
Contention-Aware Fair Scheduling for
Asymmetric Single-ISA Multicore Systems

Adrian Garcia-Garcia , Juan Carlos Saez , and Manuel Prieto-Matias

Abstract—Asymmetric single-ISA multicore processors (AMPs), which integrate high-performance big cores and low-power small

cores, were shown to deliver higher performance per watt than symmetric multicores. Previous work has demonstrated that the

OS scheduler plays an important role in realizing the potential of AMP systems. While throughput optimization on AMPs has been

extensively studied, delivering fairness on these platforms still constitutes an important challenge to the OS. To this end, the scheduler

must be equipped with a mechanism enabling to accurately track the progress that each application in the workload makes as it runs on

the various core types throughout the execution. In turn, this progress largely depends on the benefit (or speedup) that an application

derives on a big core relative to a small one, which may differ greatly across applications. While existing fairness-aware schedulers take

application relative speedup into consideration when tracking progress, they do not cater to the performance degradation that may

occur naturally due to contention on shared resources among cores, such as the last-level cache or the memory bus. In this paper, we

propose CAMPS, a contention-aware fair scheduler for AMPs that primarily targets long-running compute-intensive workloads. Unlike

other schemes, CAMPS does not require special hardware extensions or platform-specific speedup-prediction models to function. Our

experimental evaluation, which leverages real asymmetric hardware and scheduler implementations in the Linux kernel, demonstrates

that CAMPS improves fairness by up to 11 percent with respect to a state-of-the-art fairness-aware OS-level scheme, while delivering

better system throughput.

Index Terms—Asymmetric multicore, scheduling, operating systems, fairness, shared resource contention, Linux kernel

Ç

1 INTRODUCTION

OVER the last years, twomajor trends have arisen inmicro-
processor design and manufacturing: the integration of

an increasing number of cores per chip, and coupling differ-
ent core types on the same platform for diverse and special-
ized use. The second trend has given rise to growing interest
in heterogeneous architectures and system configurations.

The degree of diversity segregates heterogeneous architec-
tures into various classes, each becoming a unique point in the
design space [1], [2]. One extreme of this spectrum is to couple
a modest number of high-performance cores with accelera-
tors [3] or with special-purpose processing units. This is the
case of systems such as the IBM Cell Broadband Engine [4] or
CPU-GPUplatforms, where the various cores typically expose
a different Instruction Set Architecture (ISA). Despite their
benefits, these architectures usually require substantial pro-
gramming effort [2], [5]. This kind of heterogeneous platforms
stands in contrast with asymmetric single-ISA multicore
processors (AMPs) [6], which integrate a mix of complex
high-performance big cores and power-efficient small cores.
Our work targets this type of heterogeneous architecture,
whose memory hierarchy organization may come in a variety

of forms.While an application can be designed so as to explic-
itly exploit the features of the different core types of an AMP
in a unified and dedicated fashion, the shared ISA and
general-purpose nature of these cores allows the execution of
asymmetry-agnostic (unmodified) software. This versatility,
coupled with the outstanding energy efficiency benefits of
AMP designs [6], has drawn the attention of major hardware
players, giving rise to the ARM big.LITTLE processor [7], [8],
or to the Intel QuickIA [9].

While applications specifically designed to leverage
the capabilities of the various cores in an AMP can be effec-
tively run by binding the various threads/tasks to the core
type where they are meant to run (e.g., via affinity masks),
delivering the potential of AMPs to unmodified applica-
tions (the ones we target) poses a number of challenges to
the operating system [1], [2], some of which must be prop-
erly addressed by the scheduler [10], [11]. One important
challenge is how to effectively distribute big-core cycles
among the various applications in a workload. Most sched-
uling schemes proposed for AMPs have been designed to
optimize the system throughput for multiprogram work-
loads [10], [12], [13], [14]. To make this happen, the sched-
uler must devote big cores to running those applications
that use big cores efficiently, since they derive performance
improvements (speedup) relative to running on small
cores [6]. Additional throughput gains can be obtained by
using big cores to accelerate scalability bottlenecks present
in multithreaded programs [13], [15], [16], [17], [18].

Unfortunately, asymmetry-aware schedulers that strive
to optimize throughput alone are known to be inherently
unfair [11]. Unfairness gives rise to a number of undesirable

� The authors are with the Faculty of Computer Science and Engineering,
Complutense University of Madrid, Madrid 28040, Spain.
E-mail: {adriagar, jcsaezal, mpmatias}@ucm.es.

Manuscript received 12 July 2017; revised 21 Apr. 2018; accepted 7 May 2018.
Date of publication 17 May 2018; date of current version 7 Nov. 2018.
(Corresponding author: Juan Carlos Saez.)
Recommended for acceptance by G. Heiser.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2018.2836418

IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 12, DECEMBER 2018 1703

0018-9340� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8978-1389
https://orcid.org/0000-0002-8978-1389
https://orcid.org/0000-0002-8978-1389
https://orcid.org/0000-0002-8978-1389
https://orcid.org/0000-0002-8978-1389
https://orcid.org/0000-0003-1343-7108
https://orcid.org/0000-0003-1343-7108
https://orcid.org/0000-0003-1343-7108
https://orcid.org/0000-0003-1343-7108
https://orcid.org/0000-0003-1343-7108
https://orcid.org/0000-0003-0687-3737
https://orcid.org/0000-0003-0687-3737
https://orcid.org/0000-0003-0687-3737
https://orcid.org/0000-0003-0687-3737
https://orcid.org/0000-0003-0687-3737
mailto:

effects on the system [19], [20]. For example, when using a
scheduler that attempts to optimize throughput only in the
AMP, an application’s completion time may differ signifi-
cantly across executions, depending on its co-runners in the
workload [11]. Moreover, equal-priority applications may
not experience the same performance degradation when
running together relative to the performance observed
when each application runs alone on the AMP. These issues
make priority-based scheduling policies ineffective [20],
reduce performance predictability [2], [21], [22] and may
lead to wrong billings in commercial cloud-like computing
services, where users are charged for CPU hours [19].

Our work primarily explores how to fairly schedule, at
the OS level, a mix of unmodified applications on an AMP
system. To this end, the scheduler must even out the progress
made by the various applications as they run on the different
core types throughout the execution [11], [23]. To do so, the
scheduler must be equipped with a mechanism enabling to
measure the performance degradation accumulated by an
application at runtime with respect to its solo execution (aka.
slowdown). On AMPs, the slowdown depends on two main
factors: (1) performance asymmetry and (2) shared-resource
contention. Performance asymmetry refers to the fact that most
applications derive a non-negligible speedup from using
high-performance big cores relative to running on low-power
small ones.When a thread runs on a small core, it slows down
in proportion to its big-to-small speedup, which may differ
greatly across applications and may vary over time through
different program phases [24]. Shared-resource contention may
also lead to substantial performance degradation. In current
AMP hardware, clusters of cores of the same type (big or
small) typically share a last-level cache [8], [9], [25] and other
memory-related resources with the remaining cores, such as
the DRAM controller. Applications running on the various
coresmay competewith each other for these shared resources,
which could degrade their performance in an uneven and
unpredictable way, as the hardware itself does not guarantee
a fair usage of these resources [20], [21], [26], [27], [28], [29].

Recent scheduling proposals for AMPs, such as Equal-
Progress [23] or ACFS [11], attempt to enforce fairness by
just catering to performance asymmetry aspects, but they
do not take shared-resource contention effects into account.
As we demonstrate in this work, this leads to substantial
performance/fairness degradation when several memory-
intensive applications are present in the workload. Con-
versely, contention-conscious approaches that aim to deliver
fairness [22], [27], [28] or strive to improve performance iso-
lation [21], [30], [31] are not designed to work on systems
that combine high-performance cores with low-power cores
with different microarchitectural features. Hence, these
schemes do not factor in performance asymmetry.

To fill this gap, we propose CAMPS, an OS-level conten-
tion-aware scheduler for AMPs, which seeks to optimize
fairness while maintaining acceptable system throughput.
Our scheduler also exposes a configurable parameter
enabling the user to trade fairness for throughput. As the
vast majority of schedulers proposed for AMPs [10], [11],
[13], [14], [16], [23], [24], our proposal primarily targets
long-running compute-intensive workloads. Notably, in this
paper we build on our prior work [11] to advance the state of
the art in fairness-oriented asymmetry-aware scheduling, by

now factoring in shared-resource contention effects (our pre-
vious approach [11] is contention unaware). In particular,
our papermakes the followingmain contributions:

� We devised a novel runtime mechanism to predict
the slowdown that a thread in the workload experi-
ences as it runs on the various cores of an AMP.
Specifically, our scheduler approximates the current
slowdown by monitoring various runtime metrics
via performance monitoring counters (PMCs), and
by comparing that information with the thread’s
past history gathered in low contention scenarios.

� Unlike other OS-level schedulers for AMPs [10], [11],
CAMPS does not rely on platform-specific speedup
prediction models, which typically entail the moni-
toring of a specific set of hardware PMC events that
may differ substantially across processor models
and architectures [10], [11], [13], [32]. Instead, our
proposal employs a small and fixed set of perfor-
mance metrics that can be easily gathered using
PMCs available in commercial AMP hardware, thus
making the scheduler portable across architectures.

� We implemented CAMPS in the Linux kernel, on top
of the Completely Fair Scheduler (CFS), which is
largely asymmetry agnostic. As we demonstrate in
this work, the completion time of an application under
the stock Linux scheduler may vary substantially
across multiple runs of the same workload on an
AMP. As a result, CFS and the HMP (Heterogeneous
Multi-Processing) scheduler [33] –an extension of CFS
for big.LITTLE platforms– constitute unfair schedul-
ing schemes for asymmetric multicores, especially
when compute-intensive applications are present in
the workload. Notably, CAMPS delivers more consis-
tent performance from run to run and higher degree of
fairness for awider spectrum ofworkloads.

� For our experimental evaluation, we employed the
Intel QuickIA prototype [9] as well as commercial
ARM-based asymmetric multicore platforms [8],
[25]. We performed an extensive experimental com-
parison with previously proposed asymmetry-aware
schemes [10], [11], [13]. Our analysis reveals that
CAMPS improves fairness by up to 11 percent com-
pared to a state-of-the-art fairness-aware sched-
uler [11], and at the same time improves throughput
by up to 17 percent.

The rest of the paper is organized as follows. Section 2
motivates our work. Section 3 discusses related work.
Section 4 outlines the design of CAMPS. Section 5 show-
cases our experimental results and Section 6 concludes.

2 MOTIVATION

In this section we first introduce the notion of fairness
employed in our work, and discuss the challenges associated
with determining the slowdown at runtime. We then present
an experimental study that showcases the main observation
we exploit to determine the slowdown on-line onAMPs.

2.1 Fairness on AMPs

Previous research on fairness for CMPs [19], [20] and
AMPs [16], [23] define a scheme as fair if equal-priority

1704 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 12, DECEMBER 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

applications in a workload suffer the same slowdown due to
sharing the system. To cope with this notion of fairness, we
turned to the unfairness metric, which has been extensively
used in previous work [11], [16], [19], [20], [27]. This lower-is-
bettermetric is defined as follows:

Unfairness ¼MAXðSlowdown1; :::; SlowdownnÞ
MINðSlowdown1; :::; SlowdownnÞ ; (1)

where n is the number of applications in the workload and
Slowdowni ¼ CTsched;i

CTalone;i
. In turn, CTsched;i denotes the comple-

tion time of application i under a given scheduler, and
CTalone;i is the completion time of application i when run-
ning alone on the AMP (with all the big cores available).

