
946

Abstract

An Aggressive Parallel Tasks Scheduling Algorithm:
Relative Mobility Scheduling Algorithm (RMS)

Wai-Yip Chan and Chi-Kwong Li
Department of Electronic Engineering,

The Hong Kong Polytechnic University, Hong Kong.

In this paper, an aggressive scheduling algorithm called Rela-
tive Mobility Scheduling algorithm (RMS) which is designed
based on heuristic of Relative Mobility (RM) is developed.
The proposed Aggressive RMS algorithm has the advantage
of scheduling tasks into either bounded or unbounded num-
ber of processors within a minimize parallel time. The goals
of the algorithm are to maximize the utilization of the avail-
able processors as well as the parallelism of the scheduling
task graph, such that the parallel time of the produced sched-
ule is a minimum. Experimental studies are carried out to
evaluate and demonstrate the significant improvement of the
proposed algorithm.

1 Introduction

A better scheduling of tasks in parallel and distributed envi-
ronment is no doubt can lead to overall performance im-
provement. However, task scheduling is proved to be a
NP-complete problem[l]; it is very hard to obtain an op-
timum scheduling solution in polynomial time complexity.
Thus, heuristic approaches of task scheduling algorithms
are used to approximate optimal solution within polynomial
time complexity. The Mobility Direct algorithm (MD), as
proposed by Wu and Gajski[4], is designed with Relative
Mobility (M,) being the heuristic. With this heuristic, it is
possible to determine the minimum number of processors
required to execute a program with near optimal perfor-
mance.

In this research, the MD algorithm is studied and it is found
that this algorithm cannot produce a shorter parallel time
schedule when scheduling task into either bounded or un-
bounded number of processors. Therefore, an improved
scheduling algorithm called Relative Mobility Scheduling al-
gorithm (RMS) is proposed to improve the Wu’s MD algo-
rithm. With experiments studies significant improvement is
achieved with the proposed algorithm.

0-7803-3905-3/97/$ IO.OO@ 1997 EEE

2 The Wu’s Mobility Direct algorithm
(MD)

The Wu’s Mobility Direct algorithm was suggested by Wu
and Gajski[4]. The main philosophy of the MD algorithm is
based on the list scheduling heuristic[5]. Firstly, the Relative
Mobility(M,) heuristic is used as a priority value to generate
a priority list of free tasks for the scheduling the task graph.
In fact the M , is the relative moving range of tasks in which
is defined as:

where T~(1zi) is the latest start time of a node n; (ALAP[S]),
Ts(n;) is the earliest start time of a node ni (ASAP[S]) and
W;(ni) is the cost of a node n;.

Secondly, the highest priority task is selected from the list
and scheduled into the first available processor that satisfies
Fact 1 as described in [4]. Thirdly, dependence constrain of
the scheduled task is reorganized and the task is removed
from the list. Finally, the M , of all remaining free tasks are
computed. The above steps are then repeated until all tasks
in the task graph are scheduled.

The MD algorithm uses the relative mobility and the Fact 1
as a heuristic of scheduling. The application of relative mo-
bility heuristic guarantees moving range of starting a task in
execution which does not delay the execution of any other
tasks on the critical path. Therefore, data dependence be-
tween tasks is satisfied and the length of the critical path
will not increase in each scheduling step. As a result, the
algorithm is possible to generate a near optimal schedule in
the sense of guaranteeing the parallel time of the produced
schedule which is not longer than the critical path of the
original task graph.

Nevertheless, the task to processors assignment strategy of
the MD algorithm does not guarantee the algorithm to pro-
duce a shorter parallel time scheduling solution when the
algorithm is used to schedule tasks into both bounded and
unbounded number of processors. It is because the strategy
assigns the selected task into a processor in which the pro-

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 03,2023 at 21:23:29 UTC from IEEE Xplore. Restrictions apply.

