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 PARALLEL SEQUENCING AND ASSEMBLY

 LINE PROBLEMS

 T. C. Hu

 IBM Research Center, Yorktown, New York

 (Received May 5,1961)

 This paper deals with a new sequencing problem in which n jobs with
 ordering restrictions have to be done by men of equal ability. Assume
 every man can do any of the n jobs. The two questions considered in this
 paper are: (1) How to arrange a schedule that requires the minimum
 number of men so that all jobs are completed within a prescribed time T,
 and (2) if m men are available, arrange a schedule that completes all jobs
 at the earliest time.

 MANY scheduling (or sequencing) problems can be formulated as fol-

 lows. Given n jobs with known times to perform each job and with

 technological ordering restrictions among the jobs, two questions that are
 often posed are the following.

 1. Assume that all jobs must be completed by tinme T, arrange a schedule that
 requires the minimum number of men. (It is assumed that men are of equal

 ability and every man can do any of the n jobs.)
 2. If m men are available, arrange a schedule that completes all jobs at the ear-

 liest time.

 Both problems are proposed in reference 1. Here we consider the sim-
 plified version of the above problems that assumes that all jobs require

 equal time and that when a man finishes a job he can immediately start on
 another. Lower bounds on shortest time and minimum number of men to

 complete the jobs are obtained for arbitrary ordering restrictions. When

 the ordering restrictions form a tree, which is the case in an assembly line
 problem, a condition is obtained for determining the minimum number of

 men required to finish the jobs within a prescribed time, and a very simple
 algorithm is found that will finish all jobs at the earliest time with a given
 number of men.

 Here we use the title 'parallel sequencing,' since the problem is to ar-
 range the n jobs in several sequences that start simultaneously. This is in

 distinction to the class of sequelncing problems solved by JOHNSON121 il
 which n jobs are to be put into a single sequence.

 Let N (i= 1, 2, * * *, n) be n jobs that have to be done with technological
 ordering restrictions, e.g., a hole in a part must be drilled before it is
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 842 T. C. Hu

 threaded, or, in a computation in which certain mathematical terms must
 be computed before other terms. Let each job require one unit of time.
 The whole ordering restriction can be represented by a graph G consisting
 of n nodes representing jobs and directed arcs representing ordering restric-
 tions. In order that the jobs represented by the graph G can actually be
 carried out, obviously, there should be no cycles formed by directed arcs
 of G. Otherwise, the graph G is arbitrary in general cases. In Fig. 1 an
 arbitrary graph is shown.

 Figure 1

 In Fig. 1, this would mean, for example, Nio must precede N5; N6, N7,
 and N8 must all precede N2; Nl1 must precede both N7 and Ns; and there
 are no ordering restrictions among N8, N3, and N5.

 We shall write: Ni>Nj if Ni must precede Nj, Ni-Nj if there is no
 ordering restriction between the two. Note that Ni>NJ and Nj>INk
 imply Ni> Nk while Ni-Ni and NJ Nk do not imply Ni'Nk, i.e., Ni form
 a partially ordered set. We shall call a node Nk a final node in a graph G
 if there does not exist a node Ni in G such that Nk> Ni. In Fig. 1, for
 example, N1 is a final node. Although a graph G may have more than one
 final node, we shall see, later, that the assumption of only one final node
 does not lose any generality. Hence, we shall assume that the graph G has
 only one final node in the following.

 A node Nj is called a starting node in the graph if there does not exist
 a node Ni such that Ni>Nj. In Fig. 1, for example, Nl1, N12, N13, and N1o
 are starting nodes. If N13 is finished, then N3 and N9 become starting
 nodes. In the process of assigning men to jobs, a node finished can be re-
 garded as removed from the graph. A node Nj is called a current starting
 node if there is no node Ni in the current graph such that Ni>Nj.