The slowdown of an individual thread (or that of a single-
threaded application) observed during a certain execution
phase can be defined in terms of the number of instructions
per second (IPS) as follows:

Slowdown ¼ IPSalone=IPSsched; (2)

where IPSalone is the number of instructions per second
observed for the specific phase when the thread runs alone
on the system, and IPSsched denotes the IPS achieved by
the thread when it runs the same execution phase, but in a
program mix under a given scheduling algorithm.

In this work, we assume that the IPSalone on an AMP is
maximized when a thread runs on a big core in isolation;
that is the case across all the applications explored in our
experimental platforms. We should also highlight that
in multithreaded programs, the IPS can be a somewhat
misleading performance metric, since a thread can exhibit a
high IPC when busy waiting (spinning) in synchronization
primitives (e.g., barriers). To make the OS scheduler aware
of these situations, where threads do no useful work, our
proposal leverages spin notifications from the user-level run-
time system. We elaborate on this aspect in Section 4.5.

Delivering fairness entails ensuring that the slowdown
accumulated by the various application threads throughout
the execution remains as even as possible [11], [20], [23],
[27], while maintaining acceptable throughput. To this end,
the scheduler must be equipped with a mechanism to deter-
mine a thread’s slowdown online. Notably, measuring the
slowdown at runtime by using Eq. (2) is difficult in practice;
while a thread’s IPSsched can be easily obtained via PMCs,
accurately determining IPSalone online is a challenging task,
even on symmetric CMPs [27], [28]. For that reason, existing
scheduling algorithms for symmetric CMPs typically rely
on estimation models to approximate IPSalone [27], or
employ heuristics to determine the degree of performance
degradation indirectly via contention-related metrics [28],
such as the last-level cache (LLC) miss rate [26], [27]. Unfor-
tunately, these scheduling algorithms are not designed to
work on systems featuring multiple core types. Moreover,
adapting them to AMP systems is difficult, as these schedu-
lers assume that the value of key performance metrics used
to drive scheduling decisions (e.g., IPC or LLC miss rate)
do not vary across cores when the application runs alone.
On current AMP hardware [7], [8], [9], this assumption is
not valid, as cores may exhibit different microarchitectural
features and cache sizes [10], [11]. This fact further compli-
cates determining the slowdown on an AMP.

2.2 Impact of Shared Resource Contention on AMPs

Recently proposed fairness-aware schedulers for AMPs [11],
[23] implicitly rely on the assumption that a thread’s slow-
down is 1 (no performance degradation) when it runs on
a big core, even if it runs simultaneously with other threads.
In a similar vein, the thread’s big-to-small performance ratio
–also referred to as the speedup factor (SF) [13]– is used by
these schedulers to approximate the slowdown when the
thread runs on a small core. (The SF can be determined
online by variousmeans, as wewill discuss in Section 3.)

Assuming that a thread’s slowdown is negligible when it
runs on a big core (as done in [11], [23]) is unrealistic under
shared resource contention. To illustrate this fact we experi-
mented with diverse AMP platforms. Our analysis allowed
us to draw two major insights:

(1) Performance degradation due to resource sharing
among big cores can be substantial on current AMP
hardware (up to 2.98x on our experimental plat-
forms), and should be accounted for when tracking
the slowdown of a thread to enforce fairness as well
as to ensure effective utilization of big cores. In fact,
for some programs, the benefit that comes from run-
ning on a big core w.r.t. a small one could be sub-
stantially reduced due to the contention-related
performance degradation.

(2) Monitoring a thread’s IPS when it runs on a big core,
and in a low contention scenario across the neighbor-
ing big cores (i.e., those sharing the LLC) is typically
a good estimate for IPSalone. Essentially, the perfor-
mance penalty that a thread mapped to a big core
may suffer from placing multiple memory-intensive
aggressors on small cores is usually very low com-
pared to the one that comes from interference with
memory-intensive threads running on neighboring
big cores. This has to do with the memory-hierarchy
organization on current AMP hardware, as well as
with the fact that small cores typically utilize less
memory bandwidth than big cores.

We draw these conclusions from experiments in which
we measured the slowdown experienced by SPEC CPU
applications whenmapped to a big core, and running simul-
taneously with several instances of a memory-intensive
aggressor application. We used benchmarks from both the
CPU2000 and CPU2006 suites to consider a wider diversity
of working set sizes. As the aggressor, we used the
bandwidth benchmark [29], which introduces substantial
contention on the LLC, shared buses and DRAM controller.
On our platforms, we observed that bandwidth causes even
a higher degree of contention than that generated by highly
memory-intensive programs from SPECCPU, such as lbm.

For our experiments, we used two ARM platforms: the
ARM Juno [8] and the Odroid XU4 [25] boards, which are
equipped with a 64-bit and a 32-bit big.LITTLE processor
respectively. We also experimented with the Intel QuickIA
prototype [9]. On these AMP platforms, which integrate a
mix of high-performance out-of-order cores and low-power
in-order cores, SPEC CPU benchmarks exhibit a wide range
of big-to-small speedups: 1.55x-4.44x (Juno), 1.36x-6.63x
(Odroid) and 1.02x-4.7x (QuickIA). Fig. 1 depicts the mem-
ory hierarchy organization as well the number of cores of

GARCIA-GARCIA ETAL.: CONTENTION-AWARE FAIR SCHEDULING FOR ASYMMETRIC SINGLE-ISA MULTICORE SYSTEMS 1705

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

each kind in the AMP configurations explored. For simplic-
ity, we employ the nB-mS notation to refer to each configu-
ration, where n and m denote the number of big and small
cores, respectively. On 2B-4S and 4B-4S, the set of cores of
the same type (big or small), which make up a cluster, share
a last-level cache (L2) and a bus interface (AMBA) with the
remaining cores in the cluster. On 2B-2S (a dual-socket sys-
tem) a bus interface (FSB) is shared between cores of the
same cluster; a shared LLC exists on the big core cluster
only. All platforms feature a single DRAM controller.

Fig. 2 shows the slowdown (relative to the solo execution)
that different applications experience when running simulta-
neously with several instances of bandwidth. For each
benchmark, which is always assigned to a big core in our
experiments, we explored different scenarios. In the first one,

denoted as “1-aggressor-big”, the benchmark runs simulta-
neously with one instance of bandwidth, which is mapped
to a different big core; the small cores remain idle in this case.
In the other scenarios, labeled as “N-aggressors-small”, N
instances of bandwidth are mapped to small cores; thus, in
leaving the remaining big cores unused, we remove conten-
tion on the LLC and the bus interface of the big core cluster,
but not on the DRAMcontroller.

As is evident, the slowdown can be substantial (up to 1.9x
on 2B-4S, up to 2.65x on 4B-4S, and up to 2.98x on 2B-2S)
when both the benchmark and a single aggressor instance run
simultaneously on big cores, even though small cores are
unused. By contrast, when one aggressor runs on a small core
the slowdown drops significantly; for most benchmarks it is
below 10 percent in this case. Actually, if we populate all the

Fig. 1. Asymmetric multicore configurations.

Fig. 2. Average slowdown relative to solo execution experienced by various benchmarks when mapped to a big core and run simultaneously with sev-
eral instances of an aggressor. The error bars report the minimum and maximum values gathered across the various runs (five executions). A suffix
(“00” or “06”) was appended to the application name to indicate the benchmark suite it belongs to (CPU2000 or CPU2006, respectively).

1706 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 12, DECEMBER 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

small cores with aggressor instances, slowdown values are no
greater than 26 percent, still much smaller than those obtained
when the aggressor runs on a big core. There are two main
reasons associated with this behavior. First, the contention on
the LLC and on the shared bus (big-core cluster) is removed
completely in the “N-aggressors-small” scenarios. Second,
we observed that the pressure a single aggressor puts on the
shared resources is higher when it runs on a big core than on
a small one. This has to do with the fact that in-order small
cores cannot handle multiple outstanding cache misses, lead-
ing to a lower bus and memory bandwidth utilization, and as
a result to a smaller degree of contention.

Finally, we should highlight that not every application
experiences noticeable slowdown due to contention when
executed together with highly memory-intensive bench-
marks such as bandwidth. For example, this is the case of
sixtrack, eon or mesa. As pointed out in previous
work [26], [28], CPU-intensive applications with a very
small working set (which fits in a reduced portion of the
LLC) and good cache locality, or those that do not use
the memory hierarchy substantially, do not experience sig-
nificant performance penalty due to contention. As in [27],
our scheduling proposal uses the bus transfer rate (BTR) to
identify scenarios where threads are unlikely to suffer from
contention when running on a big core cluster. In our plat-
forms, the BTR is measured as follows:

bus read accesses � LLC cache line size � processor frequency

total cycle count
:

3 RELATED WORK

A large body of work has advocated the benefits of asym-
metric multicores over symmetric CMPs [6], [34]. Despite
these benefits, AMP systems pose significant challenges to
the OS scheduler [1], [2]. Delivering fairness constitutes an
important challenge, and this is the focus of our article.

As stated earlier, our OS-level scheduling proposal pri-
marily targets long-running compute-intensive workloads,
just like many other earlier schemes [10], [11], [13], [14], [23],
[24]. Other authors have devised specialized schedulers
to properly deal with other kinds of workloads on AMPs,
such as latency-sensitive applications [35], [36], programs
with irregular non-scalable parallelism [18] or multimedia
applications [37]. As opposed to our proposal, none of these
approaches strives to optimize fairness on AMPs by taking
shared-resource contention effects into consideration.

Recent research has highlighted that fairness, system
throughput and energy efficiency are largely conflicting
optimization goals on AMPs [38]. In particular, optimizing
fairness usually comes at the expense of degrading through-
put and energy efficiency substantially [38]. Notably, to
optimize any of the aforementioned aspects, the scheduler
must consider the speedup factor of the various threads when
making decisions [10], [11], [13], [14], [38]. The SF is defined

as
IPSbig

IPSsmall
, where IPSbig and IPSsmall are the thread’s instruc-

tions per second (IPS) ratios achieved on big and small cores
respectively when running alone on the system.

Determining the SF. Three techniques have been explored
to obtain the speedup factor online. The first approach is to

measure the SF directly [6], [24], which requires running
each thread on big and small cores to track the IPC on both
core types. Previous work has shown that this approach,
also known as IPC sampling, is subject to inaccuracies that
naturally come from using IPC values from different pro-
gram phases to approximate the SF [11], [12]. The second
approach relies on predicting a thread’s SF using its runtime
properties collected on the current core type using
PMCs [10], [11], [13], [32]. The main limitation of this
approach is that it requires building an estimation model
specifically tailored to the AMP platform in question. This
entails conducting an offline analysis on each platform mak-
ing it possible (1) to identify the set of performance events
and metrics that turn suitable for SF prediction [10], [13],
and (2) to determine the value of the various model coeffi-
cients (e.g., when using regression-based approaches [11],
[13], [32]). The third technique is Performance Impact Esti-
mation (PIE) [14], a hardware-aided mechanism that has
been shown to provide accurate SF estimates. Unfortunately,
PIE has not yet been adopted in commercial AMP platforms.

