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Abstract— As both the number of processors and the complexity of
problems to be solved increase, programming multiprocessing systems
becomes more difficult and error-prone. This paper discusses program-
ming assistance and automation concepts and their application to a pro-
gram development tool for message-passing systems called Hypertool. It
performs scheduling and handles the communication primitive insertion
automatically. Two algorithms, based on the critical-path method, are
pr d for scheduling processes statically. Hypertool also generates
the performance estimates and other program quality measures to help
programmers in improving their algorithms and programs.

Index Terms— Automatic scheduling, message-passing systems, pro-
gramming assistance, program program develop tool,
synchronization insertion.

1. INTRODUCTION

ANY commercial message-passing systems have been

introduced, such as Intel iPSC [1], Ametek System/14
[2], Ncube/ten [3], FPS T Series [4], and the Connection Ma-
chine [5]. The recent approach to program these machines is in
the single program multiple data (SPMD) style. In this style,
each processing element (PE) runs the same program but ex-
ecutes different code segments depending on its PE id and
data in its local memory [6]. Programmers find this approach
easy to develop parallel programs. However, to achieve the
balanced load among PE’s in the SPMD style is not a trivial
task since the computation load for each PE may be differ-
ent, especially for those problems with irregular structures.
In these cases, computation loads on overloaded PE’s must be
moved to underloaded PE’s.

There are two extreme approaches to develop programs in
the SPMD style. One school of thought believes that these
problems are complex and should be left to programmers [7].
However, programmers are error-prone to handle those te-
dious chores, such as communication primitive insertion. For
example, system deadlock is the most common problem, and
is difficult to detect once the program has been developed.
Also, the developed programs are not portable since each ma-
chine has different communication primitives [8]. The other
school of thought believes in restructuring compilers that will
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extract parallelism and restructure sequential programs into
parallel programs automatically [9]. However, the complete
analysis for exploiting parallelism is very complex. Further-
more, the parallelism revealed in this way is restricted by the
algorithms embodied in the sequential programs. We advocate
an approach that falls between the above two extremes.

We believe the parallelization is a very complex problem
which can only be fully solved by a human expert. Program
development tools can assist users to solve creative chores,
such as algorithm design. On the other hand, some of par-
allelization chores can be automated, especially scheduling
and synchronization [10]. Program development tools can also
generate performance estimates and quality measures to guide
programmers in improving their programs and algorithms. In
this way, optimal performance can be obtained with increased
productivity.

In this paper, we describe a programming aid, named
Hypertool, for automatic scheduling and synchronization on
message-passing systems. Hypertool takes a partitioned pro-
gram as input and generates parallel code for execution
on message-passing machines. Hypertool also generates per-
formance estimates and quality measures for the parallel
code. We will discuss static scheduling problems and present
new scheduling algorithms. The algorithms for mapping and
synchronization will be discussed also. In particular, sev-
eral issues for programming message-passing systems and
computer-aided programming tools are discussed in Section
II. Our Hypertool and its programming model are described
in Section III. Following that, scheduling, mapping, and syn-
chronization insertion are discussed in Sections IV, V, and VI,
respectively. Several annotated examples are given in Section
VII to illustrate the method and demonstrate the usefulness of
the programming aid.

II. CoMPUTER-AIDED PROGRAMMING

A programmer writing programs for a message-passing sys-
tem must partition each problem into processes, group these
processes into tasks, assign each task to a PE, and insert syn-
chronization primitives for proper execution [11], [12].

A program segment that is not partitioned further is called
a process, and is counted as one unit of computation. When
two processes executing on different PE’s must exchange the
data, the data communication time becomes the overhead that
slows down the computation. If this overhead is sizable, the
maximum parallelism found in the program may not generate
the optimum speedup. For this reason, several processes are
merged together to form a task, which can be thought of as
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one unit of allocation. The number of operations in each
task defines the operation granularity, and the number of
data items in each task defines the data granularity. The best
speedup is obtained by proper granularity. A scheduler can be
used in this purpose which modifies granularity by merging
processes into tasks [13].

After merging processes into tasks, each task is assigned
to a PE in a given topology. To reduce network traffic, two
tasks that exchange data should be mapped to the neighboring
PE’s. Since this is not always possible, the assignment heuris-
tic should attempt to minimize the total communication traffic
in the network. For proper communication of tasks on dif-
ferent PE’s, synchronization primitives must be inserted into
a program. The tasks of partitioning, scheduling, mapping,
and synchronization can be automated through an interactive
programming aid.

Several research efforts have demonstrated the usefulness
of program development tools for multiprocessing. There are
two types of tools. One provides software development en-
vironment and debugging facilities. POKER [14] is a paral-
lel programming environment for message-passing systems,
which provides a graphic representation of communication
structure. DAPP [15] accepts program code with inserted syn-
chronization primitives and produces a report of parallel ac-
cess anomalies, that is, pairs of statements that can access the
same location simultaneously.

