
Response-Time Analysis of Parallel Fork-Join Workloads with Real-Time
Constraints

Philip Axer, Sophie Quinton,
Moritz Neukirchner, Rolf Ernst

Institut für Datentechnik
TU Braunschweig, Germany

Björn Döbel, Hermann Härtig
Operating Systems Group

TU Dresden, Germany

Abstract—The advent of multi- and many-core processors
comes with new challenges and opportunities for the designer
of embedded real-time applications. By using parallel pro-
gramming techniques (e.g. OpenMP) software engineers can
leverage from the available hardware parallelism and speed
up the algorithms. The inherent redundancy of multi-core
architectures can also be used to implement fault-tolerance
by executing code redundantly on multiple cores in parallel.
Parallel programming and redundant execution are typical
examples for fork-join tasks in which the program is partially
parallelized. However, complex synchronization of parallel
segments across multiple cores can cause unanticipated effects.
This is especially problematic in hard real-time applications
where data must be available in bounded time (e.g. stereo
vision for pedestrian detection). The contribution of this work
is a novel worst-case response time analysis which accounts for
synchronization of fork-join tasks with arbitrary deadlines. We
apply the analysis to the Romain framework which extends the
L4 microkernel by redundant multithreading targeted towards
fault-tolerant embedded systems. By using formal analysis,
we show that parallelizing workloads can lead to drastic
performance impairments compared to traditional sequential
execution if not done carefully.

Keywords-real time systems, performance analysis, parallel
programming, embedded software, fault tolerance, redundancy

I. INTRODUCTION

Recently, multi- and many-core processors emerged on
the embedded market and it is predicted that this technology
will replace traditional single-core architectures due to their
performance advantage. For instance, a commercially avail-
able many-core platform targeted for the embedded market
is the Tilera TILE-Gx processor family which offers up to
100 cores aimed at video and network processing.

Contrary to desktop computing, embedded software is in
many cases subject to real-time constraints. In that sense,
a hard real-time application must not only produce correct
data, but it must be produced within a constrained time
(deadline). Real-time analysis (e.g. [16]) helps the engineer
to validate the timing of traditional sequential applications.
However, analysis of software which runs on and is tailored
to massively parallel hardware is challenging. In this paper
we explain how to analyze parallel fork-join workload as
often found on today’s as well as next generation hardware
platforms.

A simple fork-join task is depicted in Figure 1. It differs
from traditional (e.g. independent) tasks by their unique

��,� ��,�

��,�

��,�

��,�

��,�

��,�

stage 1 stage 2 stage 3 stage 4 stage 5

segment 1

segment 2

segment 3

��,�

Figure 1. Fork-join model as used in OpenMP or Romain replication
framework [8]. A fork-join task can be subdivided into vertical stages and
horizontal segments.

precedence relation semantics. The task starts the first stage
with a sequential segment and in the second stage it forks
into multiple parallel segments. After all parallel segments
have finished a join-construct synchronizes the execution and
the next sequential segment starts. Execution continues this
way until the task terminates.

There are several ways how embedded programmers al-
ready use fork-join constructs especially with focus on new
parallel hardware architectures. Tasks can be parallelized
and mapped to multiple cores to speed up code paths. This
is usually done by using parallel programming techniques
(e.g. OpenMP [18]). Here the programmer splits a task into
parallelized and sequential segments. Sequential segments
are executed on a single resource, whereas parallel segments
are distributed (forked) across multiple cores.

Also safety-critical applications such as active steering
and autonomous driving can benefit from the vast number
of cores by using them for hot redundancy in order to
increase reliability on future potentially unreliable hardware
[4]. Redundant copies of the same application are executed
on several cores and intermediate results are compared on
the fly. Self-checking redundant multithreading (Romain
framework) was implemented in the L4 Microkernel [8].
Copies of the application run in isolation until interaction
with the environment occurres (i.e. a system call). In this
case, the operating system waits until all copies of the
process have data available, but data is only forwarded
after majority voting is performed. In fact, this behavior is
precisely modeled by a fork-join task as shown above.

We believe, that there will be no immediate technology
jump from single-core to massively parallel many-core archi-

2013 25th Euromicro Conference on Real-Time Systems

1068-3070/13 $26.00 © 2013 IEEE

DOI 10.1109/ECRTS.2013.31

215

2013 25th Euromicro Conference on Real-Time Systems

1068-3070/13 $26.00 © 2013 IEEE

DOI 10.1109/ECRTS.2013.31

215

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 28,2023 at 20:06:34 UTC from IEEE Xplore. Restrictions apply.

Peter Hu

tectures but rather a gradual update. Thus, traditional sequen-
tial software and parallel software will coexist on the same
cores and will partially interfere with each other. Obviously,
this interference caused by local scheduling effects must be
considered when validating real-time constraints.

Contributions: The main contribution of this paper is a
worst-case response-time analysis for fork-join task graphs
mapped to multi-core architectures using partitioned fixed-
priority scheduling. Contrary to related work, we consider
task interference with higher priority workload such as
sequential tasks as well as higher priority fork-join tasks.
We show the applicability and apply the presented approach
to the Romain redundancy framework [8].

The paper is structured as follows: First, we discuss
related work. In Section III we discuss our system model and
further assumptions. In Section IV, we study the impact of
fork-join tasks on independent tasks. The main contribution
is the response time analysis of fork-join tasks presented
in Section V. In Section VI we apply the methodology to
real-world examples extracted from the Romain framework.
Finally we conclude the work in Section VII.

II. RELATED WORK

Task-parallel programming models facilitate splitting ap-
plication logic into sequential and parallel parts. Toolk-
its, such as OpenMP [18] and Intel’s Thread Building
Blocks [13] support the programmer by automating most
of the parallelization and synchronization work. However,
such runtimes make real-time analysis harder, which is a
point we address in this paper.