Our scheduling proposal predicts a thread’s cross-core
relative performance by measuring its actual IPS, and by
comparing it with an estimate of the IPSalone –approximated
with big-core IPS values collected for different program
phases in low-contention scenarios. This makes it possible to
avoid the phase-related inaccuracies of IPC sampling [12],
and allows us to cater to the potentially high variability of
the IPS under different contention levels. Notably, CAMPS
does not employ platform-specific SF prediction models,
but instead relies on the monitoring of a fixed set of high-
level performance metrics (the same across platforms), as
explained in Section 4. This removes the need for conducting
non-trivial offline analyses on each system to build speedup
prediction models, thus improving the scheduler portability.

Fairness on AMPs. The first fairness-aware scheduler for
AMPs was an asymmetry-aware Round-Robin (RR) scheme
that simply fair-shares big cores among applications by trig-
gering periodic thread migrations [24]. Fair-sharing big
cores has proven to provide better performance and more
repeatable completion times across runs on AMPs [2], [15]
than default schedulers in general-purpose OSes, which are
largely asymmetry agnostic. For this reason, RR has been
widely used as a baseline for comparison [15], [24], [39].
Unfortunately, RR constitutes a suboptimal fairness solu-
tion [11], since it does not consider per-thread big-to-small
speedups when distributing big-core cycles.

Currently, ACFS [11] constitutes the state-of-the-art OS-
level fairness-aware scheduling scheme for AMPs. In [11]
the authors experimentally demonstrated that ACFS clearly
outperforms previous fairness-aware schedulers, such as
RR [24], Equal-Progress [23], and A-DWRR [2], for a wide
range of workloads running on real AMP hardware. To
optimize fairness, ACFS leverages per-thread SF values to
continuously track the relative progress that each thread in
the workload makes on the AMP, and enforces fairness by
evening out the slowdown observed across applications.
The main limitation of ACFS [11] (also present in earlier
schemes [2], [23]) is the fact that the scheduler does not take
shared-resource contention effects into consideration. As
our experiments reveal, failing to cater to these effects leads
the scheduler to exhibit unfair behavior when multiple

GARCIA-GARCIA ETAL.: CONTENTION-AWARE FAIR SCHEDULING FOR ASYMMETRIC SINGLE-ISA MULTICORE SYSTEMS 1707

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

Peter Hu

Peter Hu

memory-intensive programs are included in the workload.
CAMPS effectively improves fairness in this scenario.

To the best of our knowledge, the only existing con-
tention-aware scheduling algorithms for AMPs are those
proposed in [40] and [41]. However, unlike our OS-level
approach, these schemes were designed as user-level sched-
uling prototypes that bind thread to cores via CPU affinity
system calls. Fan et al. [40] present a scheduler for AMPs
that strives to improve the system throughput when using
workloads consisting of single-threaded programs. It relies
on two prediction models –specific to each application–
enabling the scheduler to approximate the degradation that
the application suffers at runtime due to contention. Gener-
ating these prediction models (platform specific) for each
application, requires to go through an offline training phase
that entails running 80 workloads wherein the application
is included. Our proposal –primarily designed to optimize
fairness rather than throughput– does not rely on platform-
specific or per-application prediction models, thus prevent-
ing the user from conducting the extensive offline profiling
required to build those models [40]. Moreover, as opposed
to our approach, [40] assumes that an application speedup
factor is known beforehand (e.g., determined offline); this
assumption is unrealistic on general-purpose systems. Bar-
ati et al. [41] propose a fairness-aware scheduler specifically
tailored to asymmetric systems where cores differ in proces-
sor frequency only. It is well known that an application’s
degree of memory intensity is enough to approximate its
slowdown when it runs on cores with the same microarchi-
tecture but different frequency [11], [12]. For that reason,
relying exclusively on the memory access rate (as in [41]) is
effective under frequency-based asymmetry [10]. Notably,
previous work [10], [13] has demonstrated that this form of
performance asymmetry differs substantially from that of
commercial AMP hardware available today, where the vari-
ous cores exhibit profound microarchitectural differences
and diverse cache sizes. In this scenario, other aspects
beyond an application’s degree of memory intensity must
be taken into consideration for effective scheduling [10],
[11], [14]. Unlike [41], our approach –implemented in the
OS kernel rather than as a user-space scheduling prototype–
does not make any assumption about the form of perfor-
mance asymmetry of the platform. This enables us to per-
form an extensive comparison with recent fairness-aware
approaches [11], [23] by employing real AMP hardware.

4 THE CAMPS SCHEDULER

CAMPS consists of two components: the performance monitor
and the core scheduler. The performance monitor gathers the
value of various runtimemetrics for each thread in the work-
load using performance counters, and feeds the core sched-
uler with critical information it needs, such as estimates of
threads’ slowdowns. The core scheduler assigns threads to big
and small cores so as to preserve load balance, and swaps
threads between cores when necessary to ensure that appli-
cations achieve similar progress on the AMP.

In this section we first present general aspects regarding
our implementation of CAMPS in the Linux kernel. Then we
outline the progress tracking mechanism and discuss how
fairness is enforced via thread swaps. Next, we cover the

non-work-conserving (NWC) mode of CAMPS, which may
be triggered on special occasions to aid the performance
monitor in approximating the slowdown of specific threads.
Finally, we describe special features included in the sched-
uler to effectively deal with multithreaded applications.
Notably, the description of the mechanism used by CAMPS
to trade fairness for throughput and its evaluation can be
found in Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TC.2018.2836418.

4.1 CAMPS in the Linux Kernel

The Linux scheduler is equipped with multiple scheduling
algorithms (CFS, FIFO, etc.), which are implemented as
independent scheduling classes. CAMPS’s core scheduler
was bundled as a new scheduling class in the kernel.
In creating this class, we started off with a clone of CFS
(fair class), and implemented CAMPS’s core scheduler on top
of it. By contrast, the performance monitor (platform specific)
was implemented in a loadable kernel module –bundled as
a monitoring module of the PMCTrack tool [42].

It is worth noting that Linux CFS is largely asymmetry
agnostic; as we show in Section 5.2, CFS may randomly
assign an application to different core types in subsequent
runs of the same workload, which leads to inconsistent per-
formance across executions on an AMP system. Moreover,
CFS is contention unaware [43] and does not feature any
mechanism to keep track of the progress that a thread
makes as it runs on the different core types throughout the
execution. (Actually, to CFS, a tick consumed on a big core is
worth the same as a tick consumed on a small core [2].) As a
result, and unlike CAMPS, CFS does not guarantee similar
progress (fairness) across applications on AMPs.

Our scheduling class just relies on the stock Linux sched-
uler for two main tasks: (1) to enforce load balance between
cores of the same type (big cores and small cores sepa-
rately), and (2) to multiplex CPU usage among threads
assigned to the same CPU (i.e., the CFS algorithm is applied
on a per-CPU basis). CAMPS’s core scheduler, by contrast,
takes care of enforcing system-wide load balance, and evens
out relative progress among applications, by assigning
threads to the different core types and by triggering migra-
tions if necessary. Since CAMPS is based on CFS, it main-
tains per-CPU run queues of runnable threads. In addition,
it employs two linked lists of runnable threads, with threads
assigned to big cores and to small cores, respectively; each
list is protected with a read-write spinlock. Note that these
lists are manipulated much less often than per-CPU run
queues (e.g., when a thread is migrated onto a different core
type). We observed that this design approach is not subject
to scalability issues on off-the-shelf AMPs, as the ones we
used, which feature a limited number of cores (up to 8).
Notably, previous research [44] has demonstrated that even
relying on a single global run queue delivers more than suf-
ficient scalability on current AMP platforms. Nevertheless,
to make CAMPS more scalable for future AMPs with a
higher core count, the scheduler could be reimplemented
by leveraging the core-partition approach described in [12].

4.2 Determining the Slowdown at Runtime

The performance monitor approximates a thread’s current
slowdown by using Eq. (2); the actual IPS is measured with

1708 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 12, DECEMBER 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TC.2018.2836418
http://doi.ieeecomputersociety.org/10.1109/TC.2018.2836418

PMCs, and the IPSalone is estimated by using a history table
maintained for each thread at runtime. This table stores IPS
values observed in past execution phases when the thread
ran a big core in a low-contention scenario. As shown in
Section 2, on a big-core cluster, the performance degrada-
tion that comes from interference with threads running on
the small core cluster is typically very low. Based on this
observation, big-core low-contention IPS values recorded in
the table are used to approximate IPSalone.

To detect low-contention scenarios on a big core, we
leverage the heuristics based on the bus transfer rate metric
proposed in [27], [45]. Essentially, a thread whose BTR is
smaller than a given low_btr threshold is not likely to suffer
noticeably from contention. In a similar vein, when the
aggregate BTR in a core cluster falls below a given high_btr
threshold the degradation due to contention is typically
very low [27]. As shown in [27], [45], the thresholds can be
easily determined for any platform by using synthetic
benchmarks. Essentially when the thread runs on a big core
in this kind of low-contention scenarios we assume that its
slowdown is 1 (no degradation). If these scenarios do not
occur naturally as a result of the contention-aware thread
assignments performed by CAMPS, the core scheduler will
enter a non-work-conserving mode (described in Section 4.4),
which introduces low-contention scenarios artificially.

Indexing a thread’s history table, which is necessary to
approximate the slowdown and to record new IPS samples,
requires the performancemonitor to figure out whether infor-
mation on the current execution phase already exists in the
table or not. To this end, we leverage a variant of the phase-
detection mechanism employed in previous work [46]. Over-
all, the scheduler continuously monitors the percentage of
instructions of different types (int/FP, load, store, branches,
etc.) retired during the last monitoring interval, which make
up a instruction type vector (ITV). If the Manhattan distance of
the ITVs for two performance samples (collected at different
intervals) is smaller than a threshold, both samples are
assumed to belong to the same execution phase. Note that the
Manhattan distance of two n-dimensional vectors (X and Y)
is defined as

Pn
i¼1 jXi � Yij.

Unfortunately, this phase-detection scheme, whose effec-
tiveness was evaluated on a simulator [46], cannot be imple-
mented in the real AMP platforms we used (presented in
Section 2.2), as the performance monitoring unit is not
equipped with the necessary performance events or with
enough physical PMCs. To overcome this issue, we adapted
the phase-detection approach by monitoring the thread’s
BTR and its IPS (required for our scheduling policy) along
with two alternative control metrics: the number of L1 cache
accesses per 1K instructions, and the percentage of branches
retired over the total instruction count. As the ITV, the value
of these control metrics for a specific phase remain the same
under different levels of shared resource contention, and
they do not vary significantly across core types. Notably,
the value of these metrics changes dramatically when an
application enters a new phase exhibiting a different degree
of memory intensity and branch-prediction related behav-
ior. These two aspects have a great impact on cross-core rel-
ative performance on AMPs [10], [11]. These observations
make the selected control metrics very suitable to index the
table.