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

947

cessor is selected from scanning through the available pro-
cessor set of the first one that satisfies the Fact 1. Although
this strategy can determine the minimum number of proces-
sors required to execute the parallel program. The selected
processors may not be the ones that can finish the task in
minimum time. This result in accumulate of unnecessary
increased parallel time in each scheduling step. As a result,
usage of processors in the available processors set cannot be
fully utilized. Parallelism of the scheduling task graph can-
not be maximized and parallel time of the produced schedule
cannot be minimized in the situation of scheduling tasks into
both bounded and unbounded of processors.

3 The proposed Relative Mobility Schedul-
ing algorithm (RMS)

In this section, a more aggressive scheduling algorithm called
the Relative Mobility Scheduling algorithm (RMS) is pro-
posed to schedule tasks into both bounded and unbounded
number of processors. The goals of the algorithm are to
maximize utilization of the available processors and to max-
imize parallelism of the scheduling task graph such that the
parallel time of the produced schedule can be minimized.
An algorithmic description of the RMS algorithm is shown
in algorithm l a and lb . In step 1 shown in algorithm la ,
the Relative Mobility (M,.) of all tasks in the scheduling
task graph is determined. In step 2, a priority list L' is
generated using the heuristic of M, and then the highest
priority free task n; of the list is selected to be scheduled.
In step 3, the given processors set P is scanned through
to identify a processor Pm such that n; executed in that
processor would satisfy Condition 1 shown in algorithm l b
and finish in minimum time. The Condition 1 is modified
from Fact 1 of the Wu's algorithm in which supports the
scanning process. After that, dependence constrain of the
scheduled task is reorganized and the task is removed from
the list. In step 4, the M,. of all remaining free tasks are
recalculated and the steps 2-3 are repeated until all tasks in
the task graph are scheduled.

1: Calculate relative mobility for all tasks.
2: Let L include all tasks initially. Let L' be the group of unexamined

tasks in L with minimum relative mobility. let n; be a task in L'
that does not have any predecessors in L'.

3: Find a processors Pm in a given processors set P in which '2; would
satisfy Fact1 and finish in minimum finish time (or the earliest finish
time is reached). When n; is scheduled on pm, all edges connecting
ni and other tasks already scheduled to P, are changed t o zero.

If 1 ~ ; is scheduled before task nj on P,. add an edge with cost zero
from nj to n; in the graph. If '2; is scheduled after task nj on the
processor, add an edge with cost zero from nj t o n; in the graph.
Remove nj from L.

4; Recalculate relative mobility for the modified graph. Repeat steps 2
to 4 until L is empty.

Algorithm la, The RMS algorithm.

Necessary and sufficient condition for scheduling a task to a processor

P,(where P, E P):
Assume a task np is considering t o be scheduled to Pm , in which

1 tasks, nm,, n,,, ..., nm,, have been scheduled into P,,,. If
the moving intervals of these tasks do not intersect with the moving
interval o f np. then np can be scheduled to P,. Otherwise, assume

the moving intervals of tasks nm,, n,,+,, ..., nmJ (l<i<j<l)
intersect the moving interval of np. np can be scheduled t o Pm, if
there exists k (i<k<j+l),

W(np) F min(TF(np),TL(nm,)) -
maz(%(np), G (n m k - 1) + W(nmk-1)).

Where w(n;) is the cost of n;; and
The T F (~ ~) and Ts(np) computation should assume that task np
is scheduled to processor Pm; and
When nP is scheduled to processor Pm, np is inserted before the
first task in the task sequence of processor Pm that satisfies the
inequality listed above; and

if
if 12m,+l does not exist, T~(n,j+l) =OO. Otherwise, the task
cannot be scheduled to P,.

Algorithm Ib, (Condition 1 of the RMS algorithm):
Necessary and sufficient condition for scheduling a task.

does not exist. Ts(nm,-,) = 0, W'(nm,-l) = 0;

The major improvement of the RMS algorithm over the MD
algorithm is in the task to processor assignment strategy.
The RMS algorithm uses a strategy of scheduling a task into
a processor in which it can finish the task as soon as possible.
This is shown by the experiments in next section that such
change implies an aggressive search for a better allocation of
tasks into processors with smaller finish time. As a result,
the unnecessary increase in parallel time in each scheduling
steps can be reduced and a near to optimum scheduling so-
lution can be produced in most cases of difference grain size
of scheduling task graphs.