The other type of tool performs some program transfor-
mation. Most tools of this type are based on the theory of
program restructuring [9]. PTOOL [16] performs sophisti-
cated dependency analysis, including advanced interprocedu-
ral flow analysis. It identifies parallel loops, extracts global
variables, and provides a simple explanation facility. This in-
formation can be used to obtain more parallelism, eliminate
some dependencies, and reduce efficiency losses. It also trans-
forms control dependencies into data dependencies. However,
PTOOL only tests loops for independence and does not pro-
vide partitioning and synchronization mechanisms for nonpar-
allel loops. CAMP [17] partitions both parallel and nonpar-
allel loops, and reduces dependencies by using process align-
ment and minimum-distance algorithms. Since it extracts more
parallelism and eliminates many dependencies, efficiency loss
from processor suspension is reduced. CAMP also inserts syn-
chronization primitives, and estimates performance for each
partitioning strategy.

III. HypERTOOL

The programming aid presented here aims to increase pro-
gramming productivity and take advantage of tedious tasks
that computers perform better than humans. It takes user par-
titioned program as its input, automatically allocates these par-
titions to PE’s, and inserts proper synchronization primitives
where needed. The program development methodology to be
used with Hypertool is shown in Fig. 1. First, a designer de-
velops a proper algorithm, performs partitioning, and writes
a program as a set of procedures. The program looks like a
sequential program and it can run on a sequential machine for
the purpose of debugging. This program is automatically con-
verted into the parallel program for a message-passing target
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machine by parallel code synthesis and optimization. Hyper-
tool then generates performance estimates, including execu-
tion time, communication time, suspension time for each PE,
and network delay for each communication channel. The ex-
planation facility displays data dependencies between PE’s, as
well as parallelism and load distribution [18]. If the designer
is not satisfied with the result, he/she will attempt to redefine
the partitioning strategy and the size of partitions using the
information provided by the performance estimator and the
explanation facility.

Fig. 2 shows the organization of the program synthesis and
optimization module. The lexer and the parser recognize data
dependencies and user defined partitions. The graph genera-
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Program GaussianElimination

/+ matrix[E+1] (8] [B+1] */
/* stores single-assigned N*(B+1) matrix & and column of */
/* the equation Ax=y; */
/* vector[N+1] .index[N] x/
/* stores single-assigned row permutation; */
/* vector[¥+1] .m[N] */
/* stores single-assigned coefficients; */
/ **#x% Main Program Ehk kR kk /
call Initiation; /* a serial part of computation */
/* initialize matrix[0]([E][N+1]; */

/* initialize vector[0].index[N]; */

for i = 0 to -1 do /* perform N iterations in parallel */

call FindMax(matrix[il[i], vector[i], vector[i+i], i);

/% it can be executed if matrix[il[i] and vector[il */

/* are available; vector[i+1] becomes available at */

/* the end of this procedure exacution */

for j = i to N do

/* do parallel operations on F-i+1 columns */

call UpdateMtx(matrix[i]l[j],matrix[i+11{j],vector[i+1],i);
/* it can be executed if matrix[il[j] and vector[i+1] «/
/* are available; matrix[i+1][j] becomes available at */

/* the end of this procedure execution */
call BackSubstitution; /* a serial part of computation */
/* do back substitution */

Fig. 3.

tion submodule generates a macro dataflow graph, in which
each node represents a process. The scheduling submodule
assigns processes to tasks by minimizing the execution time
for the graph. The mapping submodule maps each task to a
physical PE in a given topology by minimizing network traffic.
Mapping has little effect on the execution time of a dataflow
graph. However, improper mapping does increase network
traffic, which increases network contention. After scheduling
and mapping are completed, the synchronization module in-
serts the communication primitives. Finally, the code genera-
tor generates target machine code for each PE.

To facilitate automation of program development, we use
a programming style in which a program is composed of a
set of procedures called from the main program. A procedure
is an indivisible unit of computation to be scheduled on one
processor. The grain sizes of procedures are determined by
the programmer, and can be modified with Hypertool. Fig. 3
shows an example, a parallel Gaussian elimination algorithm,
which partitions a given matrix by columns. The procedures
FindMax and UpdateMtx are called several times. The con-
trol dependencies can be ignored, so that a procedure call
can be executed whenever all input data of the procedure are
available. Data dependencies are defined by the single assign-
ment of parameters in procedure calls. Communications are
invoked only at the beginning and the end of procedures. In
other words, a procedure receives messages before it begins
execution, and it sends messages after it has finished the com-
putation. For a static program, the number of procedures are
known before program execution. Data dependencies among
the procedural parameters define a macro dataflow graph.

A parallel Gaussian elimination algorithm.

