 10 shows CDF of fairness target achievements for all
experiments. The experiments with sim-fair policy is omit-
ted as the policy does not guarantee any metrics. For com-
bined-fair scheduler, both of minimum fairness target
achievement and uniformity target achievement are included
for each mix. The graph shows that our schedulers effectively
guarantee the target metrics. On the emulated AMP, which is
represented as a solid line, the worst case achievement is 95
percent. In addition, 97 percent of the experiments achieve
more than 98 percent of targetmetrics. On the big.LITTLE sys-
tem, the worst case achievement is 88 percent, and only 87
percent of the experiments achieve more than 98 percent of
targetmetrics.

Such low achievements mainly come from the experi-
ments with fast only and slow only base. This is related to the

clustered cache design in our experimental platform. When
measuring base performance for throughput calculation, we
pin each application in a mix to a core and measure the exe-
cution time. This makes each application utilize only one of
the cache clusters. However, with proposed scheduling,
applications are likely to have core share from both types of
cores. This causes cache interference, which is not included
in the base performance. Note that fair share base perfor-
mance already includes the cache interference effect. With
fair share base, the minimum achievement increases to 93
and 97 percent of the experiments achieves more then 98
percent of target.

To evaluate the throughput aspects, we define an
achievementthroughput metric as follows:

achievementthroughput ¼ T � Tmax�fair
Tmax�perf � Tmax�fair

:

The throughput is minimum with max-fair policy and
maximum with max-perf policy. Thus, this metric repre-
sents how much throughput is gained, as a percentage of
the maximum throughput we can get.

Fig. 11 shows the results. Each column represents a param-
eter for a scheduling policy, and each line represents the base
performance as labeled. Circles in lines show the average of
throughput achievements from all mixes used for each sys-
tem. The graph shows the trade-off between throughput and
fairness in asymmetric multi-core systems. To guarantee
higher fairness level, the more fast core share should be used
only for fairness guarantee. Thus, the less fast core share can
be used to improve throughput. In our benchmarks, guaran-
teeing 85 percent minimum fairness with fair share base
means losing about 35 percent of throughput gain, and
guaranteeing 70 percent uniformity with fair share base
means losing 30-40 percent of throughput gain.

7.5 Accuracy and Scheduling Overhead

To evaluate the accuracy of fast core efficiency estimation,
we compare the estimated fast core efficiency from max-

fair and max-perf scheduler with the real fast core effi-
ciency, which is measured by pinning an application on a
fast or slow core for each mix. Since we use fair share base
performance, all applications receive enough fast core share
and slow core share with max-fair. Thus, max-fair can
provide the most stable results for efficiency estimation.
On the other hand, max-perf always gives the minimum
core share for one of the types, and it may cause the most

TABLE 5
Target Parameters for Evaluation (the Values with Asterisks

Are Used for combined-fair Scheduling.)

fair share fast only slow only

similarity 0.2� 0.5
minFairness 85%� 90%, 95% 40%� 50%, 60% 120%, 140%� 160%
uniformity 70%, 80%, 90%

Fig. 10. CDF of fairness target achievements.

Fig. 11. Throughput achievements (average of all mixes).

KIM AND HUH: EXPLORING THE DESIGN SPACE OF FAIR SCHEDULING SUPPORTS FOR ASYMMETRIC MULTICORE SYSTEMS 1149

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

unstable results. Also, for estimated efficiency, we average
the values from all intervals until one application
finishes once.

Fig. 12 shows the results. It presents the cumulative dis-
tribution function of estimation error in percentage. Two
lines indicate max-fair and max-perf policy as labeled.
The average error between the estimated efficiencies and
measured ones is only 2.54 percent and the maximum error
8.82 percent. Our exploration-based efficiency estimation
accuracy is high enough for supporting minimum fairness.

In addition, scheduling interval length may affect the
accuracy of fast core efficiency estimation, since the infor-
mation from the previous interval is used for the estimation
of efficiency of the next interval. Fig. 13 shows the efficiency
variation between the consecutive intervals for different
scheduling interval lengths. We measure the efficiency for
each interval by running the workload mixes in our experi-
ments with max-fair policy. As in the figure, the short
interval length shows the fluctuated efficiencies. However,
if the interval is too long, our scheduler may react too
slowly to the program phase change. Thus, we choose 2 sec-
onds as the scheduling interval.

To assess scheduling overheads, we first compare the
native Linux and max-fair schedulers with the fast core
efficiency estimation on symmetric cores with the same 2.8
GHz clock speed. This comparison represents the pure
overhead of frequent context switches and efficiency esti-
mation procedures. Compared to the native Linux, the max-
imum throughput difference is 2 percent in the worst case.

Second, we measure the CPU time our scheduler uses.
This includes the CPU time used for our scheduler itself,
such as the time for estimating fast core efficiencies, process-
ing algorithms for our policies, and handling syscalls. In the
worst case, the CPU usage time is less than 0.53 ms. Since
there are 6 cores and the scheduling interval is 2 seconds,
the overhead on CPUs is less than 0.0044 percent.