 A path in G is a sequence of directed arcs that represent ordering re-
 strictions among the nodes in the path. The length of a path is the number
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 Parallel Sequencing and Assembly Line Problems 843

 of directed arcs in it. For example, the path from Nio to N1 is of length 2
 and the two paths from N13 to NA are of lenigth 2 and length 3, respectively.

 LABELLING PROCESS AND LOWER BOUNDS

 IN WHAT follows, when we speak of labelling a node, we mean to assign a
 number to a node. All the nodes in the graph G are labelled in the follow-

 ing way.

 A node Ni is labelled with ai=xi+l if xi is the length of the longest
 path from Ni to the final node in G. The final node by the above rule
 would then receive the label 1. In Fig. 2, all numbers that appear in the

 nodes are the ai's of the nodes which appear in Fig. 1. The process of
 labelling is equivalent to finding the longest path from a node to the final

 node in G.

 Figure 2

 The labelling process can be done very quickly by starting with the final
 node and tracing backwards. Label all nodes 2 that connect with the

 final node by one arc, etc. If a node can receive more than one number,
 label it with the largest number it can receive.

 Let p (a) be the number of nodes Ni with ai= =a. In Fig. 2, for example,
 wehavep(l)=1,p(2)=4,p(3)=5,andp(4)=3. Lets(a) be the num-
 ber of starting nodes with ai=a. In Fig. 2, for example, s(l)=O, s(2) =0,
 s(3)=1, and s(4)=3. We shall write maxiai=a. In Fig. 2, a=4.

 Assume that we start from time t= 0. Nodes that are finished are con-
 sidered to be removed from the graph. As time goes on, the current graph
 will change. When we deal with a certain current graph, we shall let

 pt(a), st(a), and at be the quantities defined above, in the current graph.
 The subscript t is used to indicate that t units of time have passed when the

 current graph is obtained. These notations pt(a), st(a), at are meaning-
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 844 T. C. Hu

 ful only when the current graph is known or a definite process of removing

 nodes is known.

 Let To be the shortest time to complete all jobs in the graph. Let Tt
 be the shortest time to complete all jobs in a current graph which is ob-

 tained after t units of time. Then for a current graph with Et, regardless
 of how many men are available, it is clear that

 Tt> at. (la)

 In particular, we have To> a. (lb)

 Now, we shall study an inequality that is useful in getting lower bounds
 on the number of men required and also on the prescribed time to complete

 all jobs. Let a+c be the prescribed time where c is a nonnegative integer

 and let y be a positive integer.
 Let

 max[yl/(Y+ C) Ej_, p( a+l-j)]= l/(-*+ C) Ej=* p( a+l-ij)
 LEMMA 1. If (2) is true,

 yl1/(T*+c) 2- p(U+l-i); (2)

 then it is impossible to complete all jobs with y men in a+c units of time.

 Proof. The total number of nodes removed from the graph in t units

 of time with y men cannot exceed y t. Let t=,y*+c. Then the total
 number of nodes removed must not exceed y(y*+c) which by assumption

 (2) is less than Zji1 * p (a++ 1-j). Hence there exists at least one node
 with ai>a+] undone at t=,y*+c. By (Ia) we need at least

 TI*+C a + 1 -,y*

 units of time to finish the remaining graph. So we need a total of at least

 Ty*+C+ ( a+ 1 --y*) = a+c+ 1

 units of time to finish the original graph.
 In the next section, we shall use this result to give the minimum number

 of men that are required to complete all jobs within a prescribed time, in
 case the ordering restriction forms a tree. The result certainly is also of
 use in measuring the efficiency of an arbitrary proposed algorithm, although
 for an arbitrary graph, the lower bound on the number of men (if o+c is
 fixed first) or the lower bound on a+c (if y is fixed first) provided by (2)
 may be too low.

 For the graph with two or more final nodes, we can introduce an artificial
 node that is preceded by all final nodes in the graph. If we label the arti-

 ficial node with aoi=0 and for other nodes Ni, let ai be the length of the
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 Parallel Sequetncing anid Assemebly Line Problemrs 845

 longest path from Ni to the artificial final node, all the above discussion
 holds true, so that we can assume only one final node in G.