Classical response-time analyses are available from real-
time research for a large variety of different scheduling
policies. They can be directly applied to single processor
systems. For example, when computing the worst-case re-
sponse time of a task, which is the largest time from its
release until completion, one can rely on the busy window
technique [16, 25]. Schliecker et al. provided an extension
of the busy window approach in [23] to consider the
effects of shared resource conflicts as often seen in mul-
ticore architectures (e.g. memory controller, shared busses).
Lakshmanan et al. presented the partitioned multiprocessor
scheduling in [15] and proved utilization bounds for par-
titioned deadline-monotonic scheduling (PDMS) in which
task mapping is fixed. Holenderski et al. [12] addressed
multi-resource scheduling in which parallel tasks can access
local and global resources which can be preemptible as
well as non-preemptible. In that scope a generalized shared
resource protocol (Parallel-SRP) was presented. Baruah et
al. presented a generalized parallel task model [2] which
also supports fork-join tasks and study the schedulability
under EDF and conclude that EDF has a speedup bound
of 2. Fork-join task models in particular were considered
in [21], the presented model is compatible with our work.
The authors decomposed fork-join task constraints into a
set of sequential deadline constraints under implicit deadline
assumption. Based on this, schedulability bounds for global
EDF scheduling were given. Lakshmanan et al. introduced a

R

R

R

R

Core Core

Core Core

Figure 2. Standard multi-core architecture. Processing elements are
connected to an on-chip network. Tasks are mapped to cores and scheduled
by an operating system.

stretch transformation in [14] in order to fracture workload
as little as possible.

There exist a large variety of scheduling and mapping
techniques to handle fork-join tasks such as [17]. Here
deadlines were assigned to a fork-join task and an EDF-like
scheduler was used to schedule all subtasks in a fork-join
task independently. In [10] an algorithm was given to map
tasks to cores under a partitioned multiprocessor scheme.
Fork-join decomposition and priority assignment were put
together in [9] in scope of RT-OpenMP.

Most of related work in the field of parallel task graphs
only considers global EDF or variations thereof under im-
plicit deadline assumptions (i.e. [6, 15, 2, 21, 9]). To the
best of our knowledge no response time analysis is yet
available for fork-join workloads under partitioned fixed-
priority scheduling.

III. ASSUMPTIONS, SYSTEM AND TASK MODEL

We consider a multi-core system consisting of multiple
processing elements connected by a communication fabric
such as a network on chip (NoC). An example for such
an architecture is depicted in Figure 2. We assume that
tasks are managed by an operating system and are statically
mapped to individual cores. This is a valid assumption,
since partitioned scheduling schemes are widely used (e.g.
AUTOSAR [1]) and well understood [5].

Additional communication overhead such as NoC over-
head, cache coherency traffic or shared resource accesses
will not be explicitly modelled in this paper (i.e. we assume
that any overhead is accounted in the execution times or
application graph as described below).

A. Task Model

Before describing the properties of a fork-join task, it must
be highlighted that we support two types of tasks in our
system.

• independent tasks and
• fork-join tasks

An independent task τ executes for at most time C once
it is activated, is mapped to one core denoted by M and
has a static priority p. We assume preemptive fixed-priority
scheduling, so a high priority task can preempt a low priority
task at any time.

A fork-join task Γ is an extension of an independent task
and consists of multiple stages with further data dependency.
A fork-join task as shown in Figure 1 is a directed acyclic
graph consisting of a set of independent tasks and edges
between tasks which describe precedence dependencies.

216216

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 28,2023 at 20:06:34 UTC from IEEE Xplore. Restrictions apply.

Peter Hu

Peter Hu

In any fork-join graph, we can identify segments and
stages as annotated in Figure 1. In that sense, a segment can
only be started once all segments released in the previous
stage have finished their execution. Each segment is modeled
by an independent task, thus it has a worst-case execution
time, priority and unique mapping. Furthermore, we assume
that events are queued at the first stage of a fork-join task,
so that only one event at a time (fifo) is processed. A queued
event is admitted, once the previous event exits the last stage.
Nested forks in which only some segments have common
synchronization points are not supported.

In the previous section we motivated the use-case for
sequential and parallel stages, however this concept can be
generalized. It can be observed that a sequential stage is
equivalent to a parallel stage consisting of only one segment.
Thus, we do not need to differentiate between sequential and
parallel stages, since the number of segments in a stage is
not restricted.

Now we establish some short-hand notations to reference
individual segments and their respective properties. A fork-
join task Γ is represented by a set of regular tasks which
we call subtasks τσ,s. Here, τσ,s is the σ-th segment in the
s-th stage as can be seen in Figure 1. Similarly, a fork-
join task is parametrized by a set of execution times and
priorities Cσ,s, pσ,s one for each subtask τσ,s. For now, we
assume that all subtasks in one segment are mapped to the
same core. That is all tasks in the same row in Figure 1 are
mapped to one core. Thus σ implicitly encodes the mapping
for fork-join tasks, and we can say τσ,s is mapped to core
σ. In that sense σ can be a segment as well as a core.

B. Event Models

The dataflow into a task (i.e. fork-join or independent)
is modeled with the help of event models. Event models
abstract the activation of tasks from an actual trace by
representing only the worst-case behavior.

Following this concept the arrival curve η(Δt) describes
the maximum number of events which can arrive during
any given time window Δt at the input and be queued
for processing. Thus, a given event model η is always a
conservative approximation for any actual event trace that is
smaller than η.

An alternative representation is the notion of a minimum
distance between n subsequent events δ(n). As shown in
[24], both representations η and δ are pseudoinverse and
can be converted to each other.