Fig. 3 depicts how the performance monitor estimates a
thread’s slowdown and maintains its history table. The table
is updated at the end of a monitoring interval in which the
thread ran on a big core cluster in a low-contention scenario.
If the table does not already hold information on the current
phase, that IPS value is recorded in a new entry; otherwise
the existing table entry is updated with a running average
of the IPS values recorded for that phase. In either case, the
scheduler estimates the slowdown to be 1 (no degradation).
When the thread runs on a small core, or on a big core under
potential contention, CAMPS accesses the history table to
estimate the slowdown. If the IPS for the current phase is
found in the table (i.e., phase hit), the slowdown is estimated
with the ratio of the IPS value retrieved from the table
(IPScur phase) and the current IPS value measured in the last
monitoring interval. In case that no information is found for
the current phase (i.e., phase miss), the estimated slowdown
is the ratio of the average IPS across samples stored in the
history table (IPSbig) and the current IPS value.

To determine the most suitable size for the history table
we conducted a sensitivity study by analyzing performance
traces gathered with PMCs for SPEC CPU applications. This
sensitivity study can be found in Appendix B, available in
the online supplemental material. Based on the results of
our analysis we opted to use history tables of 22 entries.
This choice provides a good trade-off between slowdown
estimation accuracy and memory utilization.

4.3 Progress Tracking and Enforcing Fairness

CAMPS’s core scheduler maintains a progress counter for
each thread referred to as amp_progress. This counter
tracks howmuch progress the thread has made thus far rela-
tive to the progress that would have resulted from running it
on a big core thewhole time in complete isolation (no conten-
tion).When a thread runs for a clock tick on a given core type,
the scheduler increments amp_progress by Damp progress,
defined as follows:

Damp progress ¼ 100 �Wdef

CS �Wt
; (3)

where Wt is the thread’s weight, derived directly from the
application priority (set by the user); Wdef is the weight of
applications with the default priority; and CS is the thread’s
current slowdown as estimated by the performance monitor.

Fig. 3. Mechanism used by CAMPS for approximating a thread’s slow-
down with help from the history table.

GARCIA-GARCIA ETAL.: CONTENTION-AWARE FAIR SCHEDULING FOR ASYMMETRIC SINGLE-ISA MULTICORE SYSTEMS 1709

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

To illustrate the main idea behind the definition of
Damp progress, let us analyze the following example. A sequen-
tial program with the default priority (i.e., Wt ¼Wdef) runs
on anAMP system, and its single runnable thread is mapped
to a big core. Suppose further that the thread is not currently
suffering from contention. In this scenario, CS would be
1 (no degradation), so Damp progress would be equal to 100.
This indicates that the thread is now making 100 percent
of its maximum attainable progress, as it runs on a big core
without contention. Let us now consider that the thread is
eventuallymigrated onto a small core, where it experiences a
relative slowdown (CS) of 2.5; this hypothetical slowdown
comes from running on a less powerful core coupled
with the potential degradation due to sharing resources
with other threads. Under these circumstances, Damp progress

would be equal to 40; namely, the thread only makes 40 per-
cent of its maximum attainable progress (achieved when
running on a big core in isolation). Therefore, in general,
the lower the slowdown (CS), the faster a thread’s amp_

progress counter will be incremented.
When a new thread enters the system, the core scheduler

assigns it to the least loaded core on the AMP, so that the
load balance across cores is preserved. In doing so, CAMPS
picks big cores first, since this contributes to maximizing
throughput [2], [15]. Notably, the amp_progress counter of
a newly created thread is set to the maximum value for this
counter observed among threads in the system at that point.
This initial value enables a fair progress comparison among
threads that entered the system at different points in time.
Every thread also has to go through a warm-up period
(10 sampling intervals in our experimental setting) right after
being spawned. The first two samples collected during the
warm-up period are discarded for slowdown estimation, so
as to mitigate mispredictions associated with cold-start
effects (e.g., the number of cache misses typically spikes
intermittently at the beginning of the execution). Moreover,
throughout the entire warm-up period, a thread is not
allowed to trigger the activation of CAMPS’s NWC mode
(described in Section 4.4). This is a control measure to
remove the potentially negative interference caused by the
presence of multiple short-lived memory-intensive threads,
which could otherwise activate the NWCmode ineffectively;
that would lead to unnecessary overheads (due to potential
core disabling actions) without reaping any benefits, as
CAMPS discards a thread’s history table when it terminates.

Note that the approach used by CAMPS to enforce fair-
ness via progress tracking has several aspects in common
with that of the ACFS scheme [11]. Despite the fact that both
schedulers maintain per-thread progress counters, they
employ differentmechanisms to determine a thread’s current
slowdown (denoted as the CS factor in Eq. (3)) at runtime.
While CAMPS does take shared resource contention into
consideration, as described in Section 4.2, ACFS does not.
In fact, ACFS assumes that a thread’s slowdown is always 1
when it runs on a big core, and uses the thread SF (predicted
via a platform-specific estimation model) to approximate its
slowdownwhen the thread runs on a small core.

Like ACFS, CAMPS may also trigger thread swaps
between cores every so often to enforce fairness. Essentially,
threads mapped to big cores usually make faster progress
than threads running on small ones, which causes unfairness.

To even out the progress among threads via thread swaps,
CAMPS follows a similar approach to that of ACFS [11].
Specifically, a thread running on a big core will be swapped
with another thread running on a small core only when the
difference of their progress counters exceeds a given thresh-
old, referred to as amp_threshold. Specific instructions are
provided in [11] for selecting the most appropriate value of
this threshold for a given platform. For our experiments, we
chose a value of this threshold so as to achieve an average
migration rate of 400ms, which ensures negligible overheads
in current AMPhardware [11].

It is worth highlighting that special care is taken with
sleeper threads (i.e., those that wake up after a potentially long
suspension). Essentially, the progress counter of a sleeper
thread that just woke up could be much smaller than that of
other threads in the system, as the thread’s progress counter
remains unmodified while it sleeps. This situation could lead
sleeper lagging threads to monopolize big cores whenwaking
up after a very long pause. To address this issue, CAMPS
resets a thread’s progress counter when it realizes that it has
been blocked for a certain time period, which is application
specific. This period corresponds to the time that it would take
this thread when just migrated to a small core (due to a fair-
ness-oriented swap) to be swapped back to a big core. This
time period depends on amp_threshold and on the thread’s
average slowdown,which ismaintained by CAMPS. The reset
value for the counter is the minimum value for the progress
counter observed among threads on the system.

We found that relying on the progress counters alone (as
ACFS does) is ineffective in case that aggressor applications
and contention-sensitive programs are often mapped to the
big-core cluster simultaneously. As shown in Section 2, this
mapping may severely degrade the performance of conten-
tion-sensitive applications, which may backfire by decreas-
ing the benefits from using a big core. To mitigate this issue,
CAMPS uses the BTR-based heuristics proposed in [27] to
detect potentially contentious scenarios, and favors those
threads swaps that contribute to avoiding contention on the
big core cluster. Algorithm 1 illustrates how CAMPS’s core
scheduler selects threads to be swapped. The algorithm is
executed as soon as the scheduler detects that swap candi-
dates exist on both core types (i.e., the progress counters of
two threads running on opposite core types exceed amp_

threshold). Specifically, CAMPS always selects the thread
with the highest amp_progress counter running on a big
core –denoted as TB– to be migrated to a small core. In
choosing its swap partner, small-core threads with a lower
value of the amp_progress counter are considered first.
If a contention-friendly swap is found (i.e., it leads to a low
contention scenario on the big core cluster), the swap is
performed. Otherwise, the thread with the lowest BTR is
the one selected as the swap partner; this contributes to
reducing the degree of shared-resource contention on the
big core cluster as a result of the reduction in the cluster’s
aggregate BTR [27]. Note also that the scheduler forces
the selection as a swap candidate of those threads that are
lagging considerably behind the rest, namely, when the
difference between TB’s progress counter and the thread’s
progress counter is greater than 2�amp_threshold. This
enables aggressor (high-BTR) threads to eventually have a
chance to run on big cores when the workload includes
multiple memory-intensive applications.

1710 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 12, DECEMBER 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1. Selection of Swap Candidates in CAMPS

Input: TB is the runnable thread with the highest progress
counter mapped to the big core, S is the set of runnable
threads (TS; i) assigned to small cores that constitute
potential swap partners for TB (i.e., amp_progress

(TB) � amp_progress(TS; i) � amp_thresh). Note
that S 6¼ ? , and threads in S are sorted in ascending
order by their amp_progress counter.

min_btr 1; Tmin�BTR NIL;
swap_performed false;
do
TS; i Get first thread in S ;
if Swapping TB and TS; i leads to a low-contention scenario
on the big core cluster jj (amp_progress(TB) � amp_

progressðTS; iÞ � 2�amp_threshold) then
Swap TB and TS ;
swap_performed true;

else
Remove TS; i from S;
If BTRðTS; iÞ < min_btr then
min_btr BTRðTS; iÞ;Tmin-BTR TS; i ;

end
end

while !swap_performed && S 6¼ ?

if !swap_performed then
Swap TB and Tmin-BTR;

end

4.4 Non-Work Conserving Mode

As discussed earlier, CAMPS populates a thread’s history
table while it runs on a big core cluster during low con-
tention scenarios. Unfortunately, when the number of
memory-intensive threads in the workload is high, low con-
tention scenarios might not occur that often for contention-
sensitive programs. In these cases, CAMPS may transition
into a non-work-conserving mode, in which low contention
scenarios are created artificially. To control transitions into
this special mode, CAMPS operates as follows. Every time
that a thread completes k consecutive monitoring intervals
(being k configurable), the scheduler retrieves the thread’s
phase hit rate as well as the number of IPS samples that
have been inserted into the history table over that time
period. If the phase-hit rate falls below 80 percent, and no
IPS samples have been inserted in the history table during
that period, the scheduler enters the NWC mode. We will
refer to the thread that caused the transition into this mode
as theNWC thread.

When in the NWC mode, fairness-oriented thread
swaps are not performed. During this special mode, the
main goal is to collect as many low contention big-core IPS
samples as possible for the NWC thread. To this end, if the
NWC thread was not running on a big core already, it will
be swapped with a big-core thread. In doing so, CAMPS
tries to select a memory-intensive (high-BTR) thread as the
swap partner, so as to reduce contention on the big core
cluster as a result of the swap. Once the NWC thread is
mapped to the big core, CAMPS will attempt to gather
big-core IPS samples for this thread. If at this point a low-
contention scenario does not yet occur on the big core clus-
ter, the scheduler will temporarily disable (for a very short

period of time) as many big cores as necessary to create
such a scenario. In practice, making this possible comes
down to disabling only a few big cores: those where mem-
ory-intensive threads are currently running. Note that dur-
ing the NWC mode, other threads (in addition to the NWC
thread) may leverage low-contention scenarios to populate
the history table.

The scheduler will transition back into the normal operat-
ing mode when (1) the NWC thread’s phase hit rate is over
80 percent –after inserting a number of IPS samples in the
history table–, or (2) when the NWC thread blocks or termi-
nates. Notably, when in the NWC mode, CAMPS still keeps
updating thread progress counters. This allows threads that
did not benefit the NWC mode (e.g., those assigned to big
cores that were temporarily disabled), to be compensated
later accordingly. In addition, to prevent that specific threads
force the transition into the NWC mode systematically, we
take progress counters into consideration when controlling
transitions; threads progressing much further ahead than
the rest at some point cannot becomeNWC threads.