 OPTIMUM SEQUENCING

 AN ASSEMBLY line is usually designed to produce a single product that con-

 sists of several elementary parts. A joh Ni may either be making an ele-
 mentary part or the job of puttinlg several elementary parts together to

 make a more complicated part. The job of producing ani elementary part
 must, of course, precede the job of putting things together for which the

 elementary part is needed. Since an elementary part can only be used in
 one complicated part, the ordering restrictions is then a tree.t We shall

 consider from now on, only the case that G is a tree.

 In application, an assembly line consists of several subassembly lines

 in parallel. This model would either minimize the cycle time T for a given

 assembly line or the number of subassembly lines for a specified cycle time
 T. Or the final node of the tree may represent a certain mathematical

 expression where m is the number of parallel processors (i.e., arithmetic
 units) in a computer.

 When the graph G is a tree, the length of the path from Ni to the final
 node is unique, and the labelling process is much simplified. Also, because

 of certain properties of a tree, we are able to answer the two questions in

 the introduction completely.

 We shall first give the algorithm for finishing all jobs at the earliest time
 with a given number of men, illustrate it with an example, and then prove
 its validity. It is obvious that we caln only assign men to current starting
 nodes in a graph.

 Algorithm

 Preliminary: Label all nodes with ai=+ xi I where xi is the length of
 the path from Ni to the final node in the tree.

 ALGORITHM: If the total number of starting nodes is less than or equal to m,
 where me is the numnber of men available, then so are all starting nodes.

 If the total number of starting nodes is greater than m, choose it start-

 ing nodes with values of ai not less than those not chosen. In the case of a
 tie, the choice is arbitrary.

 The rule is then repeated for the remaining graph.

 In Fig. 3, for example, the ai of nodes Ni appear in the circles. If we
 have three men, then, according to the algorithm, we should choose three

 nodes among N16, N17, N18, and N19. Here we arbitrarily chose N17, N18,

 t Tree means a tree with one final node throughout the paper.
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 846 T. C. Hu

 and N19 and enclose them in a dotted eurve. The successive steps are
 self-explanatory. The whole graph is finished in eight units of time, which
 is clearly minimal.

 The algorithm has the following mechanical anology. Use metal rings

 to represent nodes, and tie the rings together by pieces of string of unit
 length, to obtain a model of the tree diagram. Now, hold the final node

 / \ f -_ )~~~~~~~~~~~~

 \ \ \ ~~Ng\
 / N7 4 N18 7 N 7 1

 /< \ NN

 (N126 ~ ~ / gN 6\\6

 t N4 \

 N, ~ ~ \

 -- ~~~N3

 Figure .3

 and let all the other riings go free. Then the algorithm is to cut off at most
 mn enld-rings at a time, with preference given to bottom enld-rings if there
 are more than m available for cutting.

 The algorithm can be described as 'cutting the longest queue.'
 Although the algorithm is intuitively plausible, the proof that it com-

 pletes all jobs at the earliest time is somewhat long.
 First we consider the first question in the first sectioii. If all jobs must

 be done within a prescribed time T, what is the minimum number of men
 required? We have seen from (lb) that the prescribed time must not be
 less thanl a. Let T-oa+c where c is a noninegative int eger, and let in be
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 Parallel Sequencing and Assembly Line Problems 847

 the integer satisfying

 m-1<1/(,Y*+C)E3- p(a+ I -j)_m~ M.(3)

 We assert that m is the minimum number of men required. It is clearly
 necessary to have m men as we have proved in Lemma 1 that it is impossible

 to complete all jobs with m-i men in a+c units of time. Now we shall
 prove that it is also sufficient.

 Let P(-y) be the set of nodes Ni with aio>&+1-j(j= 1, .,'y). We
 shall define an integer y' by the following conditions:

 1. Using this algorithm, remove starting nodes m at a time, at time units
 t =1, ., c', until the number of starting nodes is less than m. Remove all the
 starting nodes in the current graph at t = c' + 1. (c' is a nonnegative integer.)