δ(n)= min
Δt≥0,Δt∈R

{Δt|η(Δt)≥n} (1)

η(Δt)= max
n≥1,n∈N

{n|δ(n)≤Δt} (2)

Standard event models [20] such as periodic with jitter,
sporadic and others can be expressed in this way. The δ
function for a bursty input with a given period P , jitter
J and minimal distance dmin between any two events is
defined as:

δ(n)=max((n− 1)dmin, (n− 1)P − J) (3)

After describing the model which is used throughout the
paper, we can now define the response time which we want
to derive.

Definition 1 (Response Time). The response time of an
event of task τ is the time from the arrival of the event
until it has fully been processed.

Definition 2 (Fork-Join Response Time). The response time
of an event of fork-join task Γ is the time interval defined
by the time when the event arrives at a fork-join task until
it leaves the last stage.

The worst-case (fork-join) response time R is an upper
bound to any response time which can be observed.

To obtain the worst-case (fork-join) response time, we will
use the busy-window approach. Before we dive into fork-join
specific concepts, we establish general notions as used in
any busy-window analysis. However, contrary to established
definitions we first give a generalized definition of the
busy window concepts. This is necessary since traditional
definitions (i.e. those given in [16]) do not apply in our case
as we will see later.

Definition 3 (Busy Window). A busy window w of a task
is the time interval in which all response times of the task
depend on the execution of at least one previous activation
in the same busy window, except for the very first activation
of the task.

Or informally rephrased: the busy window is the time
interval in which events released earlier have a “timing
effect” on events released later. Naturally, only activations
inside the largest busy-window w need to be evaluated [16].

Definition 4 (Multiple-Event Busy Time). The worst-case
multiple-event busy time B(n) of a task is the largest
time interval from the arrival of the first activation until n
consecutive activations of the task have been fully processed,
assuming all events arrive in the same busy window.

Definition 5 (Multiple-Event Queuing Delay). The worst-
case multiple event queuing delay Q(n) of a task is the
largest time interval from the arrival of the first activation
until the n-th event receives service for the first time under
the assumption that all events arrive in the same busy
window.

We now show how the largest busy window can be
obtained from the multiple-event busy time and queuing
delay.

Theorem 1. The busy window can be retrieved by:

w= min
n≥1,n∈N

{B(n)|Q(n+ 1)<δ(n+ 1)} (4)

Proof: The proof is by contradiction. We assume there
exists an even larger busy window ŵ which includes even
more activations than those in w. We can conclude that
according to eq. 4 busy window ŵ contains at least one
event n̂ for which Q(n̂)<δ(n̂).

217217

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 28,2023 at 20:06:34 UTC from IEEE Xplore. Restrictions apply.

Peter Hu

��
�,�

�	
��

��
�,�

��
�,�

��

��

��
�,�

�	
��

��
�,�

��
�,�
��

�

�� ��

Mapping

��
�,�

Γ�

�� �� �� �� �
 ��

Taskset

��
�,�

��
�,�

��
�,�

��
�,�

��
�,�

Independent tasks

Figure 3. Example task set and mapping as used for illustrative purposes.
Two cores, one fork-join task Γ2 and some individual tasks.

However, this implies that the event n̂ could get service
prior to its actually occurrence. This means that the queuing
delay of the actual occurrence of n̂ cannot be affected by
previous events. If the queuing is not affected by previous
activations, then the response time can also be not affected.
This violates the definition of a busy window in which the
response time of n̂ must be influenced by at least one event
released earlier.

Theorem 2. An upper bound for the response time of the
n-th activation in a busy window can be obtained by:

R(n)=B(n)− δ(n) (5)

Proof: B(n) is by definition an upper bound on the
processing time for n events, and δ(n) is by definition a
lower bound for the arrival time of n events. Thus we can
conclude that the difference is an upper bound.

The worst-case response time is the largest among all:

R+= max
1≤n≤η(w)

R(n) (6)

IV. RESPONSE-TIME ANALYSIS OF INDEPENDENT

TASKS

We now derive the worst-case response time for any
independent task τi which is not part of a fork-join task.
Contrary to systems which solely consist of independent
tasks, an independent task τi can be preempted not only
by independent tasks but also by fork-join tasks Γj . The
following analysis includes these timing effects. To illustrate
the effects caused by a fork-join tasks on an individual task
we use the example task set as shown in Figure 3. In the
example we have six independent tasks as well as one fork-
join task mapped to two cores (Core 1, Core 2). The fork-
join task consists of three stages and two segments. We
now demonstrate how to obtain the response time of task
τ3 running on Core 1. We chose this task as an example,
since it has a lower priority than all subtasks of Γ2 as well
as τ1.

Given that we know Q and B, the worst-case response
time can be derived. We now establish formulas to retrieve
those functions for independent tasks. The multiple event
busy time as well as the multiple event queuing delay can

��
�,�
��
�,�
��
�,�
��
��

t �� �

� = � � = �

Core 1

�� � , �� � ,��(�)
�� �

��(�)

��

�� �

Figure 4. Worst-case schedule for independent task τ4 running on core 1.
Queuing delays as well as multiple-event busy times are indicated for the
first two activations.

be computed by the following recurrence relations:

Bi(n)=n · Ci + Ii,IND(Bi(n)) + Ii,FJ(Bi(n)) (7)

Qi(n)=(n− 1) · Ci + Ii,IND(Qi(n)) + Ii,FJ(Qi(n)) (8)

These formulas are analogous to related work but include
additional fork-join interference. Here n·Ci is the processing
time required to execute n activations of task τi. The inter-
ference Ii,IND(Δt) is an upper bound for workload caused
by higher priority independent tasks in any time window
of length Δt. Similarly, Ii,FJ(Δt) denotes the interference
caused by fork-join (sub-) tasks of higher priority mapped
to the same core.