In our implementation in the Linux kernel, big cores are
temporarily disabled in the NWC mode (when needed) by
selecting the idle task to run forcefully on the corresponding
core (this action is performed in the pick_next_task()

operation of our scheduling class), and by temporarily bind-
ing to that core any thread previously assigned to it. We
found that using short core disabling periods, such as the
100 ms setting used in our experimental platforms (2 moni-
toring intervals), allows the scheduler to have a fine-grained
control when in the NWC mode. Essentially, this enables
CAMPS to better adjust to the number of core disabling
operations required by the current NWC thread.

Although CAMPS was designed primarily for long-run-
ning compute-intensive workloads, latency-sensitive mem-
ory-intensive applications could be negatively affected by
core disabling actions in the NWC mode. To deliver more
consistent tail latencies, CAMPS could be seamlessly modi-
fied to map this kind of applications to small cores, which
are never disabled when in the NWCmode.

4.5 Special Support for Multithreaded Applications

OnAMPs, an application can be developed so as to explicitly
leverage the features of the various cores by dividing the
computation into multiple tasks or threads specifically
designed to run effectively on a particular core type. These
applications are typically run by manually binding the vari-
ous threads/tasks to the core type where they are meant to
run. CAMPS supports the execution of those applications, as
it respects user-enforced CPU affinities. Nevertheless run-
ning such an application along with other programs would
not guarantee system-wide fairness; CAMPS strives to
deliver fairness only across those (unmodified) applications
whose threads are allowed to run on different core types.
Notably, affinities in general greatly limit the schedulability
inmost OS-level schedulers [47], not only that of CAMPS.

To provide better support for multithreaded programs
that do not rely on affinities, CAMPS leverages two mecha-
nisms: spin notifications and per-application history tables.

Spin notifications enable the scheduler to be aware of
those situations where threads in a multithreaded program
busy wait (or spin) rather than blocking while waiting in

GARCIA-GARCIA ETAL.: CONTENTION-AWARE FAIR SCHEDULING FOR ASYMMETRIC SINGLE-ISA MULTICORE SYSTEMS 1711

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

synchronization primitives, such as barriers. Busy waiting
enables to substantially reduce the number of context
switches performed by the OS scheduler [48], and it may
also reduce the number of thread migrations on AMP sys-
tems [15]. Nevertheless, spinning threads must be properly
handled by the scheduler. The main issue is that busy-wait-
ing threads may achieve a high IPS despite not doing useful
work. (Best practices in implementing spin locks dictate
using algorithms where a thread spins on a local vari-
able [48]; this leads to a high IPC, due to the effective utiliza-
tion of the CPU pipeline.) Using these misleading IPS values
under CAMPS, would lead to polluting the history table
and, in turn, to serious slowdown mispredictions.

To address this issue, we leverage spin notifications from
user space to the OS by using a variant of the technique pro-
posed in previous work [15]. In our implementation, we
maintain a memory region shared between each application
thread and the OS. When a thread begins to spin, it activates
a flag in the shared memory region, which is later disabled
as soon at the thread stops spinning. We opted to use a
shared memory region rather than system calls (as in [15])
for spin notifications, since the former approach provides
negligible overhead. When a thread is spinning, the perfor-
mance monitor discards the associated IPS samples, and
always estimates the slowdown for the thread to be 1, as it
is not doing useful work. In a similar vein, CAMPS’s core
scheduler avoids migrating spinning threads to big cores.
Notably, issuing spin notifications from user space does not
require making changes in the applications as long as they
use the synchronization primitives provided by the thread-
ing library or the underlying runtime system. As a proof of
concept we implemented this mechanism in the OpenMP
runtime system provided by GCC (bundled in a dynamic
library), by instrumenting the code of synchronization prim-
itives. For applications that do not use standard, library-
based synchronization primitives, spin notifications could
be exploited by leveraging hardware-aided spin-detection
approaches [48] or by manually instrumenting the code.

In many multithreaded applications, the various threads
do the same kind of processing but with different data. In this
scenario, we can leverage the IPS samples stored in a thread’s
history table to aid in predicting the slowdown for the remain-
ing threads in the application.To this end, we maintain
two levels of history tables for multithreaded applications:
the per-thread table (L1) –presented in Section 4.2, and a per-
application history table (L2). Essentially, when a thread
creates a new phase entry in its own table, it inserts this new
entry into the per-application table too. In doing so, other
threads in the application that incur a L1 phase miss, can
potentially retrieve information for the current phase by
accessing the L2 (application-wide) table. If a L2 phase hit
occurs, the entry is copied onto the thread’s private table (L1).
This way we avoid future accesses to the same L2 table entry.
Note that in limiting the number of read and write operations
on the L2 table, we reduce potential contention that comes
from accessing the L2 table (protected with a lock) simulta-
neously from multiple CPUs. Although using two levels of
history tables is specially well suited to applications where all
threads run the same code with different data, the scheme
could be trivially augmented to other kind of multithreaded
programs (such as those following the pipeline paradigm)

where a few threads perform a specific task cooperatively,
where others do a different kind of processing. In that case, a
L2 history table would be shared by threads that do the same
kind of processing, which could be identified by the function
that they execute.

Lastly, we should highlight that, for multithreaded appli-
cations, CAMPS downscales the CS factor in Eq. (3) in pro-
portion to the number of runnable threads in the
application (a proxy for the amount of thread-level parallel-
ism), like ACFS does[11]. Previous work [11], [13] has dem-
onstrated that, when multithreaded programs are included
in the workload, this approach enables the scheduler to pro-
vide better performance and fairness than making decisions
based exclusively on per-thread slowdowns (or SFs).

5 EXPERIMENTAL EVALUATION

In this section, we begin by comparing the effectiveness of
CAMPS with that of previously proposed asymmetry-
aware schedulers [10], [11], [23], [24], which, as CAMPS, pri-
marily target long-running compute-intensive applications.
The schedulers (evaluated in Section 5.1) were implemented
as a scheduling class in the Linux kernel v3.10.104. By the
time we started with the implementation, that was the latest
stable kernel version with official manufacturer support for
the Odroid XU4 board. Variants of the vanilla v3.10.104 ker-
nel were used on the other AMP systems considered, to
maintain a common scheduler code base.

In Section 5.2 we compare the degree of fairness and other
aspects of our scheduling proposal with that of the stock
Linux scheduler (CFS) and with its extension for ARM big.
LITTLE platforms (HMP [33]). To this end we experimented
with a broad spectrumofworkloads (long and short-running
CPU-bound programs, IO-intensive and latency-sensitive
benchmarks, etc.). These additional experiments reveal that
CAMPS is able to acceptably deal with various application
types for which it was not optimized. In addition, the results
illustrate the high variability delivered by CFS and HMP for
long-running compute-intensive workloads, making both
schedulers unsuitable baselines for comparison when using
this kind of workloads on AMPs.

5.1 CAMPS versus Other Asymmetry-Aware
Schedulers

To assess the effectiveness of CAMPS we compared it with
three previously-proposed fairness-aware schedulers for
AMPs: ACFS [11], Equal-Progress [23] and an asymmetry-
aware Round-Robin (RR) scheme [24].We also experimented
with a scheduler that attempts to optimize throughput by
preferentially running on big cores those applications that
derive a higher big-to-small speedup [10], [13]. We will refer
to this scheduler asHSP (High SPeedup).

All the schedulers considered (except for RR) rely on per-
formance monitoring counters to function. HSP and ACFS
determine threads’ SFs on-line by continuously monitoring
different PMC events, and by feeding an estimation model
with the obtained event counts. (More information on the
mechanism employed to build the estimation model and to
determine the associated events on our ARM-based experi-
mental platforms can be found in [38].) The Equal-Progress
scheduler [23], by contrast, leverages PIE [14] or IPC

1712 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 12, DECEMBER 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

sampling [24] to determine thread SFs at runtime. Since the
required hardware extensions for PIE are not available in
commercial AMP hardware, we evaluate the history-based
variant of Equal-Progress [23], based on IPC sampling.
Under all schedulers, PMCs are sampled each 50ms on a
per-thread basis; this sampling period enables the OS to
detect coarse-grained program phases and to filter out
many spikes in performance metrics that become apparent
when using smaller sampling periods (due to fast oscilla-
tions in some metrics). Notably, we observed that the over-
head associated with PMC-related processing at this rate
becomes negligible for most applications (for a few pro-
grams we observed up to a 0.28 percent overhead). To reach
a 1 percent overhead, the sampling period has to be reduced
to a value as low as 5 ms.

For our experiments, we used the 2B-4S and 4B-4S AMP
configurations (ARM big.LITTLE based) presented in
Section 2.2. Our evaluation targets workloads consisting of
long-running compute-intensive benchmarks from diverse
suites (SPEC CPU, PARSEC, Minebench and NAS Parallel).
We also experimented with FFTW3D—a program perform-
ing the FFT. All programs were compiled with GCC (-O3
switch) and by employing the -mtune=cortex-a15.

cortex-a7 (4B-4S only) and the -mtune=cortex-a57.

cortex-a53 (2B-4S only) compiler options to apply com-
mon big.LITTLE optimizations. The total thread count in
each workload was set to match the total number of cores in

the platform (including both big and little cores), as in pre-
vious work on AMPs [10], [13], [23]. We ensure that all
applications in the mix are started simultaneously and
when one of them terminates it is restarted repeatedly until
the longest application in the set completes three times.
We then measure unfairness and throughput, by using the
geometric mean of the completion times for each program.
To assess throughput we employed the Aggregate Speedup
(ASP) metric as in [11], [38]. We ran each experiment five
times, and report the average, minimum and maximum
values of the unfairness and throughput in each case.

In evaluating the various schedulers we built two differ-
ent sets of workloads, shown in Tables 1 and 3. In the first
one, each program mix is made up of six single-threaded
applications running on the 2B-4S configuration. The sec-
ond set, which we ran on 4B-4S, includes mixes consisting
of both single-threaded and multithreaded programs.

5.1.1 Workloads for the 2B-4S Configuration

We begin by analyzing the results of the first workload set,
shown in Fig. 4. The unfairness and throughput (ASP) val-
ues reported in the charts are normalized with respect to
the results of the HSP scheduler. In building the workloads
(Table 1), we divided SPEC CPU applications into two
groups: light-sharing programs, whose performance do not
suffer noticeably under contention; and memory-intensive
programs, which are subject to high contention-related

TABLE 1
Multi-Application Workloads for the 2B-4S AMP Configuration

Fig. 4. Unfairness (top) and throughput (bottom) for the workloads in Table 1 running on 2B-4S under the various scheduling algorithms.

GARCIA-GARCIA ETAL.: CONTENTION-AWARE FAIR SCHEDULING FOR ASYMMETRIC SINGLE-ISA MULTICORE SYSTEMS 1713

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

degradation or put significant pressure on the shared resour-
ces. We then generated 24 random program mixes by com-
bining 29 SPEC benchmarks that cover a wide spectrum of
speedup factors. Table 1 shows these program mixes which
are displayed sorted in descending order by the number of
memory-intensive programs included in theworkload.