A macro dataflow graph, which is generated directly from
the main program, is a directed graph with a start and an end
point. For example, Fig. 4 shows the macro dataflow graph
of the program in Fig. 3. Note that only the parallel parts of
Fig. 3 and the messages transferred among these procedures
are shown in Fig. 4. A macro dataflow graph consists of a set
of nodes {ni, ny, - --,ny} and a set of edges {e1, €2, -,ec}.
Each node corresponds to a procedure, and the node weight
is represented by the procedure execution time. For exam-
ple, nodes 7y, n7, ny2, ni6 in Fig. 4 correspond to the proce-
dure FindMax, while the other nodes represent the procedure
UpdateMtx. Each edge corresponds to a message transferred
from one procedure to another procedure, and the weight of
the edge is equal to the transmission time of the message. In
Fig. 4, for example, the edges connecting 11, 12, 13, N4, Ns,
ne, and n; correspond to a message called “vector” in the
first iteration, and the edge connecting n, to ng to a message
called “‘matrix.” When two nodes are scheduled to a single
PE, the weight of the edge connecting them becomes zero.
In static scheduling, the number of nodes is known before
program execution. The execution time of a node is obtained
by running the corresponding procedure. The transmission
time of a message is estimated by using the message startup
time, message length, and communication channel bandwidth.
We assume that the message transmission time is for neigh-
bor communication. Nonneighbor communication takes a little
more time. We also assume network traffic is not too heavy.
Therefore, network contention is ignored in our model.

This programming style has good modularity, which is nec-
essary for developing general application programs. Also, it

A
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/ Procedure FindMax s*s#ssssssskdiikkkkkikiokkkknk/

Procedure FindMax(inColumn, inVec, outVec, k)

/#* Input: inColumn column k where max pivot will be found; */
/* inVec permutation index and coefficients; */
/* k iteration number; */
/* Output: outVec vector of output values; */
/* find maximum %/
max = inColumn[inVec.index[k]];

n = k;

for i = kx+1 to H-1 do
if max < inColumn[inVec.index[i]]
max=inColumn[inVec.index[il];
n=i;

for i = O to B-1 do /* copy inVec.index to outVec.index -/
outVec.index[i] = inVec.index[i];

if (n <> k) /* permute row index */
tmp=outVec.index[k];
outVec.index[k]=outVec.index[n];
outVec.index[n]=tmp;

for i = k+1 to H-1 do /* calculate multiplying factors */
j = outVec.index[il;
outVec.m[j] = inColumn[j] / max;
End

[ERkkrRrkiatkkkkktrrsess Procedure UpdateMtx * kK /

Procedure UpdateMtx(inColumn, outColumn, inVec, k)

\* Input: inColumn column to be updated; */
\* inVec permutation index and coefficients; */
\* k iteration number; */
\* Qutput: outColumn column of output values; */
for i = 0 to k do /#* copy inColumn to outColumn */

j = inVec.index[i];
outColumn[j] = inColumn[j];

pivot = inColumn[inVec.index[k]];

for i = k+1 to N-1 do /# update the column */
j = inVec.index[i];
outColumn[j] = inColumn[j] - inVec.m[j] * pivot;

(b)
Fig. 3. (Continued).

is system independent since communication primitives are not node to the end point. It performs well for a bounded num-
specified within the program. Such a program can be executed ber of PE’s. Ramamoorthy ef al. developed algorithms to
sequentially or in parallel. Furthermore, dynamic scheduling determine the minimum number of PE’s required to process
becomes simpler since it partitions a program into many pro- a program in the shortest possible time [22]. They used ex-
cedures. haustive searcE?which is not acceptable for large programs.
Bussell ef al. proposed an alternative method to reduce the
number of PE’s [23], but the efficiency of the algorithm is still

In this section, we discuss methods for scheduling a dependent on an estimate of the number of processors. More
macro dataflow graph. We will describe static nonpreemptive importantly, these algorithms did not model transmission time,
scheduling algorithms for homogeneous multiprocessors. that is, they assumed that the data transmission between PE’s

Critical-path scheduling has been addressed by Hu [19]. did not take any time. This is not true, however, for most
The critical-path algorithm has been proved to be near opti- message-passing systems. This a sig-
mal {20], [21]. Basically, the critical-path algorithm assigns nificant factor which affects the overall performance of a sys-
a label to each node according to the longest path from this tem, which must be considered in modeling. Kruatrachue and

IV. SCHEDULING
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Fig. 4. The macro dataflow graph of Fig. 3 (N =4).

Lewis have recently presented a model which assigned data
communication time as weights of edges [24]. However, their
scheduling algorithm is more suitable for fine granularity.

There are two objective functions to be considered for
scheduling. The first function is the time taking to process
a graph on bounded number of PE’s. The second is the num-
ber of PE’s required to process a graph in the shortest possi-
ble time. We will first modify the critical-path algorithm for
a bounded number of PE’s. But since this modified critical-
path (MCP) algorithm is not able to efficiently determine the
minimum number of PE’s required to execute a program, a
new algorithm, called mobility-directed (MD) scheduling, is
presented. This algorithm generates solutions for the number
of PE’s required.