The higher priority interference of independent tasks can
be classically computed [16] by considering all tasks that
are of higher or equal priority (denoted by hpind).

Ii,IND(Δt)=
∑

∀τj∈hpind(i)

ηj(Δt) · Cj (9)

To compute the interference caused by fork-join tasks, it is
necessary to derive the event model at the input of subtasks.

Theorem 3. The number of events that arrive in some busy
window of length Δt at the input of a subtask τσ,si can be
conservatively approximated by the input event model ηi of
the corresponding fork-join task Γi assuming no events are
queued at the input of the fork-join task:

Proof: The proof is by contradiction. Assume a sub
event model η′ larger than ηi. This implies it is possible to
observe more events at a subtask inside the fork-join task
than events arrive before the fork-join task. Since only one
event at a time can enter the fork-join task, and the number
of events must be preserved, the hypothesis must be rejected.

This is intuitively shown in Figure 4, for each activation
of Γ2 each subtask is activated once in a cascading fashion.
Analysis-wise, it is equivalent to assume that each stage
is activated together with the entire fork-join task, rather
than considering the end of the predecessor stage. This is
because the actual analysis is agnostic of the actual release
time of an interfering job as long as there is a case where
the job contributes to the interference. With respect to the
worst-case response time, stages are executed in a back-to-
back fashion. If the first stage contributes to the inference,

218218

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 28,2023 at 20:06:34 UTC from IEEE Xplore. Restrictions apply.

��
�,�

��
�,�

��
�,�

����

stage 1 stage 2 stage 3 stage 1 stage 2 stage 3

� 1 = ��

� 2 = ��

� 2 = ��

� = 1 � = 2

„winning“
waiting for core 2

Core 1

event
execution waiting due to

local interference

Figure 5. Effect of multiple events (i.e. n=2). Each event cascades through
all three stages. Effects of waiting induced by core 2 is indicated as a red
bar (but core 2 is not explicitly shown). Higher priority interference is
denoted as IIND. Queuing delay as well as the multiple event busy times
are shown for the first two events. Note that B(1) as well as B(2) end at
the end of the stage, since the completion times are delayed by core 2 (red
bar).

then all other stages will contribute. Thus, for the sake of
simplicity we assume that each stage is activated together
with the entire fork-join task (i.e. the first stage). The effect,
when activations of a fork-join task are already queued due
to inter-core blocking of subtasks is not considered in this
work. Such effects can be incorporated by the approach
shown in [22].

Hence the interference by higher priority fork-join tasks
is given by

Ii,FJ(Δt)=
∑

∀τσ,s
j ∈hpfj(i)

ησ,sj (Δt) · Cσ,s
j (10)

=
∑

∀τσ,s
j ∈hpfj(i)

ηj(Δt) · Cσ,s
j (11)

Here, hpfj is the set of all higher priority fork-join subtasks
which are mapped to the same core as the task under
analysis, τi.

V. RESPONSE-TIME OF FORK-JOIN TASKS

Similar to the previously presented analysis of indepen-
dent tasks, we also use the busy-window approach to derive
the response time for fork-join tasks. However, previously
introduced formulas cannot directly be applied to fork-join
constructs. Mainly, because the behavior of the fork-join
task depends on a complex interaction between multiple
cores. That is, some segments in one stage finish earlier
than others, inducing a “waiting time” in which one or more
cores are potentially idle. This is the reason why we cannot
directly apply the busy-window equations and also why we
introduced the more generic busy-window definitions.

This section is organized in the following way: first, we
discuss the response-time algorithm and in a second step we
prove its conservatism. Generally, we use a greedy algorithm
which iterates over stages. That is, first the finishing time of
stage 1 is computed, than the finishing time of stage 2 and
so on. The finishing time of the last stage is the response
time.

Before we go through the analysis, we must highlight the
relation between events and stages. An example is shown

in Figure 5. The Gantt diagram shows the behavior on
core 1, where IIND denotes the interference. Hatched (red)
bars denote where core 1 has to wait for core 2 to finish
the previous stage, although the activity on core 2 is not
explicitly shown in this figure. The first event n=1 as
indicated by the arrow, arrives right at the start of the
busy window. Obviously, this event ripples through all three
stages. The second event (n=2) again cascades through all
three stages, thus the first two events together execute a chain
of six stages in total. We can conclude, that the behavior
of two events is equivalent to the behavior of one event
consisting of six stages. Without loss of generality, we model
the behavior of multiple events by repeating the sequence
of stages assuming the initial graph consists of smax stages:

τσ,s≡τσ,ŝ with

ŝ=s (mod smax) (12)

Here, the ≡ operator refers to all task parameters such as
priority and execution time.

Now, similar to the multiple event busy time for inde-
pendent tasks, we can define a stage-completion time for
fork-join tasks.

Definition 6 (Stage-Completion Time). The stage-
completion time

−→
B s of fork-join task Γ is the largest time

interval from the start of the busy window until all segments
in the s-th stage have executed.

Similarly, we can define the window from the start of a
stage to the end of that stage by using the completion times.

Definition 7 (Stage-Completion Window). The stage-
completion window

←→
B s is defined as the relative time

window associated with the completion of the s-th stage:
←→
B s=

−→
B s −−→B s−1 (13)

The stage-completion time can be used to formulate the
multiple event busy time by evaluating n · smax stages.

B(n)=
−→
Bn·smax (14)

Now we investigate how to obtain the stage-completion
times of the example fork-join task Γ2 as used in the
previous section. Figure 6 shows the corresponding Gantt
diagram. Naturally, all segments in the first stage of Γ2

can start executing independently. In the worst-case scenario
both segments are preempted by the worst-case interference
(i.e. τ1 and τ5).