The results illustrate that optimizing one metric may lead
to substantial degradation of the other one. This trend was
also observed in previous work [11], [38], which illustrates
that fairness and throughput are largely conflicting optimiza-
tion goals on AMPs. As is evident, HSP, which strives to opti-
mize throughput, achieves the best ASP values for most
workloads, at the expense of the worst unfairness numbers
(the higher, the worse) across the board. Conversely, the
remaining schedulers (fairness aware), achieve substantial
reductions in unfairness versusHSP (up to a 72 percent reduc-
tion—CAMPS under W17), at the cost of potentially high
throughput degradation (up to 38 percent—RRunderW19).

The results of ACFS, RR and CAMPS exhibit a clear trend
across the board. Specifically, for the vast majority of work-
loads ACFS delivers better throughput and higher reductions
in unfairness than RR. This is the expected behavior since
ACFS takes applications’ big-to-small speedups into consid-
erationwhen distributing big-core cycles among applications,
whereas RR does not. Despite the higher throughput, the fact
that ACFS does not factor in contention effects when making
decisions, leads ACFS to similar unfairness figures to those of
RR in some cases (e.g., W4-W6,W15 orW17). By contrast, our
proposal is able to reduce unfairness even further: by up to 11
percent with respect to ACFS (W17) and by up to 28 percent
relative to RR (W19). In addition, CAMPS is capable of reap-
ing higher throughput gains: up to a 17 percent increase ver-
sus ACFS (W19). Notably, under those workloads including a
small number of memory-intensive applications (W20-W24),
we observe that CAMPS and ACFS perform very similarly.
This suggests that CAMPS is also suitable for low-contention
scenarios, as it delivers similar unfairness and throughput
figures to ACFS, the state-of-the-art fairness-aware scheme
providing the best results under these circumstances [11]. All
in all, as summarized in Table 2 CAMPS achieves an average
10.7 percent reduction in unfairness with respect to ACFS
while improving throughput by 4.48 percent.

Now we zoom in on the results of the Equal-Progress
scheme, which, as our proposal, also strives to optimize fair-
ness. We observe that this scheduler is not able to obtain
lower unfairness than CAMPS or ACFS for most workloads.
More importantly, Equal-Progress’s results reveal signifi-
cant divergences across the board: for a few workloads,
such as W4, W12 or W18, it obtains throughput and fairness
figures closer to those of CAMPS and ACFS, whereas for

others it exhibits a much unfairer behavior along with either
throughput degradation relative to CAMPS (e.g., W2, W8-
W10, W14, etc.) or with throughput gains in some cases (e.g.,
W1, W19 or W20). As discussed in detail in [11], this some-
what inconsistent behavior of Equal-Progress stems from
two main factors: (1) the inaccuracies associated with the
mechanism it employs to track thread progress on AMPs,
and (2) the fact that it relies on IPC sampling to determine
thread’s SFs online on commercial AMPs [23]. IPC sampling
has been shown to lead to inaccurate SFs, since IPC values
collected on each core type may belong to different program
phases [12]. We observed that inaccuracies in the SF
–obtained when measuring the IPC directly on both core
types– are more frequent under contention, as the IPC may
suffer profound oscillations (even within the same program
phase) based on the degree of contention a thread is suffer-
ing. Inaccuracies prevent Equal-Progress from delivering
even progress across applications, and the performance it
delivers is heavily affected by these inaccuracies: through-
put increases when the scheduler happens to grant a higher
big-core share to high-speedup applications. Although
CAMPS also relies on measuring the IPC to determine a
thread’s slowdown, the reference values used to approxi-
mate run-alone performance (IPSalone, stored in the history
table for the different phases) are collected under low con-
tention scenarios, as explained in Section 4. This makes it
possible for CAMPS to overcome the aforementioned issue
of Equal-Progress. On average, our proposal reduces unfair-
ness by 23.6 percent compared to Equal-Progress.

The results also reveal that for some workloads CAMPS
and ACFS achieve throughput values similar (in a 3 percent
range) to those of HSP. Overall, we observe that the through-
put degradation achieved by fairness-aware schedulers is
significantly lower for workloads where the number of
applications that experience a higher-than-average speedup
exceeds the number of big cores (two). Under these circum-
stances (e.g., W1,W3,W13 orW17), CAMPS andACFS grant
a substantial amount of big core cycles to these specific
applications (by triggering periodic swaps), whereas HSP
usually maps only two high-speedup programs to big cores
for a long time period. This leads ACFS and CAMPS to
reduce unfairness in a greater extent than HSP (e.g., W13
andW5), while yielding a low throughput degradation.

Lastly, we should highlight that HSP is especially affected
by contention effects under the W5 and W13-W15 work-
loads, where the two applications with the highest speedup
(those listed at the beginning of each row in Table 1) are both
highly memory intensive or constitute a pair consisting of a
memory-intensive and a cache-contention sensitive program.
The benefit that these applications derive from running on a
big core comes in part due to the fact that this core type fea-
tures a larger shared L2 cache than the small core. Unfortu-
nately, when the scheduler maps two memory-bound
programs on the big cores simultaneously, threads compete
with each other for space in the shared cache as well as for
bus bandwidth, which leads to non-negligible performance
degradation for both applications, and in turn degrades sys-
tem throughput. Specifically, under the aforementioned
workloads, HSP maps memory-bound applications to big
cores simultaneously for longer periods of time than fair-
ness-aware schedulers, which –by contrast– swap threads

TABLE 2
Average Reduction in Unfairness and Increase in

Throughput Achieved by CAMPS Over the Other Schemes
on the ARM Juno Board

CAMPS vs. others Reduct. in Unf. Increase in throughput

HSP 50.96% �12.24%
RR 17.08% 13.19%
Equal-Progress 23.64% 3.31%
ACFS 10.71% 4.48%

1714 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 12, DECEMBER 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

between core types every so often. Swapping threads
reduces the amount of time that the conflicting applications
are mapped together to big cores, which contributes to
improving both throughput and fairness. Specifically, the
results reveal that all fairness-aware schedulers reap high
normalized throughput figures under these program mixes
(W5, W13-W15). More importantly, our proposal, is able to
outperform HSP for some of these conflicting workloads
(W5 andW15). This is possible thanks to the fact that CAMPS
swaps threads based on their observed progress and by
catering to the degree of contention.

5.1.2 Workloads for the 4B-4S Configuration

We now proceed with the discussion of the results for work-
loads we ran on the 4B-4S configuration. On this system, we
attempted to analyze workload scenarios with a wide diver-
sity of SFs among applications and a varying degree of com-
petition for the available big cores. Note that, in building the
program mixes, we had to pay special attention to the
aggregate memory footprint of the workload, which should
not exceed the limited amount of physical memory avail-
able on the Odroid XU4 board (2 GB) to prevent Linux’s
Out-of-Memory killer from kicking in during the experi-
ments. Due to this constraint, we had to discard some appli-
cation mixes for the different categories considered.

Overall, theworkloadswe explored –shown inTable 3– can
be grouped in three broad categories. The first one combines 8
single-threaded programs (M1-M8) that exhibit a varying
degree of memory intensity and cover a wide spectrum of
SF values. Workloads in the second category (M9-M12) cou-
ple 4 single-threaded applications with a parallel program.

Notably, the sequential programs derive a higher benefit
from using a single big core most of the time than
the multithreaded program. Catering to the amount of TLP
(thread-level parallelism) in the application under these
circumstances is crucial to identify those application phases
that really benefit fromusing a handful of big cores (e.g., serial
execution phases) [13], [15]. Finally, workloads in the third
category (M13-M16) combine two parallel applications with
different scalability features. Specifically, the FFTW3D, sem-
phy and blackscholes programs exhibit sequential phases
that span over 20 percent of their execution time, whereas EP
and kmeans constitute highly parallel applications.

Fig. 5 shows the results for workloads in Table 3. Despite
the profound differences between the composition of these
workloads and those evaluated on the 2B-4S configuration,
the results exhibit very similar trends to those discussed
earlier. Essentially, CAMPS achieves the highest reduction
in unfairness (up to 55 percent versus HSP) for the vast
majority of workloads. At the same time, ACFS is usually
the scheme that provides closest fairness figures to those
of CAMPS, followed by RR and Equal-Progress. Again, we
observe that ensuring fairness comes at the expense of
significant throughput degradation in some cases (up to
45 percent - M12).

Results in Table 4 indicate that CAMPS still achieves sub-
stantial average reductions in unfairness w.r.t. the other
schemes on 4B-4S (32.7 percentw.r.t. HSP, and 7 percent rela-
tive to ACFS). These overall gains are slightly smaller than
those achieved on 2B-4S (see Table 2). This has to do with the
lower degree of memory intensity of the workloads we ran
on 4B-4S, which stems from the impossibility (due to the
memory constraints) to consider mixes with multiple highly
memory-intensive programswith a largememory footprint.

In spite of obtaining more modest fairness improvements
in this scenario, CAMPS reaps considerably higher through-
put gains relative to RR and Equal-Progress –over 16 per-
cent and 12 percent respectively. This is due to the higher
speedup diversity present in these program mixes, which
stems from two factors. First, the SF range across sequential
programs is significantly wider on this platform (from 1.36x

TABLE 3
Multi-Application Workloads for the 4B-4S AMP Configuration

Fig. 5. Unfairness (top) and throughput (bottom) for the workloads in
Table 3 running on 4B-4S under the various scheduling algorithms.

TABLE 4
Average Reduction in Unfairness and Increase in Throughput

Achieved by CAMPS Over the Other Schemes on the
Odroid XU4 Board

CAMPS vs. others Reduct. in Unf. Increase in throughput

HSP 32.75% �16.03%
RR 16.89% 16.53%
Equal-Progress 18.67% 12.05%
ACFS 7.17% 4.51%

GARCIA-GARCIA ETAL.: CONTENTION-AWARE FAIR SCHEDULING FOR ASYMMETRIC SINGLE-ISA MULTICORE SYSTEMS 1715

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

to 6.63x) than on 2B-4S (from 1.5x to 4.4x). RR does not take
SFs into consideration when making scheduling decisions,
thus failing to obtain decent throughput figures in this con-
text. Second, some program mixes combine single-threaded
programs, which derive non-negligible benefits from using
a single big core, with multi-threaded programs that only
derive significant benefits from big cores in the event that
all of its active threads are mapped simultaneously to big
cores for some time (due to synchronization). Under these
circumstances, devoting big cores to run low-TLP phases
(e.g., serial code) brings higher benefits than mapping
threads-to-cores based on the per-thread slowdown [11],
[15], [34]. Unlike RR and Equal-Progress, the other schedu-
lers (including CAMPS) take this aspect into consideration
indirectly by downscaling the thread’s slowdown factor
(or speedup [13]) with the number of runnable threads in
the application (a proxy for the amount of TLP), as stated in
Section 4.5. Failing to cater to the amount of TLP in the
application leads RR and Equal-Progress to high through-
put degradation in some cases (e.g., over 40 percent degra-
dation under M16).

5.2 CAMPS versus CFS and HMP

We now illustrate how CAMPS compares with the stock
Linux scheduler (CFS) and with HMP [33] in terms of per-
formance variability across runs. In doing so, we consider
diverse workloads, beyond those which CAMPS was opti-
mized for. For the comparison against HMP, we employed
the Odroid XU4 board (4B-4S), as the kernel provided by
the board’s manufacturer uses HMP. To experiment with
CFS, we used the Intel QuickIA (2B-2S); CFS is the default
scheduler on this platform (to the best of our knowledge, no
implementation for HMP is available for this x86 system).