Despite such low overhead, some of our algorithms are
not scalable on the number of threads. To estimate the over-
head with a large number of threads, we measure the CPU

time for the algorithms with different numbers of threads.
The measurement is done on slow cores, running at 0.8
GHz, for the worst case overhead. We omit the time for effi-
ciency estimation and syscall handling since they can be
done in parallel for each thread. Fig. 14 shows the results
with combined-fair algorithm with 90 percent target
uniformity, which requires the largest CPU time. Although
the time for algorithms increases as the number of threads
increases, the required time is less than 710 us with 180
threads. If there are 180 cores for 180 threads, the worst case
overhead is less than 0.0002 percent. Moreover, note that
our algorithms are not related to the correctness of program
running. It can be delayed for a while until any core
becomes idle.

7.6 Discussion: Extend to Multi-Threaded
Applications

As mentioned in Section 2.1, the proposed schedulers do not
consider the relationship between threads in multi-threaded
applications. Instead, they manage each thread indepen-
dently as most OSes do. However, if schedulers consider
such relationship on asymmetric multi-core systems, the
performance of applications can be improved without addi-
tional core share.

There are two issues for scheduling multi-threaded
applications on asymmetric multi-core systems. The first
issue is how to define fast core efficiency of the application.
Since the fast core efficiencies of threads in an application
may differ, it is hard to estimate the benefit of fast core share
for multi-threaded applications. Second, intra-application
scheduling is also the important issue. Unlike single thread
applications, not only the fast core efficiency of a thread, but
also the criticality of the thread affect the performance of
multi-threaded applications. For example, the thread on a
critical section may be the most beneficial thread for receiv-
ing fast core share, even if its fast core efficiency is lower
than other threads. Some papers have investigated such
issues to optimize the multi-threaded application perfor-
mance on AMP [13], [20], [22], [25].

Our scheduler design can be easily extended to support
multi-threaded applications. Our work aims at the fairness
of inter-application scheduling, and the extension should
address intra-application scheduling. To show the feasibil-
ity, we implement a prototype extension with the simplest
methods. For the fast core efficiency of an application, our
prototype uses the average of threads’ fast core efficiencies.
Also, for intra-application scheduling, we apply max-fair

policy for threads in an application. Although this method
ignores the criticality of threads, this gives an illusion of

Fig. 12. Difference between estimated efficiency and real efficiency from
pinned runs.

Fig. 13. Efficiency variation for different interval lengths.

Fig. 14. Time for combined-fair algorithm.

1150 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 8, AUGUST 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

symmetric multi-cores for threads, which is the assumption
in programmers’ mind.

Fig. 15 shows sample results with swaptions and facesim
from PARSEC benchmarks. Each application uses three
threads and their fast core efficiencies are 3.58 for swaptions
and 3.09 for facesim. The x-axis presents the scheduling poli-
cies with different parameters, and the y-axis presents
throughput and fairness results. The results show that our
prototype extension guarantees the inter-application fair-
ness with the multi-threaded applications. However, the
implementation may not work if applications have heavy
synchronizations. Our future work is to develop a rigorous
extension to maximize the throughput of multi-threaded
applications by intra-application scheduling, while our cur-
rent work still guarantees the inter-application fairness.

8 CONCLUSIONS

This paper investigated fair scheduling support for asym-
metric multi-core systems with two different aspects, mini-
mum fairness and uniformity. The analysis concludes that
the prior throughput-maximizing scheduler often sacrifices
minimum fairness and uniformity excessively to gain only a
small amount of throughput. To mitigate the problem, this
paper proposed min-fair, uni-fair, and sim-fair

schedulers, to guarantee minimum fairness or uniformity.
Also, we proposed combined-fair which combines the
benefits of three schedulers. We modified a Linux scheduler
to support the fair scheduling policies and experimentally
showed that the schedulers can support fairness with negli-
gible performance overheads.

ACKNOWLEDGMENTS

This work is supported by the National Research Founda-
tion of Korea (NRF-2016R1A2B4013352) and by the Institute
for Information & communications Technology Promotion
(IITP-2017-0-00466). Both grants are funded by the Ministry
of Science and ICT, Korea.

REFERENCES

[1] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen, “Single-ISA heterogeneous multi-core architectures: The
potential for processor power reduction,” in Proc. IEEE/ACM Int.
Symp. Microarchit., 2003, pp. 81–92.

[2] N. K. Choudhary, et al., “FabScalar: Composing synthesizable
RTL designs of arbitrary cores within a canonical superscalar
template,” in Proc. Int. Symp. Comput. Archit., 2011, pp. 11–22.

[3] P. Greenhalgh, “Big.LITTLE processing with ARM Cortex-A15 &
Cortex-A7,” ARMWhitepaper, 2011.

[4] R. Teodorescu and J. Torrellas, “Variation-aware application
scheduling and power management for chip multiprocessors,” in
Proc. Int. Symp. Comput. Archit., 2008, pp. 363–374.