As it turns out, in this particular example the segment
which executes on core 2 takes longer and gives the stage-
completion time B1. The light blue event on core 1 is a
non-critical event, as it has no influence on B1 whether a
non-critical event actually arrives in B1 or not. Respectively,
we say that activations on core 2 were critical events since
they contributed to the worst-case for that stage.

We say core 2 has “won” the first stage because it
contributes to the worst-case behavior of that stage and we
say that core 1 has “lost” that stage because it did not
contribute.

219219

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 28,2023 at 20:06:34 UTC from IEEE Xplore. Restrictions apply.

��
�,�

��
�,�

��
�,�

t

Core 1��

��
�,�

��
�,�

��
�,�

��

 �(�)

 �(�)

Core 2

„winning“ core

critical path

non-critical event

critical event

delayed event
on „losing“ core

��

��

��

waiting due to
local interference

Figure 6. Illustrative example of the worst-case scheduling behavior of the
first Γ2 event. Stages are executed one after each other, once the previous
stage has finished. The input event model δ is given for tasks τ1 and τ5
above and below the Gantt diagram. Stage-completion times are shown for
the first event of Γ2, n=1.

Obviously, in every stage there is only one segment
which “wins”. If two segments show equally large stage-
completion times a winner can be chosen, all events of
the “losing” stage are guaranteed to be considered in the
following stages, as explained later. In that sense, events will
be accounted in a different order. By choosing a different
winner the stage completion time of following stages cannot
be increased.

Thus a critical path spans across segments over time (cf.
red arrow Figure 6). Note that there might exist multiple
critical paths of the same length. However since they are all
of the same total length it is sufficient to identify one.

Definition 8 (Critical Path). The critical path function ρσ,s

is 1 if σ contributes to the completion time in the s-th stage
and 0 if it does not.

The critical path can be computed by evaluating the which
segment maximizes the stage completion.

Definition 9 (Stage-Completion Window Candidate). The
stage-completion window candidate

←→
B σ,s

i is the time in-
terval from the start of the s-th stage of fork-join task Γi

until the stage is completed on core σ, given previous stage-
completion times

−→
B σ,s′ , s′<s were maximized

At this point we can also formalize the concept of
“winning” a stage and thus the critical path function. A core
“wins” a stage if the stage-completion window candidate is
the largest among all others.

ρσ,s=

{
1 if σ=argmaxσ

(←→
B σ,s

i

)
0 else

(15)

The stage-completion time can be computed from the
completion time of the previous stage plus the largest stage-

completion window candidate of the s-th stage, by comput-
ing a candidate for each core and choosing the largest.

−→
B s

i=
−→
B s−1

i +max
∀σ

(←→
B σ,s

i

)
(16)

Computing the stage-completion time of the first stage is
straight forward, as seen in the previous example. However,
for the second stage in Figure 6 there are two effects that
need to be considered:

1) non-critical activations which did not contribute to
previous stages can be delayed and fall in the next
stage (blue arrow). Hence it is not conservative to
assume that events arrive as early as possible if a
previous stage was “lost”.

2) previously accounted critical activations (e.g. the first
three-event burst) do not need to be reconsidered in
future stages (“pay burst only once”).

Thus, it is evident that the event model equations δ / η cannot
be directly be applied to the second stage. Therefore, a
transformation is required to find the worst-case event arrival
under the fork-join model.

Definition 10 (Sub Event Model). A sub event model
ησ,s(Δt) of a task (or subtask) is an upper bound on the
largest number of events observable in any interval Δt of
stage s on core σ, given previous stage-completion times
were maximized.

Theorem 4. The sub event model ησ,sj of some task τj can
be computed from the input event model ηj and the number
of critical events used in previous stages by the following
recurrence relation:

ησ,sj (Δt)=min

(
ηj(Δt),

ηj(
−→
B σ,s−1

i +Δt)−∑
∀r∈N,r<s

ρσ,r · ησ,rj (
←→
B σ,r

i)

)
(17)

Proof: The proof is by induction over stages. Obviously,
for the first stage the derived sub event model ησ,1 is
conservative, as it will evaluate to η(Δt) which is by
definition always a safe bound for any interval of length
Δt in any stage.

For the induction step, we consider some stage s. We
know that from the start of the busy window until the end

of Δt in the s-th stage a total time of
−→
B σ,s−1 + Δt is

spent. In this time, there can be at most η(
−→
B σ,s−1 + Δt)

events in total. Of these events, some were critical and have
been accounted for in previous stages, r<s. By definition
the number of activations accounted in previous stages r

is bound by recursively applying ησ,r(
←→
B σ,r) but only if σ

“won” that stage (i.e. ρσ,r=1). We conclude, that the number
of events left in the s-th stage is conservatively bounded by
eq. 17.

Now that all key concepts are introduced we can compute
the stage-window completion candidate.

Theorem 5. The stage-completion window candidate
←→
B σ,s

i

220220

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 28,2023 at 20:06:34 UTC from IEEE Xplore. Restrictions apply.

of fork-join task Γi can be computed using the following
recurrence relation:←→

B σ,s
i =Cσ,s

i + Iσ,si,IND(
←→
B σ,s

i) + Iσ,si,FJ(
←→
B σ,s

i) (18)

Where Iσ,si,IND is an upper bound on the interference caused
by higher priority interference of independent tasks and Iσ,si,FJ
bounds the higher priority interference of other fork-join
tasks. The interference can be computed by using the sub
event model (eq. 17):

Iσ,si,IND(Δt)=
∑

∀τj∈hpind(i)

ησ,sj (Δt) · Cj (19)

Iσ,si,FJ(Δt)=
∑

∀τσ,s
j ∈hpfj(i)

ησ,sj (Δt) · Cσ,s
j (20)

Proof: Naturally, the subtask of execution time Cσ,s

must be executed plus all higher priority interference re-

leased during
←→
B σ,s

i . The interference of higher priority tasks
(fork-join and independent) is maximized as the number of
events in the s-th stage is maximized by the sub-event model.
The rest is analogous to the proof as in [16].