To measure how an application’s completion time varies
across multiple runs of the same workload, we used different
types of programs: long-running compute-intensive sequen-
tial applications (gamess, bzip2 and crafty); a kernel com-
pilation benchmark (kernbench [49]) that creates a mix

of short-lived compute- and I/O-intensive single-threaded
processes; a sequential I/O intensive benchmark (scp) that
transfers a 200 MB file over the local network; and several
multithreaded HPC programs (semphy, kmeans, RNAseq,
FFTW3D and EP) with different scalability and synchroniza-
tion patterns. We also experimented with ebizzy [49]
–a micro-benchmark designed to generate a web server like
workload (performance reported in terms of transactions per
second)–, and with schbench –a benchmark [50] that meas-
ures the scheduler’s tail (p99) latency.

In running these applications, we considered three homo-
geneous workload scenarios: Full or F –total thread count
(NT) matches the number of CPUs (NCPUS)–, Half or H (NT =
NCPUS/2), and Double or D (NT = 2�NCPUS). For single-
threaded programswe launchedmultiple simultaneous pro-
gram instances tomatch the total thread count desired. Nota-
bly, for HPC compute-intensive parallel workloads, which
are typically run with a total thread count that matches the
number of CPUs, we experimentedwith Full Load only.

Figs. 6a and 6d show the slowdown distribution of the
various workloads under CAMPS, CFS and HMP on 2B-2S
and 4B-4S, respectively. For each workload, we ran the pro-
gram at least 20 times so as to capture the variance of the
performance distribution under each scheduler. The slow-
down is normalized with respect to the fastest run regis-
tered when running the program alone on the system.

We begin by discussing the results of the CFS scheduler
(Fig. 6a). In the H scenario, CFS provides worse performance
(higher slowdown) and significantly higher variability than
CAMPS across the board. This stems from the fact that CFS is
asymmetry agnostic, and it randomlymaps threads to any of
the idle cores regardless of its type. Moreover, CFS tries to
keep a thread running on the same CPU for as long as possi-
ble (to reduce the number of migrations), even if the thread
is mapped to a small core. By contrast, CAMPS maximizes
big core utilization so it maps all threads to big cores in this
case (NT = NBigCores). As a result, it optimizes performance
and evens out the slowdown (fairness).

Fig. 6. CFS versus CAMPS on the Intel QuickIA –Figs. (a)-(c)–, and HMP versus CAMPS on the Odroid 4 XU board –Figs. (d)-(f)–.

1716 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 12, DECEMBER 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

In the F and D scenarios, both CFS and CAMPS evenly
distribute threads across cores. The results, however, largely
depend on the nature of the benchmark. For long-running
compute-intensive programs CAMPS delivers repeatable
completion times and similar unfairness values across runs,
thanks in part to fairness-oriented thread swaps. By con-
trast, CFS exhibits a huge slowdown variability here; for
instance, under the gamess (D) workload the slowdown
ranges between 1.37x and 4.22x. That is because CFS does
not make any effort to guarantee that threads make equal
progress on an AMP, as discussed in Section 4.1. In fact, CFS
may map an application to a big core in a whole run, and to
a small core in another run. Our overarching conclusion is
that for long-running compute-intensive workloads (like
those considered in Section 5.1), the stock Linux scheduler
does not constitute a good baseline for comparison due
to its enormous performance variability. We should high-
light that the root causes of this high variability, which we
already discussed (i.e., a thread may be randomly mapped
to any core type, no effort is made to accurately track and
balance the progress on AMPs, etc.), are still present in the
stock Linux scheduler implementation from kernel versions
that are more recent than the one we used (v3.10.104).
Despite the various changes made to the Linux scheduler in
newer kernels, none of these changes was made to address
these AMP-related issues. Note that we also conducted the
same set of experiments with CFS on Linux v4.16.1 –the lat-
est stable version available at the time of this writing–, and
observed the same huge performance variability.

For the scp benchmark, CAMPS and CFS yield similar
slowdown figures in the F and D scenarios. We found that
the (modest) variation in this case is not up to the OS sched-
uler itself (the benchmark is I/O intensive), but instead
has to do with the disparities in the network bandwidth
achieved by the different co-running instances of scp.

For the HPC workloads (last five groups of boxes in
Fig. 6a) both schedulers provide very similar slowdown (in a
2 percent range), with only one exception: the semphy pro-
gram. This program goes through parallel phases and long-
term serial execution phases, wherein the application
exposes a single runnable thread to the OS. During sequen-
tial phases, CAMPSmaps the single runnable thread to a big
core, and as a result, it effectively mitigates this scalability
bottleneck [15], [34]. CFS only accelerates serial phases in the
event that the thread responsible from running serial code
happened to be alreadymapped to a big core (by chance).

We now turn our attention to the results of the HMP
scheduler on 4B-4S (Fig. 6d). On this system, we could not
gather the results for the bzip (D) and kernbench (D)
workloads due to exceeding the platform’s memory con-
straints (as discussed in Section 5.1.2). Unlike CAMPS,
HMP is not designed to enforce system-wide fairness, but
instead it extends CFS to provide a good tradeoff between
performance and energy consumptions for mobile work-
loads on ARM big.LITTLE systems. To this end, it devotes
big cores to run compute-intensive code, and uses small
cores for interactive or I/O intensive applications. While
CAMPS exhibits a similar (low variability) profile as that
observed on 2B-2S, HMP does not behave exactly as CFS. In
particular, in the H scenario, it nearly matches the slow-
down distribution of CAMPS, as it uses big cores to run the

various threads as soon as it detects they are going through
a compute-intensive phase. In the F and D scenarios, HMP
makes no effort to guarantee equal progress as opposed to
CAMPS; HMP is subject to high variability, making it spe-
cially unsuitable to be considered as a baseline for compari-
son under long-running compute-intensive workloads.

For the I/O intensive workloads (scp), HMP delivers a
smaller variance than our scheduling proposal (CAMPS
was not optimized for I/O benchmarks), but it clearly deliv-
ers worse performance than CAMPS in the D scenario.

As for the multithreaded HPC programs (last five group
of boxes), HMP yields very poor performance and is subject
to large performance variability in some cases. Essentially,
in these workloads HMP always maps all threads to big
cores, thus introducing oversubscription (2 threads per big
core) while leaving small cores idle. This mapping is very
inappropriate in this context, as threads in some of these
applications synchronize with each other frequently.

We now proceed to analyze the results of ebizzy on
both platforms (Figs. 6b and 6e). Since CAMPS performs no
worse than HMP and CFS in the H scenario, we focus on the
discussion of the remaining cases. Note that threads of this
web-server-like application do not synchronize with each
other, but instead attempt to complete as many requests as
possible in parallel. In the F and D scenarios, CFS effectively
utilizes both core types. The fact that threads do not make
equal progress does not affect throughput; big-core and
small-core threads do effective work, but at a different pace.
CAMPS, which is not optimized for this workload type,
delivers a slightly inferior throughput (1.6 percent less) than
CFS under F and D. Because ebizzy threads are CPU
bound, HMP assigns them all to big cores, leading to poor
performance. CAMPS is able to outperform HMP by 21 and
37 percent on average in the F and D scenarios.

Finally, we examine the tail scheduler latency numbers
(Figs. 6c and 6f) obtained with multiple runs of schbench.
To fully understand the results, it is worth recalling that
CAMPS attempts to maximize big core utilization, and, to
this end, it quickly moves threads to underloaded big cores.
In the H scenario, CAMPS maps all threads to the available
big cores, while CFS and HMP may leave some threads run-
ning on small cores. Big core’s superior performance trans-
lates into smaller latencies, thus enabling CAMPS to
outperform the other schedulers: it achieves a 65 and 45 per-
cent latency reduction versus CFS and HMP, respectively.
Our results also register more consistent tail latencies under
CAMPS across different executions relative to CFS, but they
also reveal a slightly worse tail latency (around 7 percent
higher) under oversubscription (D). Lastly, we also observe
that CAMPS’s load balancing decisions in the F and D sce-
narios allow it to impressively reduce tail latencies (by up to
53 percent) w.r.t. HMP, which overloads big cores with
compute-intensive threads.

6 CONCLUSIONS

In this paper, we have proposed CAMPS, an OS-level fair-
ness-aware scheduler for asymmetric single-ISA multi-
cores. Unlike other fairness-conscious asymmetry-aware
schemes [11], [23], [24], our approach effectively caters to
the performance degradation that comes from contention

GARCIA-GARCIA ETAL.: CONTENTION-AWARE FAIR SCHEDULING FOR ASYMMETRIC SINGLE-ISA MULTICORE SYSTEMS 1717

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

on the shared resources among cores, such as the last-level
cache or the memory bus. CAMPS accurately tracks the
progress that the various threads in the workload make
when running on the different core types throughout the
execution, and enforces fairness by evening out the prog-
ress across threads.

CAMPS’s progress tracking scheme relies on approxi-
mating the current slowdown of an application thread by
comparing its actual performance with the performance
observed in the past for the thread when it ran on a big core
in a low contention scenario. In doing so, the scheduler fac-
tors in the contention-related performance degradation as
well as the slowdown that the thread normally experiences
when it is mapped to a small core rather than to a big one.
Notably, our approach does not require special hardware
extensions [14], [23] or platform-specific speedup-prediction
models [10], [11] to function. Instead, CAMPS relies on the
gathering of a set of performance metrics that can be easily
measured online in commercial AMP hardware via perfor-
mance counters. This makes the scheduler highly portable
across different processor models and CPU architectures.

We implemented CAMPS in the Linux kernel and assess-
ed its effectiveness on real asymmetric hardware. An exten-
sive comparison was performed with other existing
schemes that aim to optimize fairness [11], [23], [24].
Our experimental results reveal that CAMPS outperforms
the state-of-the-art fairness-aware scheme for AMPs –the
ACFS scheduler [11]– in both fairness and throughput.

ACKNOWLEDGMENTS

This work has been supported by the EU (FEDER) and
the Spanish MINECO, under grant TIN 2015-65277-R. We
would like to thank David Koufaty (Intel Labs) for enabling
us to experiment with the QuickIA prototype system.

REFERENCES

[1] S. Mittal, “A survey of techniques for architecting and managing
asymmetric multicore processors,” ACM Comput. Surv., vol. 48,
no. 3, pp. 45:1–45:38, Feb. 2016.

[2] T. Li, et al., “Operating system support for overlapping-ISA
heterogeneous multi-core architectures,” in Proc. 16th Int. Symp.
High-Performance Comput. Archit., 2010, pp. 1–12.

[3] J. Cong, et al., “Accelerator-rich architectures: Opportunities
and progresses,” in Proc. 51st Ann. Design Autom. Conf., 2014,
pp. 180:1–180:6.

[4] C. R. Johns and D. A. Brokenshire, “Introduction to the cell broad-
band engine architecture,” IBM J. Res. Dev., vol. 51, no. 5, pp. 503–
519, Sep. 2007.

[5] J. P. Perez, et al., “CellSs: Making it easier to program the cell
broadband engine processor,” IBM J. Res. Dev., vol. 51, no. 5,
pp. 593–604, 2007.

[6] R. Kumar, et al., “Single-ISA heterogeneous multi-core architec-
tures for multithreaded workload performance,” in Proc. 31st
Ann. Int. Symp. Comput. Archit., 2004, pp. 64–75.