4 Experimental Studies

In this section, an experiment is set up to study perfor-
mance of the RMS algorithm and the MD algorithm in which
are used to scheduling tasks into different sets of proces-
sors configurations. Owing to the scheduling problem is
NP-complete in nature, heuristic ideas used in both MD
and RMS algorithm cannot always lead to an optimal so-
lution. Thus, it is necessary to compare the average per-
formance of these algorithms by using randomly generated
graphs. In this experiment, more than 7000 random gener-
ated graphs are used. They are divided into three groups of
different granularity (ratio of task cost over communication
cost: R/C) :

Group 1 (Gl):
Group 2 (G2):

Fine-grain, R/C range = 0.1-0.3.
Median-grain, R/C range = 0.8-1.2,
the average cost of computation
and communication are close.
Coarse-grain, R/C range = 3-10. Group 3 (G3):

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 03,2023 at 21:23:29 UTC from IEEE Xplore. Restrictions apply.

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

Peter Hu

948
Sub-group 11 Layer

18-21
18-20
18-20
36-40

sub- Group 1 Group 2 Group 3
group R/M (%) [Pr R/M (%) Pr R/M (%) Pr

A 27.46 0.92 24.38 0.87 25.86 0.91

620

I

I
I

Table 1, Sub-grouping of random generated task graphs.

Group 1

Each group is further classified into six subgroups summa-
rized in Table 1 that more than 400 graphs each in which
they are in different number of layer and tasks configuration.
These task graphs are scheduled by both MD and RMS al-
gorithm into three different sets of processors configurations:

Unbounded number of processors (IPI 2 IN!) ; and
Minimum number of processors which is
determined by the MD algorithm required
to execute the task graph (\PI = Pmin); and
Bounded number of processors

Set 1:
Set 2:

Set 3:
(IN1 > IPI > Pmin) .

,where \PI is the number of processor in a processor set P ,
IN1 is the total number of tasks in the scheduling task graph
and Pmin is the minimum number of processors which is
determined by the MD algorithm required to execute the
task graph.
Two arguments are used to measure the figure of merit of
RMS over MD algorithm. They are the probability of par-
allel time produced by the RMS algorithm shorter than the
MD algorithm (Pr) and parallel time improvement ratio of
RMS over MD algorithm (R/M). The R/M ratio is defined
as follow:

PT" R I M = (1- -)
PTmd

Group 2 Group 3 Sub-

group

A

B
C
D
E
F

Sub-
group

A

Group 1 Group 2 Group 3
R/M (%) Pr R/M (%) Pr R/M (%) Pr

28.61 0.91 19.49 0.84 17.65 0.83

1 Average (1 68.61 1 0.96 1 47.02 1 0.96 1 30.42 1 0.95 1
Table 2, To schedule graphs into Set l()Pl 2 !NI) .

Table 3, To schedule graphs into Set 2 (\PI = Pmin).

1 ;
Average

33.16
34.72
38.72
37.65
39.77
35.25

0.92
0.94
0.96
0.97
0.96
0.95
-
-

23.43 1 ::Cl: 1 25.8 1 ::;:
22.21 21.56
33.85 0.98 26.73 0.93
49.95 0.97 34.52 0.95
57.79 0.98 37.53 0.95
35.27 0.94 28.67 0.93

I
I Table 4, To schedule graphs into Set 3 ([NI > lpl > Pmin).