Using the established formulas we can already compute
the multiple event busy time, but not decide how many
activations need to be considered. This is done using the
busy window concept introduced in eq. 4. To obtain the
busy window, we need to know the queueing delay for fork-
join tasks which has not been introduced yet. The general
concept is analogous to the multiple-event busy time, thus
we discuss it briefly.

Definition 11 (Stage Queuing Time). The stage queueing
time

−→
Qs

i is the largest time interval from the start of the busy
window until all segments of fork-join task Γi get service in
the s-th stage.

Definition 12 (Stage Queuing Window Candidate). The
stage queuing window candidate

←→
Q σ,s

i is the largest time
interval in which subtask τσ,si is blocked in the s-th stage by
higher priority task interference prior to its first admission.

To evaluate the queuing delay of the n-th activation, we
must check the largest stage queueing time of the first
segment of that activation. Analogous to the completion
formulas we can derive the stage queuing formulas:

Qi(n) =
−→
Q

smax·(n−1)+1
i (21)

−→
Qs

i =
−→
B s−1

i +max
∀σ

(←→
Q σ,s

i

)
(22)

←→
Q σ,s

i =Iσ,si,IND(
←→
Q σ,s

i) + Iσ,si,FJ(
←→
Q σ,s

i) (23)

Using above formulas, the worst-case response time can
be calculated accurately. However, we made an assumption:
it is conservative to greedily maximize stage completion
windows. It is not intuitive that such a construction yields
the global worst-case. Thus, we will now show that such
an assumption is valid. To prove this, we need to show the
following: A smaller completion window can only lead to
a smaller stage completion time of subsequent stages. By
promoting a losing candidate to a winner, all subsequent

stages completion times will be decreased.

Theorem 6. Maximizing each stage completion window←→
B σ,s independently yields the largest stage completion time−→
B σ,s′ for any subsequent stage s′>s.

Proof: The proof is by contradiction. We assume a

small stage completion window
←̂→
B

σ,s

in which segment
σ wins. Then the number of critical events of task τj

in that stage is given by nc=ησ,sj (
←̂→
B

σ,s

). Obviously nc

must be less than or equal to the number of events that

would have been used by a greedy approach ησ,sj (
←→
B σ,s).

We call that difference nd. The stage completion time−→
B for stages beyond s can only increase if the amount
of interference I in future stages increases. Similarly, the
interference can only increase if the number of events in
subsequent stages increases. Equation 17 gives the number
of events in a stage if previous stage completion windows
were maximized. However, for stages which succeed s, we
cannot use the given equation. We now must subtract fewer
critical activations, since we deliberately omitted nd. We can
rewrite the sub-event model equation 17 and add nd to one
of the sub event models according to our hypothesis:

ησ,s
′
(Δt)=min(η(Δt),

nd + η(
−→
B σ,s′−1 +Δt)−∑

∀r∈N,r<s′
ρσ,r · ησ,r(←→B σ,r)) (24)

Thus, we see that subsequent stages will at most see nd

more events, if we chose a smaller stage completion window
for a previous stage. The additional interference gained in
subsequent stages can be bounded by the time we shortened
any previous completion window. We can conclude that by
shortening a stage completion window we cannot increase
the total stage completion time by more than we cropped it.

By using a similar reasoning we can show that promoting
a losing core, can never lead to higher interference in the
following stages.

VI. EXPERIMENTS

In this section we first measure the performance character-
istics of some applications taken from the MiBench bench-
mark suite [11] executed in the Romain framework. Then
we show how to transform these sample applications into
a fork-join model. After we obtained a realistic application
model we use these models together with a synthetic task
set consisting of tasks with random characteristics in order
to show some effects caused by fixed-priority scheduling.
Therefore, we have implemented the analysis approach using
the pyCPA framework [7].

A. Romain

To show the applicability of our approach we evaluated
the Romain framework with respect to timing. Romain is

221221

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 28,2023 at 20:06:34 UTC from IEEE Xplore. Restrictions apply.

master replica #3

master replica #1

t

replica #2

replica #1

replica #2

replica #3

Figure 7. Replicated execution using Romain

a framework that provides software-implemented redun-
dant multithreading [19] to user applications on top of
the L4/Fiasco.OC [26] microkernel. We only give a brief
overview here, as a detailed description of Romain was
already published by Döbel et al. [8].

Romain spawns multiple replicas of an application, each
of them running in a dedicated address space to facilitate
fault isolation. Up to three replicas may be mapped to
dedicated cores for optimal performance or they can be run
on a smaller set of cores to save on resources. An addi-
tional master process maintains control of the replicas and
intercepts all interactions between replicas and the outside
world (e.g. system calls, page faults, CPU exceptions). The
master compares the replicas’ states and performs forward or
backward recovery if necessary. The whole approach works,
because the master process is in full control of all inputs that
go into the replicas and can therefore ensure that they always
execute deterministically between two state externalization
events.

Looking at an application’s execution as shown in Fig-
ure 7, we see a fork/join execution model: One replica
acting as the master spawns the other replicas. Thereafter,
the replicas execute user code concurrently. Once they reach
a point where they externalize state, concurrent execution is
interrupted and one of the replicas executes master code
in sequential execution mode. After handling the event
in master mode, control is returned to concurrent replica
execution.