To define the scheduling algorithms succinctly we will
define several concepts. First, we describe the as-soon-as-
possible (ASAP) and the as-late-as-possible (ALAP) bind-
ings [25] of a macro dataflow graph in order to determine
mobilities. In an ASAP binding, the earliest possible execu-
tion is assigned to each node. The ASAP binding is created
by moving forward through the macro dataflow graph. For
example, the ASAP binding of the macro dataflow graph in
Fig. 4 is shown in Fig. 5. The node 7, is bound to the time

interval 0-80 ps. It then sends a message to nodes n,, 13, N4,
ns, ne, and n7. When the messages arrive, at time 140 ps,
these nodes are bound to the time interval starting at 140 us.
After performing the ASAP binding, each node is assigned
an ASAP start time, denoted as T's(n;). Conversely, the lat-
est possible start time is assigned to each node for the ALAP
binding, which is obtained by moving backward through the
macro dataflow graph. The ALAP binding of Fig. 4 is shown
in Fig. 6. Similarly, after performing the ALAP binding, each
node is then assigned an ALAP time, denoted as 7'r(n;).
The moving range of a node n; is defined as the time
interval from T's(n;) to Tr(n;), in which node n; may start
its execution without delaying the execution of any other node
on the critical path. The length of this range is defined as the
mobility of node n;, M(n;) =T (n;) —Ts(n;). The relative
mobility of a node is defined by M,(n;) = M(n;)/w(n:),
where w(n;) is the weight of node #;, that is, the execution
time of the node. Moreover, we define Tr(n;) = Tp(n) +

w(n;) as the latest finishing time of node n;. The moving

interval of a node n; is defined as the time interval from

Ts(n;) to Tr(ny).

As an example, the ASAP time of node ng in Fig. 5 is 340,
and its ALAP time in Fig. 6 is 630. Therefore, the moving

TTM
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Fig. 5.

range of ng is 340-630, and its mobility is 290. The relative
mobility of the node is M,(ng) = 290/30=9.7. The moving
ranges, mobilities, and relative mobilities of nodes in Fig. 4
are listed in Table I, sorted by relative mobilities.

All nodes with mobility equal to zero identify the critical
path through the graph. The length of the critical path is the

required for program execution. Obviously,
there is at least one critical path in a macro dataflow graph,
although several critical paths are possible. Moreover, if two
nodes on the critical path are scheduled to a single PE, the
weight of the edge connecting them becomes zero, and the
critical path is shortened. Note that shortening a critical path
may generate several new critical paths.

Now we describe a scheduling algorithm for a macro
dataflow graph on a given number of PE’s. This algorithm is
based on the critical path algorithm presented by Sethi [26].

Algorithm 1. Modified Critical-Path (MCP) Scheduling:

Step 1: Perform the ALAP binding and assign the resulting
ALAP time Ty (n;) (i = 1,2,-*-, n) to each node in the
graph.

Step 2: For each node n; create a list /(n;) which consists
of T;’s of n; and all its descendants in decreasing order. Sort

335

The ASAP binding of Fig. 4.

TABLE 1
MogiLiTIES OF THE NoDEs IN Fig. 4 (us)
Node [ Moving range  Mobility Relative mobility
1 0-0 0 0
n3 140 - 140 0 0
nr | 220 - 220 0 0
ng | 340 - 340 0 0
n1s | 410 — 410 0 0
nie | 510 — 510 0 0
nig | 570 - 570 0 0
nyy | 650 — 650 0 0
nig | 650 - 650 0 0
ny | 140 - 260 120 3
nis | 340 - 440 100 3.3
nis | 510 — 590 80 4
ns | 140 — 360 220 5.5
ny | 340 - 520 180 6
ny3 | 510 - 640 130 6.5
ng | 140 - 440 300 7.5
ns | 340 — 630 290 9.0
na 140 - 620 480 12

these lists in decreasing order lexicographically. According to
this order, create a node list L.

Step 3: Schedule the first node in L to a PE that allows its
earliest execution. Delete the node from L and repeat step 3
until L is empty. )

oL
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Fig. 6. The ALAP binding of Fig. 4.

The complexity of Step 1 is O(n?), since the ALAP bind-
ing is performed by the depth-first search. Step 2 requires
O(nlogn) operations to generate each list, and there are n
lists, so it requires time of O(n?logn). Then sorting all lists
requires O(n? log n) operations also. Therefore, the complex-
ity of Step 2 is O(n? log n). The complexity of Step 3 and 4 is
O(n?). Thus, the complexity of Algorithm 1 is O(n?logn).

Before discussing the scheduling method to minimize the
number of PE’s required to execute a graph, we give a fact
for a node to be scheduled to a PE to which several other
nodes have been already scheduled.