The result of scheduling groups G1, G2, G3 under three dif-
ferent configurations of processors are summarized in Table
2, 3 and 4. It is shown in these tables that the R/M ratio of
RMS algorithm is higher than that of MD algorithm when
tasks are scheduled into both bounded and unbounded num-
ber of processor (Table 2 to 4). It is interesting to find in
Table 4 that even the RMS is used to schedule task into pro-
cessors set Set 3 (IPI = Pmin), the produced parallel time
is better than that of the MD algorithm in most situation.
These are because the MD algorithm stops to find a more
suitable schedule of task after the first available processors
satisfied Fact 1 is found. On the other hand, the RMS algo-
rithm is more aggressively finding better schedule of proces-
sors that can make the parallel time shorter. This not only
can maximize the utilization of available processors, but also
increase the parallelism of the final schedule. As a result, the
R/M of RMS algorithm is better than that of MD algorithm
in both bounded and unbounded set of processors.

It is observed that the improvement ratio R/M in fine-grain
groups is the highest and then gradually decreases as the
granularity increase under different processor configurations.
Although the granularity approaches to 10, there are over
90% of parallel time produced by the RMS algorithm being
shorter than that of MD algorithm in 25 %. This finding im-
plies that the parallel time produced by the RMS algorithm
is shorter than that of the MD algorithm in most situations
of fine-grain task graph. For the granularity is increasing,
the parallel time produced by the RMS algorithm becomes
close to but probably shorter than that of the MD algorithm
produced.

Furthermore, owing to both MD and RMS algorithm are
using heuristic information to make a scheduling decision.
This algorithm does not guarantee to produce an optimum
solution. As a result, parallel time produced by RMS is
not always shorter than that of MD algorithm. In the ex-
periment a probability value (Pr) is used to determine the
probability of parallel time produced by RMS is better than
that of MD algorithm. It is found that 90% of parallel time
produced by RMS is shorter than that of MD algorithm in
the three different processors configurations. This implies
that the RMS algorithm is not better than MD algorithm
in all situations, but it is better than MD algorithm in most
situations.

'

,

;

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 03,2023 at 21:23:29 UTC from IEEE Xplore. Restrictions apply.

949
The weakness of the RMS algorithm is that the minimum
number of processors needed to execute the program cannot
be determined as compare with the MD algorithm. How-
ever, the parallel time of the scheduled graph produced by
the RMS algorithm is better than that of the MD algorithm
in most situations, especially in scheduling fine grain task
graphs and scheduling tasks into unbounded number of pro-
cessors.

5 Conclusion

An aggressive task scheduling algorithm called RMS algo-
rithm is proposed in this paper. Using this algorithm im-
proved performance is achieved. This algorithm can also
schedule all kinds of task graphs in shorter parallel time with
relatively lower time complexity. It is also found that from
the experiment studies the proposed RMS algorithm can ag-
gressively schedule tasks with aims at maximizing proces-
sors utilization and increasing parallelism of scheduling task
graph. As a result, the parallel time of the final schedule time
can be minimized. The proposed algorithm is a high perfor-
mance scheduling algorithm and is very suitable to be deploy
in scheduling parallel of tasks with wide range of granularity
into homogeneous parallel and distributed systems.

References

[l] P.Chretienne, “Task scheduling over distributed
memory machines,” in Proc. Int. Workshop Parallel
Distrib. Algorithms, 1989.

[2] Heshan El-Rewini, Theodre G. Lewis amd Jesjam H.
Ali, “Task Scheduling in Parallel and Distributed Sys-
tem,” pp. 56-81, Prentic Hall. 1993.

[3] Landskov, D., Davidson, S., Shriver, B., and Mallett,
P. W. “Local microcode computation techniques.”
Computing Surveys, 12(3): pp.261-294, 1980.

[4] M.Y. Wu and D. Gajski, “Hypertool: A program-
ming aid for message-passing system,” IEEE Trans.
Parallel Distrib. Syst., vol. 1, pp.330-343, 1990.

[5] J. Baxter and J.H. Patel, “The LAST Algorithm: A
Heuristic-Based Static Task Allocation Algorithm,”
Proceedings of the 1989 Int. Conference on Parallel
Processing, V01.2, pp. 217-222, 1989.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on September 03,2023 at 21:23:29 UTC from IEEE Xplore. Restrictions apply.