B. Experimental Setup and Evaluation

We show the applicability of our scheduling analysis by
using results obtained from replicating a set of benchmarks
from the MiBench benchmark suite [11] using Romain. To
obtain reasonable timing models, we executed the bench-
marks with one, two, and three replicas respectively on a
state-of-the-art Intel Core i7 processor with 2.6 GHz 1. We
measured their execution times and specifically observed the
time spent executing sequentially (state comparison, system
call handling etc.), as well as the time spent executing
concurrently (executing user code) in order to derive the
execution times Cσ,s as used in the analysis. Thus, first the
number of stages is counted and the execution time spent
in each stage is traced. The number of parallel segments is
fixed to 2/3 due to the dual/tripple modular redundancy use
case.

1Romain is only available for x86 architectures

Table I
NUMBER OF STAGES PER BENCHMARK

Benchmark Stages Total C [ms]
Security/Rijndael 14 4.9

Security/SHA 27 1.53

Automotive/Bitcount 8 271.2

Automotive/QSort 358 18.35

Networking/Dijkstra 233 9.05

0 5 10 15 20 25 30
stage #

10-4

10-3

10-2

10-1

100

101

Ex
ec

ut
io

n
tim

e
[m

s]

Sha

Repl. 1
Repl. 2
Repl. 3

computation

I/O calls

Figure 8. Execution times of segments in SHA benchmark. Most stages
prepare I/O (e.g. printf).

In total we ran each benchmark 150 times to get a
sufficiently large sample size. Then we removed the first
samples which show major transient anomalies caused by
memory layout organization. These where mostly page faults
because the benchmarks did not lock pages, nor mark them
as sticky in advance. These page faults only appear once
at the beginning of the execution trace and vanish in the
steady state as the memory is fully mapped. Also embedded
processor without a MMU will not show such a behavior
since the memory layout is fixed at design time. Since
the benchmarks are executed on a live system, we see
interference from interrupt handlers (i.e. timer) from time to
time which tamper with the execution-time measurements.
To filter these effects, we chose the execution times as the
0.9-quantile over the used samples per stage, assuming that
rare outliers are caused by IRQ handlers.

We found that in most cases state comparison is in
the order of a few μ seconds or less and compared to
the computation-heavy segments of the benchmarks it is
negligible small. Additionally, the system calls themselves
may block due to hard drive access and other hardware
interaction which is not an inherent part of the benchmark
unless the operating system and hardware performance shall
be evaluated which is not the case. Thus for the following
experiments, we deliberately excluded time spent in system
calls and only focus on usercode which is the intrinsic part
of the benchmark.

C. Execution Time Measurements

An overview of the benchmark data such as the total
execution time and the number of stages per benchmark
can be found in Table I. We see, that the number of stages
drastically differs from benchmark to benchmark ranging
from 8 to 358 stages. This is mostly due to different I/O

222222

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 28,2023 at 20:06:34 UTC from IEEE Xplore. Restrictions apply.

Figure 9. Execution times of segments in Dijkstra benchmark. I/O phases
and computation bound phases alternate.

Figure 10. Rijndael: 14 stages executed on 2 cores. Lowest priority on
both cores.

patterns of the benchmarks. In most cases I/O is caused
by printfs used to print (intermediate) results. Figure 8 and
9 show representative execution time behavior and other
benchmarks show a very similar pattern. The diagram shows
the stage number on one axis and the execution time on
the other. As we traced replicas independently the execution
times is shown per replica.

D. Evaluating Romain Scenarios

As a replica resembles a segment in a fork-join task, we
are able to model the Romain Framework as well as the
benchmarks using the previously introduced fork-join task
model. For the following experiment we use a dual core
with the same clock frequency as the architecture used for
the benchmarking (2.6 GHz).

In these experiments we evaluate the worst-case response
time of the Bitcount and Rijndael benchmarks in various
configurations. Therefore, we mapped 20 independent tasks
as well as one fork-join application on both cores and varied
the utilization in order see the effects on the response time.
For the task parameters of the 20 independent tasks we use
UUniFast algorithm [3].

First, we use the Rijndael benchmark (now referred to
as Γ), assuming it has the lowest priority and is activated
every 400ms. First, we map Γ on two cores (dual modular
redundancy setup). The results are shown in Figure 10. The
worst-case response time for the parallel case is fairly high,

Figure 11. Rijndael: Comparison of worst-case response times for sequen-
tial mapping and a parallel mapping - low priority. Higher ΔWCRT⇒
parallel mapping performs better.

considering that the execution time is in the order of 10ms.
After we made this observation, we compare the per-

formance of the parallel setup with a purely sequential
execution (Figure 11). In the sequential setup all segments
are mapped to just one core (the one with the higher load).
Such a mapping is called redundancy in time in case of
replication. The graph shows the improvement of a parallel
mapping over a sequential mapping.

Unexpectedly however is that the sequential mapping
performs better in terms of response-time in all considered
load configurations. In this setup, the stages will experience
worst-case interference every second stage, thus the more
contained sequential approach performs much better under
heavy interference. Note, that this result is not caused by
any overestimation from the analysis. That means it exists
an actual event trace that is contained in the event model
which causes such massive response times. In fact, the only
scenario in which a parallel mapping performs better in
terms of worst-case response time, is when Γ runs with
highest priority.

We repeated the same experiment with the Bitcount
benchmark (Figure 12) which has a significantly higher
execution time but fewer stages. The results are similar but
not as drastic. Response times for sequential and parallel
mapping are in the same order of magnitude. Actually, if
the priority is increased (priority level 3, instead of 10), the
parallelized workload has a performance advantage in almost
all load scenarios as shown in Figure 13. The experiments
suggest that especially the number of stages and interfering
tasks seems to have a high impact on the worst-case behavior
and a parallelization is not reasonable in all cases.