Fact 1: Necessary and sufficient condition for schedul-
ing a node to a PE: Assume a node n, is to be scheduled
to PE m, to which / nodes, n,,, nm,,---,Nm, have been
scheduled. If the moving intervals of these nodes do not inter-
sect with the moving interval of n,, then n, can be scheduled
on PE m. Otherwise, assume the moving intervals of nodes
;s Ry Mmy (1 <0< j <) intersect the moving in-
terval of n,. n, can be scheduled to PE m, if for each &k
(i <k<j+1),

w(ny) <min(Tr(ny), Tr(nm,))

—max (T's(np), Ts(Nm,_,) + W(lm,_,))

where w(n;) is the weight of n;; and

if ny,_, does not exist, Ts(ny,_,) =0 and w(ny,,_,) =0;
and

if ny,,, does not exist, Tp(nm,,,) = oo.

Otherwise, the node cannot be scheduled to PE m. ]

We now describe a mobility-directed algorithm to schedule
a macro dataflow graph on an unbounded number of PE’s.

Algorithm 2. Mobility-Directed (MD) Scheduling:

Step 1: Calculate relative mobilities for all nodes. Let L
include all nodes initially.

Step 2: Let L’ be the group of nodes in L with minimum
relative mobility. Let n; be a node in L’ that does not have
any predecessors in L’. Using Fact 1, schedule n; on th
PE. If n; cannot be scheduled on the first PE, schedule it of
the second PE, and so on. When n; is scheduled on PE m,
all edges connecting n; and other nodes already scheduled to
PE m are changed to zero.

Step 3: If n; is scheduled before node n; on PE m, add
an edge with weight zero from n; to n; in the graph. If n; is
scheduled after node n; on the PE, add an edge with weight
zero from n; to n; in the graph. This is to ensure there is no
deadlock. Then check if the adding edges form a loop. If so,
schedule #; to the next available space.
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Step 4: Recalculate relative mobilities for the modified
graph. Delete n; from L and repeat Steps 2, 3, and 4 un-
til L is empty. ]

The time for Step 1 includes O(n?) each for ASAP and
ALAP bindings, and O(n) for calculations. Thus, the com-
plexity of Step 1 is O(n?). It takes O(n) operations for
scheduling a node on a PE and O(n?) operations for cal-
culating relative mobilities. Therefore, the complexity of Al-
gorithm 2 is O(n).

V. MAPPING

The mapping algorithm presented in this section maps these
virtual PE’s used in the previous section to physical PE’s con-
nected in a predefined topology. A good mapping algorithm
generates the minimum amount of communication traffic, re-
ducing network contention. For best results, a traffic schedul-
ing algorithm that balances the network traffic should be used
[27]. However, traffic scheduling requires flexible-path rout-
ing which generates larger overhead. If network traffic is not
too heavy, simpler algorithms which minimize total network
traffic may be used. Since most problems being solved on
message-passing systems are in this category, we will use an
algorithm to minimize the total network traffic.

The mapping problem may be described as follows: given
a virtual PE graph consisting of N, nodes and E, edges. A
virtual PE graph is also called a task graph, which is generated
by scheduling. Each node in this graph corresponds to a task,
and each edge corresponds to messages transferred between
two tasks. The weight of the edge, w(e;)) (i = 1,2,---,E}),
is the sum of transmission time of all messages between the
two tasks. This task graph is to be mapped to a system graph.
A system graph consists of N5 nodes and E; edges, where
N, > N,. Each node corresponds to a physical PE, and each
edge to a connection between two PE’s, with weight 1.

If the task graph can be mapped to the system graph and
all communications are nearest-neighbor communications, no
routing is necessary and the mapping is optimal. Otherwise,
certain pairs of tasks connected by an edge will be mapped to
two nonneighboring PE’s. The corresponding message will be
routed through the shortest path between the two PE’s. The
distance d between two PE’s is defined as the number of hops
on the shortest path from one PE to another. Our objective
function is

E,
F = w(e,-)d;

i=1

where d; is the distance between two PE’s to which the two
tasks connected by e; are mapped. Therefore, F stands for the
total communication traffic.

As an example, Fig. 7(a) and (b) shows a task graph and
a system graph, respectively. When the task graph is mapped
to the system graph as shown in Fig. 7(c), F = 20. A better
mapping is shown in Fig. 7(d) with F = 16.

We may use the algorithms for the quadratic assignment
problem to obtain an optimal mapping. The algorithm used
in Hypertool is a heuristic algorithm, which was presented
by Hanan and Kurtzberg to minimize the total communication

337

F=3+2+3+6*2=20 F=3+6+3+2*2=16
© (d)
Fig. 7. Mapping: (a) task graph; (b) system graph; (c) a mapping; (d) the
optimal mapping.

traffic [28]. It generates an initial assignment by a constructive
method, which is then improved iteratively to obtain a better
solution. Lee and Aggarwal described some experimental re-
sults for hypercube topologies and showed that the algorithm
works well enough, even though it did not always guarantee
an optimum solution [29].