 2. All nodes in P('y) are removed after c'+1 units of time.
 3. y' is the largest of such integers.

 In Fig. 3, for example, y' = 5. If the total number of starting nodes in the
 original graph is less than m, then we define -y'= 1. In general, 1? y''< a.
 (It should be noted that certain arbitrariness in the algorithm, i.e., remov-

 ing any nodes with the same labelling in the case of a tie, will not change

 y or any other arguments discussed below.)
 Let St(a) be the number of starting nodes (at time t) that have the

 labellings ai ea. Since the removal of a starting node either creates one
 or creates no starting node in a tree, St(a) is monotone decreasing as t in-
 creases for a fixed value of a.

 LEMMA 2. If it takes c'+ 1 units of time to remove nodes of P (y'), then for
 any time t> c'+ 1 all current graphs obtained by the algorithm will have
 Pt(at) <m, i.e., all nodes with the largest labelling in a current graph will be
 less than m in number.

 Proof. Assume for a time t'> c'+ 1, we have pt' (at',) > m; then all those
 nodes with the labelling at, must be starting nodes. So we have
 St' (ot,) > n. From the above discussion we have St(at,) > m for all t < t'.
 Therefore, there have always been enough starting nodes to make it possi-
 ble to remove nodes 'in' at a time. As all of these removed nodes have
 labellings of not less than at, = a4+ 1 -'y, this contradicts the fact that 'y' is
 the largest of such integers.

 Note that there are at most (c'+X))m nodes in P(y') where O<X<1.

 THEOREM. If the number of men m satisfies the condition (3), and if the
 graph of ordering restrictions is a tree, then all jobs can be completed within
 a+c units of time.

 Proof. By the definition of y*, if (3) is true, then

 1o/(+c) p( -jQ1 y+l-j) <m (4)

 or 2 ~~D 1 p(Q+1-j) < (_Y+c)m. 5
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 848 T. C. Hu

 Since Zi=- p(a+l-j) (c'+X)m,

 then from (5), we have

 c'+x<c+'Y

 or /<C+,y'-1+(1-X). (6)

 As c' and (c+,y'-1) are both integers and 0<1-X<1, we have

 c'<c+'y'-1. (7)

 As we can remove all nodes of PQ(y') in c'+ 1 units of time, it follows from
 (7) that we can remove all nodes of P(y') in (c+'Y'-l)+l=c+'y' units
 of time. By Lemma 2, we can remove the remaining nodes in ae-y' units

 of time. So we need totally at most c+^y'+ (a-'y') = o+c units of time.
 Therefore, it is sufficient to have m men.

 Now we consider the second problem: if m is the number of men avail-
 able, what is an algorithm to complete all jobs at the earliest time? We
 assert that the algorithm (cutting the longest-queue) completes all jobs at
 the earliest time. This can be seen as follows. Let m be given first, then
 either

 max4(1,/y)) 2 p( a+l-j)]_ m (8)

 or we can choose a smallest positive integer c ? 1 for which

 max4l/(y+c) 1jY p(a+ 1-j)] < m

 <max[Yl/(,y+c- ) S 1 (9)e -j]
 If (8) is true, then by the Theorem, we can finish all jobs within a units of
 time and from (lb) we see that a is minimal. If (9) is true, then from the
 Theorem, we can finish all jobs within a+c units of time, and from Lemma
 1, we see that it is impossible to finish all jobs with m men in a+c- 1 units
 of time; hence the algorithm finishes all jobs at the earliest time.

 If a job requires three periods of time to perform, then we can consider
 the job as three nodes each requiring one unit of time and connected by
 two directed arcs in series. The result of Lemma 1 still holds, but the
 results in this section are no longer true.

 THE AUTHOR is indebted to DR. N. C. Hsu and DR. T. J. RIVLIN for read-
 ing the first draft of the paper and making valuable suggestions.
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