VII. CONCLUSION

In this paper we have presented a worst-case response
time analysis for fork-join tasks with arbitrary deadlines
as well as independent tasks under the influence of fork-
join tasks. We generalized the busy window approach by
reducing it to a completion time and queuing delay problem.
By applying the approach to the Romain framework, we
were able to show that parallel workloads may behave

223223

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 28,2023 at 20:06:34 UTC from IEEE Xplore. Restrictions apply.

Figure 12. Bitcount: Comparison of a sequential mapping and a parallel
mapping - low priority. Higher ΔWCRT⇒ parallel mapping performs
better.

Figure 13. Bitcount: Comparison of a sequential mapping and a parallel
mapping - high priority. Higher ΔWCRT means the parallel performs
better.

counterintuitive: In some cases the worst-case response time
is drastically larger compared to a sequentialized execution.
This can be explained by the fact that a fork-join task
experiences the worst-case interference of all cores in a
combined fashion. This effect is not due to a conservative
overestimation but is observable in real-world as long as the
correctness of the used event models is guaranteed. We could
show that a parallelization does not decrease the worst-case
response time in all cases and is connected to subtle design
decisions such as the number of stages and prioritization.
The most important open question is which configurations
impose the highest speedup and which setups should be
avoided. That is, what is the optimal stage, segment and
execution time as well as segment allocation trade-off for a
given application with respect to its response time. Future
work must also show how a partitioned fixed-priority scheme
performs compared to Gang scheduling and hybrid policies.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions to improve the

quality of this paper.

REFERENCES

[1] AUTOSAR GbR. Specification of Multi-Core OS Architecture v1.0.0.
http://www.autosar.org/, November 2009.

[2] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese. A generalized parallel task model for recurrent real-time
processes. pages 63–72, 2012.

[3] E. Bini and G. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Syst., 30:129–154, 2005.

[4] S. Borkar. Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation. IEEE Micro,
25(6):10–16, 2005.

[5] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son. New strategies for
assigning realtime tasks to multiprocessor systems. IEEE TRANSAC-
TIONS ON COMPUTERS, 44(12):1429–1442, 1995.

[6] S. Collette, L. Cucu, and J. Goossens. Integrating job parallelism
in real-time scheduling theory. Information Processing Letters,
106(5):180–187, 2008.

[7] J. Diemer and P. Axer. pyCPA - a pragmatic Python implementation
of Compositional Performance Analysis. http://code.google.com/p/
pycpa.

[8] B. Döbel, H. Härtig, and M. Engel. Operating system support for
redundant multithreading. In Proc. of EMSOFT, 2012.

[9] D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, and C. Lu. A
real-time scheduling service for parallel tasks. In Proc. of RTAS, 2012.

[10] N. Fisher, S. Baruah, and T. Baker. The partitioned scheduling of
sporadic tasks according to static-priorities. In Proc. on ECRTS, pages
10 pp. –127, 0-0 2006.

[11] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. MiBench: A free, commercially representative em-
bedded benchmark suite. In Proc. of WWC, pages 3–14, Washington,
DC, USA, 2001. IEEE Computer Society.

[12] M. Holenderski, R. Bril, and J. Lukkien. Parallel-task scheduling on
multiple resources. In Proc. of ECRTS, pages 233–244. IEEE, 2012.

[13] Intel Corporation. Intel R© Threading Building Blocks, October 2011.
[14] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-

time tasks on multi-core processors. In Proc. of. RTSS, pages 259
–268, 30 2010-dec. 3 2010.

[15] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned fixed-
priority preemptive scheduling for multi-core processors. In Proc. of.
ECRTS, pages 239–248, Washington, DC, USA, 2009.

[16] J. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with
Arbitrary Deadlines. Proc. 11th RTSS, pages 201–209, Dec 1990.

[17] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Techniques
optimizing the number of processors to schedule multi-threaded tasks.
In Proc. of ECRTS, pages 321 –330, july 2012.

[18] OpenMP Architecture Review Board. OpenMP Application Program
Interface, 3.1 edition, July 2011.

[19] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection
via simultaneous multithreading. SIGARCH Comput. Archit. News,
28:25–36, May 2000.

[20] K. Richter. Compositional scheduling analysis using standard event
models. PhD thesis, TU Braunschweig, 2005.

[21] A. Saifullah, K. Agrawal, C. Lu, and C. Gill. Multi-core real-time
scheduling for generalized parallel task models. In Proc. of RTSS,
pages 217 –226, 29 2011-dec. 2 2011.

[22] S. Schliecker, M. Negrean, and R. Ernst. Response Time Analysis
on Multicore ECUs with Shared Resources. IEEE Transactions on
Industrial Informatics, 5(4):402–413, November 2009.

[23] S. Schliecker, M. Negrean, and R. Ernst. Bounding the shared
resource load for the performance analysis of multiprocessor systems.
In Proc. of DATE, pages 759 –764, 2010.

[24] S. Schliecker, J. Rox, M. Ivers, and R. Ernst. Providing accurate event
models for the analysis of heterogeneous multiprocessor systems. In
Proc. of CODES-ISSS, pages 185–190, October 2008.

[25] K. W. Tindell, A. Burns, and A. J. Wellings. An Extendible Approach
for Analyzing Fixed Priority Hard Real-Time Tasks. Real-Time
Systems, 6(2):133–151, 1994.

[26] TU Dresden OS Group. L4/Fiasco.OC microkernel. http://www.tudos.
org/fiasco, 2012.

224224

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 28,2023 at 20:06:34 UTC from IEEE Xplore. Restrictions apply.