VI. SYNCHRONIZATION

Synchronization of message-passing systems is carried out
by communication primitives. The basic communication prim-
itives are send and receive. Some message-passing systems
supply synchronous communication primitives only, while
some supply both synchronous and asynchronous primitives.
Asynchronous primitives usually use communication copro-
cessors to handle network activities, which reduces the load
on main processors.

The communication primitives are used to exchange mes-
sages between processors. They must be used properly to en-
sure the correct sequence of computation. In first-generation
message-passing systems, communication primitives are in-
serted by programmers. It is possible to insert these primi-
tives automatically, reducing programmer’s load and eliminat-
ing insertion errors. Since our programming model partitions
programs into procedures and message exchanges only take
place before and after the procedures, the primitive insertion
is relatively easy.

The communication primitive insertion may be described as
follows. After scheduling and mapping, each node in a macro
dataflow graph has been allocated to a PE. If an edge exits
from this node to another node which belongs to a different
PE, the send primitive is inserted after the node. Similarly,
if the edge comes from another node in a different PE, the
receive primitive is inserted before the node. However, if a
message has already been sent to a particular PE, the same
message does not need to be sent to the same PE again. Ifa
message is to be sent to many PE’s, broadcasting is applied
instead of sending the message to these PE’s separately.

The insertion method described above does not ensure that
the communication sequence is correct. For example, two pos-
sible cases are shown in Fig. 8(a) and Fig. 9(a). In Fig. 8(a),
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Fig. 9. Synchronization insertion (case 2).

the order of the sends is incorrect, and must be reordered as
shown in Fig. 8(b). In Fig. 9(a), on the other hand, either
the order of sends or the order of receives needs to be ex-
changed as shown in Fig. 9(b) or (c), respectively. We use
" a send-first strategy for this case. That is, we will reorder
receives according to the order of sends, and obtain the solu-
tion shown in Fig. 9(c). The entire communication primitive
insertion algorithm is described below.

Algorithm 3: Communication Insertion:

Assume after scheduling and mapping that each node n; of
the macro dataflow graph is.assigned to PE M(n;), where M
is a function mapping a node number to a PE number.

Step 1: For each edge ex from node n; to n; for which
M(n;) # M(n;), insert a send primitive after node »; in
PE M(n;), denoted by S(ex, ni, M(n;)); and insert a re-
ceive primitive before node n; in PE M(n i), denoted by
R(ek, nj, M(n;)). Once a message has been sent to a PE,
eliminate other sends and receives which transfer the same
message to the same PE.

Now, for each PE, we have a sequence, X(em,, nm,,
Pm,), X(em,, Nmy, Pm,), -, where X could be either S or
R.
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Step 2: For each pair of PE’s, say p; and p,, extract all
S(em;> Nm;, p2) from PE p; to form a subsequence S),, and
extract all R(em;, nm,;, p1) from PE p; to form a subsequence
R,,.

Step 2.1: Within each segment of the subsequence S, with
the same node number, exchange the order of sends according
to the order of receives as defined by the subsequence R, .

Step 2.2: If the two resultant subsequences are still not
matched with each other, R,, is reordered according to the
order of Sp,. |

Reordering of sends and receives may not be necessary
for a system supporting typed messages. However, even for
this kind of system, message transmission reordering may re-
duce the message waiting time and the demand of system com-
munication buffers. .

VII. ExAMPLES AND COMPARISON

We use the example of Fig. 4 to illustrate scheduling and
synchronization. The MD algorithm is used to schedule the
macro dataflow graph. Node 7, is scheduled first, then node
ns. After nj is scheduled, the weight of the edge connecting 7,
and n3 becomes 0, inducing modification of mobilities. Node
ny is then scheduled, and so on. The macro dataflow graph is
scheduled to two PE’s, as shown in Fig. 10. Note that sending
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/* For PEO #/

/* load matrix and vector from host #/

receive (HOST, vector[0]);

receive (HOST, matrix[0][0]);
receive (HOST, matrix[0][1]);
receive(HOST, matrix[0][2]);

call FindMax(matrix[0]1[0], vector[0], vector[1], 0);

send(PE1, vector(1]);
call UpdateMtx(matrix[0][1],
send(PE1, matrix[1]1[1]);

matrix[1][1), vector[1], 0);

call FindMax(matrix[1][1]), vector[1], vector[2], 1);

send(PE1, vector[2]);
call UpdateMtx(matrix[0][2],
call UpdateMtx(matrix[1][2],

matrix[1][2], vector[1],

matrix[2][2], vector[2], 1);

call FindMax(matrix[2][2], vector[2], vector[3], 2);

call UpdateMtx(matrix[2][2],
receive(PE1, matrix[2][3]);
call UpdateMtx(matrix[2][3],

matrix[3][2], vector[3], 2);

matrix[3][3], vector[3],

call FindMax(matrix[3][3], vector[3], vector[4], 3);

call UpdateMtx(matrix[3][3],
receive(PE1, matrix[2][4]1);

call UpdateMtx(matrix([2]1[4],
call UpdateMtx(matrix[3][4],

matrix[4][3], vector[4], 3);

matrix[3][4], vector[3],
matrix[4][4], vector[4],

2);
3);