[5] S. Herbert and D. Marculescu, “Variation-aware dynamic volt-
age/frequency scaling,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit., 2009, pp. 301–312.

[6] D. Shelepov, et al., “HASS: A scheduler for heterogeneous multi-
core systems,” ACM SIGOPS Operating Syst. Rev., vol. 43, pp. 66–
75, 2009.

[7] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient oper-
ating system scheduling for performance-asymmetric multi-core
architectures,” in Proc. Conf. High Perform. Comput. Netw. Storage
Anal., 2007, pp. 1–11.

[8] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and S. Hahn,
“Operating system support for overlapping-ISA heterogeneous
multi-core architectures,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit., 2010, pp. 1–12.

[9] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov, “A compre-
hensive scheduler for asymmetric multicore systems,” in Proc.
Eur. Conf. Comput. Syst., 2010, pp. 139–152.

[10] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heteroge-
neous multi-core architectures,” in Proc. Eur. Conf. Comput. Syst.,
2010, pp. 125–138.

[11] Y. Kwon, C. Kim, S. Maeng, and J. Huh, “Virtualizing perfor-
mance asymmetric multi-core systems,” in Proc. Int. Symp. Com-
put. Archit., 2011, pp. 45–56.

[12] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance
impact estimation (PIE),” in Proc. Int. Symp. Comput. Archit., 2012,
pp. 213–224.

[13] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckh-
out, “Fairness-aware scheduling on single-ISA heterogeneous
multi-cores,” in Proc. Int. Conf. Parallel Archit. Compilation Techn.,
2013, pp. 177–187.

[14] P. Goyal, X. Guo, and H. M. Vin, “A hierarchical CPU scheduler
for multimedia operating systems,” in Proc. USENIX Symp. OS
Des. Implementation, 1996, pp. 107–122.

[15] A. Chandra, M. Adler, P. Goyal, and P. Shenoy, “Surplus fair
scheduling: A proportional-share CPU scheduling algorithm for
symmetric multiprocessors,” in Proc. Symp. Operating Syst. Des.
Implementation, 2000, Art. no. 4.

[16] A. Chandra and P. Shenoy, “Hierarchical scheduling for symmet-
ric multiprocessors,” IEEE Trans. Parallel Distrib. Syst., vol. 19,
no. 3, pp. 418–431, Mar. 2008.

[17] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas, “Single-ISA heterogeneous multi-core architectures for
multithreaded workload performance,” in Proc. Int. Symp. Comput.
Archit., 2004, pp. 64–75.

[18] C. Kim and J. Huh, “Fairness-oriented OS scheduling support for
multicore systems,” in Proc. Int. Conf. Supercomput., 2016, Art.
no. 29.

[19] J. C. Saez, A. Fedorova, M. Prieto, and H. Vegas, “Operating sys-
tem support for mitigating software scalability bottlenecks on
asymmetric multicore processors,” in Proc. ACM Int. Conf. Com-
put. Frontiers, 2010, pp. 31–40.

[20] N. B. Lakshminarayana, J. Lee, and H. Kim, “Age based schedul-
ing for asymmetric multiprocessors,” in Proc. Conf. High Perform.
Comput. Netw. Storage Anal., 2009, pp. 1–12.

[21] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt,
“Accelerating critical section execution with asymmetric multi-
core architectures,” in Proc. Int. Conf. Archit. Support Program. Lan-
guages Operating Syst., 2009, pp. 253–264.

[22] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck
identification and scheduling in multithreaded applications,” in
Proc. Int. Conf. Archit. Support Program. Languages Operating Syst.,
2012, pp. 223–234.

[23] N. Binkert et al.“The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[24] J. Demme and S. Sethumadhavan, “Rapid identification of archi-
tectural bottlenecks via precise event counting,” in Proc. Int. Symp.
Comput. Archit., 2011, pp. 353–364.

[25] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Utility-based
acceleration of multithreaded applications on asymmetric CMPs,”
in Proc. Int. Symp. Comput. Archit., 2013, pp. 154–165.

Fig. 15. Results of extension for multi-threaded applications.

KIM AND HUH: EXPLORING THE DESIGN SPACE OF FAIR SCHEDULING SUPPORTS FOR ASYMMETRIC MULTICORE SYSTEMS 1151

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

Changdae Kim received the BS, MS, and PhD
degrees in computer science from the Korea
Advanced Institute of Science and Technology
(KAIST). He is a research fellow in computer sci-
ence with the Korea Advanced Institute of Sci-
ence and Technology. His research interests
include computer architecture, operating sys-
tems, and cloud computing.

Jaehyuk Huh received the BS degree in com-
puter science from Seoul National University, and
the MS and PhD degrees in computer science
from the University of Texas at Austin. He is an
associate professor of computer science with the
Korea Advanced Institute of Science and Tech-
nology (KAIST). His research interests include
computer architecture, parallel computing, virtu-
alization, and system security. He is a member of
the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1152 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 8, AUGUST 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 22:15:58 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