[7] ARM, “Benefits of the big.LITTLE Architecture.” [Online]. Avail-
able: http://www.arm.com/files/downloads/Benefits_of_the_
big.LITTLE_architect ure.pdf, Accessed on: Jan. 10, 2015.

[8] ARM, “Juno platform.” [Online]. Available: http://infocenter.
arm.com/help/topic/com.arm.doc.subset.boards.juno/index.
html, Accessed on: Mar. 9, 2017.

[9] N. Chitlur, et al., “QuickIA: Exploring heterogeneous architec-
tures on real prototypes,” in Proc. 39th Ann. Int. Symp. Comput.
Arch., 2012, pp. 1–8.

[10] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heteroge-
neousmulti-core architectures,” in Proc. Eurosys, 2010, pp. 125–138.

[11] J. C. Saez, et al., “Towards completely fair scheduling on asym-
metric single-ISA multicore processors,” J. Parallel Distrib. Com-
put., vol. 102, pp. 115–131, 2017.

[12] D. Shelepov, et al., “HASS: A scheduler for heterogeneous multi-
core systems,” Oper. Syst. Rev., vol. 43, no. 2, pp. 66–75, 2009.

[13] J. C. Saez, et al., “Leveraging core specialization via OS scheduling
to improve performance on asymmetric multicore systems,” ACM
Trans. Comput. Syst., vol. 30, no. 2, pp. 6:1–6:38, Apr. 2012.

[14] K. Van Craeynest, et al., “Scheduling heterogeneous multi-cores
through performance impact estimation (PIE),” in Proc. 39th Ann.
Int. Symp. Comput. Archit., Jun. 9–13, 2012, pp. 213–224.

[15] J. C. Saez, et al., “Operating system support for mitigating soft-
ware scalability bottlenecks on asymmetric multicore processors,”
in Proc. 7th Int. Conf. Comput. Frontiers, 2010, pp. 31–40.

[16] J. A. Joao, et al., “Utility-based acceleration of multithreaded
applications on asymmetric CMPs,” in Proc. 40th Ann. Int. Symp.
Comput. Archit., 2013, pp. 154–165.

[17] N. Markovic, et al., “Thread lock section-aware scheduling on
asymmetric single-ISA multi-core,” IEEE Comput. Archit. Lett.,
vol. 14, no. 2, pp. 160–163, Jul. 2015.

[18] I. Jibaja, et al., “Portable performance on asymmetric multicore
processors,” in Proc. Int. Symp. Code Generation Optimization, 2016,
pp. 24–35.

[19] O. Mutlu and T. Moscibroda, “Stall-time fair memory access
scheduling for chip multiprocessors,” in Proc. 40th Ann. IEEE/
ACM Int. Symp. Microarchitecture, 2007, pp. 146–160.

[20] E. Ebrahimi, et al., “Fairness via source throttling: a configurable
and high-performance fairness substrate for multi-core memory
systems,” in Proc. 15th Int. Conf. Archit. Support Program. Lang.
Oper. Syst., 2010, pp. 335–346.

[21] H. Yun, et al., “Memory bandwidth management for efficient
performance isolation in multi-core platforms,” IEEE Trans.
Comput., vol. 65, no. 2, pp. 562–576, Feb. 2016.

[22] J. Feliu, et al., “Perf & fair: A progress-aware scheduler to enhance
performance and fairness in SMT multicores,” IEEE Trans.
Comput., vol. 66, no. 5, pp. 905–911, May 2017.

[23] K. Van Craeynest, et al., “Fairness-aware scheduling on single-ISA
heterogeneous multi-cores,” in Proc. 22nd Int. Conf. Parallel Archit.
Compilation Tech., 2013, pp. 177–187.

[24] M. Becchi and P. Crowley, “Dynamic thread assignment on het-
erogeneous multiprocessor architectures,” in Proc. 3rd Int. Conf.
Comput. Frontiers, 2006, pp. 29–40.

[25] Hardkernel, “Odroid XU4 board,” 2016. [Online]. Available:
http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu4,
Accessed on: Jun. 22, 2016.

[26] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-aware
scheduling on multicore systems,” ACM Trans. Comput. Syst.,
vol. 28, no. 4, pp. 8:1–8:45, Dec. 2010.

[27] D. Xu, et al., “Providing fairness on shared-memory multiproces-
sors via process scheduling,” in Proc. ACM Int. Conf.Meas.Modeling
Comput. Syst., 2012, pp. 295–306.

[28] S. Zhuravlev, et al., “Survey of scheduling techniques for address-
ing shared resources in multicore processors,” ACM Comput.
Surv., vol. 45, no. 1, pp. 4:1–4:28, Dec. 2012.

[29] H. Yun, et al., “PALLOC: DRAM bank-aware memory allocator
for performance isolation on multicore platforms,” in Proc. 20th
Real-Time Embedded Tech. Appl. Symp., 2014, pp. 155–166.

[30] Y. Ye, et al., “MARACAS: A real-time multicore vcpu scheduling
framework,” in Proc. IEEE Real-Time Syst. Symp., 2016, pp. 179–
190.

[31] A. Alhammad and R. Pellizzoni, “Trading cores for memory
bandwidth in real-time systems,” in Proc. 22nd Real-Time Embedded
Tech. Appl. Symp., Apr. 2016, pp. 1–11.

[32] M. Pricopi, et al., “Power-performance modeling on asymmetric
multi-cores,” in Proc. Int. Conf. Compilers Archit. Synthesis Embed-
ded Syst., 2013, pp. 15:1–15:10.

[33] M. Rasmussen, “Task placement for heterogeneous MP systems,”
2012. [Online]. Available: https://lwn.net/Articles/517250/,
Accessed on: Jul. 6, 2016.

[34] M. D. Hill and M. R. Marty, “Amdahl’s Law in the Multicore Era,”
IEEE Comput., vol. 41, no. 7, pp. 33–38, Jul. 2008.

[35] V. Petrucci, et al., “Octopus-man: QoS-driven taskmanagement for
heterogeneous multicores in warehouse-scale computers,” in Proc.
21st Int. Symp. High-Performance Comp. Archit., 2015, pp. 246–258.

[36] M. E. Haque and others, “Exploiting heterogeneity for tail latency
and energy efficiency,” in Proc. 50th Ann. IEEE/ACM Int. Symp.
Microarchitecture, 2017, pp. 625–638.

1718 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 12, DECEMBER 2018

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

http://www.arm.com/files/downloads/Benefits_of_the_big.LITTLE_architect ure.pdf
http://www.arm.com/files/downloads/Benefits_of_the_big.LITTLE_architect ure.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.subset.boards.juno/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.subset.boards.juno/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.subset.boards.juno/index.html
http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu4
https://lwn.net/Articles/517250/

[37] Y. G. Kim, M. Kim, and S. W. Chung, “Enhancing energy
efficiency of multimedia applications in heterogeneous mobile
multi-core processors,” IEEE Trans. Comput., vol. 66, no. 11,
pp. 1878–1889, Nov. 2017.

[38] J. C. Saez, et al., “On the interplay between throughput, fairness
and energy efficiency on asymmetric multicore processors,”
Comput. J., vol. 61, no. 1, pp. 74–94, 2018.

[39] C. Kim and J. Huh, “Fairness-oriented OS scheduling support
for multicore systems,” in Proc. Int. Conf. Supercomputing, 2016,
pp. 29:1–29:12.

[40] X. Fan, Y. Sui, and J. Xue, “Contention-aware scheduling for
asymmetric multicore processors,” in Proc. Int. Conf. Parallel
Distrib. Syst., Dec. 2015, pp. 742–751.

[41] S. Barati and H. Hoffmann, “Providing fairness in heterogeneous
multicores with a predictive, adaptive scheduler,” in Proc. Int.
Parallel Distrib. Process. Symp. Workshops, 2016, pp. 38–49.

[42] J. C. Saez, et al., “PMCTrack: Delivering performance monitoring
counter support to the OS scheduler,” Comput. J., vol. 60, no. 1,
pp. 60–85, 2017.

[43] S. Zhuravlev, et al., “Survey of scheduling techniques for address-
ing shared resources in multicore processors,” ACM Comput.
Surv., vol. 45, no. 1, pp. 4:1–4:28, Dec. 2012.

[44] M. Nabelsee, et al., “Load-aware scheduling for heterogeneous
multi-core systems,” in Proc. 31st Ann. ACM Symp. Appl. Comput.,
2016, pp. 1844–1851.

[45] D. Xu, C. Wu, and P.-C. Yew, “On mitigating memory bandwidth
contention through bandwidth-aware scheduling,” in 19th Int.
Conf. Parallel Archit. Compilation Tech., 2010, pp. 237–248.

[46] A. Annamalai, et al., “An opportunistic prediction-based thread
scheduling to maximize throughput/watt in AMPs,” in Proc. 22nd
Int. Conf. Parallel Archit. Compilation Tech., 2013, pp. 63–72.

[47] F. Cerqueira, et al., “Linux’s processor affinity API, refined: Shift-
ing real-time tasks towards higher schedulability,” in Proc. IEEE
Real-Time Syst. Symp., 2014, pp. 249–259.

[48] T. Li, A. R. Lebeck, and D. J. Sorin, “Spin detection n hardware for
improved management of multithreaded systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 17, no. 6, pp. 508–521, Jun. 2006.

[49] Linux test project. [Online]. Available: https://github.com/linux-
test-project/ltp

[50] M. Fleming, “A survey of scheduler benchmarks,” 2017. [Online].
Available: https://lwn.net/Articles/725238/, Accessed on: Jan.
20, 2018.

Adrian Garcia-Garcia received the MSc degree
in computer science from the Complutense
University of Madrid (UCM), in 2018. He is now
working toward the PhD degree at UCM. His
current research interests include OS scheduling,
and on the analysis of shared resource conten-
tion effects on multicore systems. His work is
supported by a UCM research fellowship grant.

Juan Carlos Saez received the PhD degree in
computer science from the Complutense Univer-
sity of Madrid (UCM), in 2011. He is now an asso-
ciate professor with the Department of Computer
Architecture, UCM. His research interests include
energy-aware computing and improving the inter-
action between the OS and hardware for emerg-
ing architectures. His recent research interests
include OS scheduling on asymmetric multicores,
exploring new techniques to deliver better perfor-
mance per watt, and QoS on these systems.

Manuel Prieto-Matias received the PhD degree
from the Complutense University of Madrid
(UCM), in 2000. He is now associate professor
with the Department of Computer Architecture,
UCM. His research interests include parallel com-
puting and computer architecture. His current
research addresses emerging issues related to
asymmetric processors, heterogeneous systems
and energy-aware computing, with a special
emphasis on the interaction between the OS and
the underlying architecture. He has co-written

numerous articles in journals and international conferences in the field
of parallel computing and computer architecture.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GARCIA-GARCIA ETAL.: CONTENTION-AWARE FAIR SCHEDULING FOR ASYMMETRIC SINGLE-ISA MULTICORE SYSTEMS 1719

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 20,2023 at 23:37:06 UTC from IEEE Xplore. Restrictions apply.

https://github.com/linux-test-project/ltp
https://github.com/linux-test-project/ltp
https://lwn.net/Articles/725238/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