/* unload matrix and vector to host */

send (HOST, vector[4]);

send (HOST, matrix[3]1[2]);
send (HOST, matrix[4]1[31);
send (HOST, matrix[4]1[4]);

/* For PE1 »/
/* load matrix from host */
receive (HOST, matrix[0]1[31);
receive (HOST, matrix{0][4]);

receive(PEO, vector[1]);
call UpdateMtx(matrix[0][3],
call UpdateMtx(matrix[0][4],
receive(PEO, matrix[1][1]);
receive(PEO, vector[2]);
call UpdateMtx(matrix[1][3],
send(PEO, matrix{2]1(3]);
call UpdateMtx(matrix[1][4],
send (PEO, matrix[2]1[41);
call UpdateMtx(matrix[0][0],
call UpdateMtx(matrix[1][1],

/% unload matrix to host */
send (HOST, matrix{2][11);
send (HOST, matrix[1][01);

matrix[1][3],
matrix[1][4],

vector([1], 0);
vector[1], 0);

matrix[2]1[3], vector[2], 1);

matrix[2][4], vector[2], 1);

matrix[1][0],
matrix[2][1],

vector[1], 0);
vector[2], 1);

Fig. 11.

“yector” in the first iteration to the node ns in PE 1 means
sending it to nodes ng and ny unnecessary. When communi-
cation primitives are inserted, the order of the second and the
third receives in PE 1 is exchanged so that PE 1 receives the
message from 73 before that from n;. Fig. 11 shows the gen-
erated code for two PE’s according to Fig. 10. Note that only
the main program for each PE is shown. The data structure
is the same as in Fig. 3. The initial matrix is loaded to PE’s
such that each PE obtains a part of the matrix which is de-
manded for its computation. Consequently, the memory space
can be compacted so that only what is demanded is allocated
in each PE. In this example, the first, second, and the third
columns of matrix are loaded to PE 0, and the fourth and the
fifth columns to PE 1. Similarly, the third, fourth, and the

The target machine code for each PE.

fifth columns of the resulting matrix are unloaded from PE 0,
and the first and the second columns from PE 1. Furthermore,
to reduce the number of message transfers and consequently,
the time to initiate messages, several messages can be packed
and sent together. For example, the first three columns of the
initial matrix may be packed into one message and sent to PE
0.

Fig. 12 shows another example. The Gauss-Seidel algo-
rithm is used to solve Laplace equations since it converges
faster than the Jacobi algorithm. In this algorithm, the update
procedure for step k may be presented as

(k=1)  g=D)

w _ 1w w0
Aij =z, HAiGoy + Ao, TALG

(i=0,J (-1
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Each value of A;,; at iteration k is obtained from two newly
generated values for iteration & and two old values of iteration
k —1. This algorithm assumes a particular updating sequence.
Since A;,; depends on the values of the same iteration, not
all values of an iteration can be obtained simultaneously. A
given matrix is partitioned by rows and columns. The macro
dataflow graph in Fig. 12 may be scheduled to three PE’s us-
ing the MD algorithm. However, if only two PE’s are avail-
able, the MCP algorithm is applied. The resultant scheduling
is shown in Fig. 13.

Our Hypertool is currently running on a Sun workstation
under UNIX. It takes 21 s to schedule a program with 594
processes to 16 PE’s. Several examples have been tested on
Hypertool. By our experience, developing programs with Hy-
pertool takes much less time than manual program develop-
ment. Debugging is much easier, and we never have any dead-
lock in the programs developed on Hypertool.

Next we compare the manually generated codes and
Hypertool-generated codes. Both codes are generated from
the same algorithms. The only difference is that automatic
scheduling has applied to the Hypertool-generated codes but
not to the manually generated codes. The scheduling method
for the manually generated codes can be briefly described as
follows: the data domain is partitioned equally in such a style
that reduces dependencies among these partitions. Each PE is
assigned a partition, and an SPMD program is coded for PE’s.
Although a programmer might use sophisticated scheduling,
the working load is too heavy for human to produce good,

The macro dataflow graph of a parallel Laplace equation algorithm.
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Fig. 14. Performance comparison for Gaussian elimination.

error-free results. This sophisticated scheduling should be per-
formed by an automatic tool.

By using Hypertool, some problems, such as the Gaus-
sian elimination, Laplace equations, and Dynamic program-
ming, resulted in up to 300% improvement in speed (see
Figs. 14-16). These problems have less regular structures so
that manual scheduling usually leads to an unbalanced load
distribution among PE’s because the computation amount in
each data partition is different. On the other hand, automatic
scheduling moves some nodes from overloaded PE’s to under-
loaded PE’s and achieves a better load balance. For more reg-
ular problems, such as the Matrix multiplication and Bitonic
sort, automatic scheduling gives performance similar to that
of manual scheduling, as shown in Figs. 17 and 18. However,
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Fig. 16. Performance comparison for Dynamic programming.
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Fig. 17. Performance comparison for Matrix multiplication.

even for these kinds of problems Hypertool still shows better
performance when the size of the matrix cannot be evenly
divided by the number of PE’s.

Table II shows the comparison of Gaussian elimination for
MCP and MD scheduling algorithms. These two algorithms
deliver almost the same performance; however, the MD algo-
rithm is useful for reducing the number of PE’s required to

128 256 Matrix size

Performance comparison for Laplace equations.

)
300 16 PEs
100

30 —e— Manual

- » - Hypertool
10
128 256 512 1K 2K Problem size
Fig. 18. Performance comparison for Bitonic sort.

TABLE II
PerRFORMANCE COMPARISON FOR MCP AND MD ALGORITHMS

GAUSSIAN ELIMINATION

Matrix | Number | Execution time (msecs)
size of PEs | MCP MD Maanual
4 4 1.8 1.8 2.4

8 5 6.3 6.3 9.5
16 7 24.2 24.0 40.0
32 12 103.6 1026 165.6

execute a program. The execution times of manually gener-
ated codes are also listed for comparison.

Fig. 19 compares the execution times of random schedul-
ing and MCP scheduling for Laplace equations. About 30%
improvement in speed is obtained by the MCP scheduling
algorithm. Surprisingly, in many cases, even the random
scheduling algorithm generates better performance than man-
ual scheduling.

The grain size of each procedure also affects the quality of
generated parallel codes. Too large granularity reduces par-
allelism and too small granularity increases overhead. Only
moderate grain size gives the best performance. Fig. 20 shows
the performance for different grain sizes of procedures.

Since the execution times of nodes and the message trans-
mission times are obtained by estimation, the performance
affected by the difference between the estimated value and the
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real value has been studied. Tables III and IV show the results
for Laplace equations and Bitonic sort, respectively. For the
Laplace equations, the node weight is estimated with matrix
size of 4, and for the Bitonic sort, the node weight is estimated
with array length of 64. The results show that the difference
between the estimated value and the real value has little effect
on performance.

VIII. CoNcLUSION

As both the number of PE’s and the complexity of problems
to be solved increase, programming multiprocessing systems
becomes more difficult and error-prone. The optimal paral-
lelization may be too complicated for all but simple prob-
lems. Actually, early experiments on programming hyper-
cube systems have revealed that conceptualization of program
execution is very difficult, and any further optimization of
complex problems was discouraged. A program development
tool that helps programmers to develop parallel programs by
automating part of parallelization tasks and back-annotating
some quality measures to programmers becomes a necessity.

The experimental results show that the Hypertool approach
is better than the manual methodology in many respects. First,
it increases the programming productivity. Programmers only
define partitions without indicating the task allocation or com-
munication primitives. Second, since communication primi-

64 128 Matrix size

Comparison for random and MCP scheduling (Laplace equations).

TABLE III
THe EFrecT oF ESTIMATION ON PERFORMANCE
(LapLACE EQUATIONS)

Problem size | Execution time (msecs) | Difference
Real Estimated | in speed

4 1.86 1.86 0%

8 4.23 4.26 -0.7%

16 12.78 12.82 -0.3%

32 44.84 44.88 -0.1%

64 168.8 168.8 0%

128 655.9 655.9 0%

TABLE IV
THe ErFrecT oF ESTIMATION ON PERFORMANCE (BITONIC SORT)

Problem size | Execution time (msecs) | Difference
Real Estimated | in speed

64 9.20 9.20 0%

128 17.08 17.10 -0.1%

256 33.17 33.30 -0.4%

512 68.03 68.31 -0.4%

tive insertion is performed by Hypertool, synchronization er-
rors are eliminated. Moreover, most programming errors may
be debugged by sequentially running the program. Finally,
the program development tool generates better parallel codes
since it uses good scheduling algorithms. This resulted in sub-
stantial performance increases as demonstrated in the previous
section.

Since Hypertool generates target machine codes automati-
cally, the programs developed on the tool are portable. The
program may run on different message-passing systems, and
even on shared memory systems. The tool can also be devel-
oped for a variety of languages to fit different applications.

The current version of Hypertool uses static scheduling and
is applied to static problems. That is, all processes must be
created before starting execution. Also, an estimate for the
computation amount of each process must be known at com-
pile time. One drawback of static scheduling is that a program
must be rescheduled before it can run on another machine. A
dynamic version of Hypertool is under investigation. Our Hy-
pertool is able to schedule a macro dataflow graph with several
thousands processes caused mainly by memory space limita-
tion. A large graph may be partitioned into several strongly
connected subgraphs for scheduling.
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