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Abstract 

An Aggressive Parallel Tasks Scheduling Algorithm: 
Relative Mobility Scheduling Algorithm (RMS) 

Wai-Yip Chan and Chi-Kwong Li 
Department of Electronic Engineering, 

The Hong Kong Polytechnic University, Hong Kong. 

In this paper, an aggressive scheduling algorithm called Rela- 
tive Mobility Scheduling algorithm (RMS) which is designed 
based on heuristic of Relative Mobility (RM) is developed. 
The proposed Aggressive RMS algorithm has the advantage 
of scheduling tasks into either bounded or unbounded num- 
ber of processors within a minimize parallel time. The goals 
of the algorithm are to maximize the utilization of the avail- 
able processors as well as the parallelism of the scheduling 
task graph, such that the parallel time of the produced sched- 
ule is a minimum. Experimental studies are carried out to 
evaluate and demonstrate the significant improvement of the 
proposed algorithm. 

1 Introduction 

A better scheduling of tasks in parallel and distributed envi- 
ronment is no doubt can lead to overall performance im- 
provement. However, task scheduling is proved to be a 
NP-complete problem[l]; it is very hard to obtain an op- 
timum scheduling solution in polynomial time complexity. 
Thus, heuristic approaches of task scheduling algorithms 
are used to approximate optimal solution within polynomial 
time complexity. The Mobility Direct algorithm (MD), as 
proposed by Wu and Gajski[4], is designed with Relative 
Mobility (M,) being the heuristic. With this heuristic, it is 
possible to determine the minimum number of processors 
required to execute a program with near optimal perfor- 
mance. 

In this research, the MD algorithm is studied and it is found 
that this algorithm cannot produce a shorter parallel time 
schedule when scheduling task into either bounded or un- 
bounded number of processors. Therefore, an improved 
scheduling algorithm called Relative Mobility Scheduling al- 
gorithm (RMS) is proposed to improve the Wu’s MD algo- 
rithm. With experiments studies significant improvement is 
achieved with the proposed algorithm. 
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2 The Wu’s Mobility Direct algorithm 
(MD) 

The Wu’s Mobility Direct algorithm was suggested by Wu 
and Gajski[4]. The main philosophy of the MD algorithm is 
based on the list scheduling heuristic[5]. Firstly, the Relative 
Mobility(M,) heuristic is used as a priority value to generate 
a priority list of free tasks for the scheduling the task graph. 
In fact the M ,  is the relative moving range of tasks in which 
is defined as: 

where T~(1zi) is the latest start time of a node n; (ALAP[S]), 
Ts(n;) is the earliest start time of a node ni (ASAP[S]) and 
W;(ni) is the cost of a node n;. 

Secondly, the highest priority task is selected from the list 
and scheduled into the first available processor that satisfies 
Fact 1 as described in [4]. Thirdly, dependence constrain of 
the scheduled task is reorganized and the task is removed 
from the list. Finally, the M ,  of all remaining free tasks are 
computed. The above steps are then repeated until all tasks 
in the task graph are scheduled. 

The MD algorithm uses the relative mobility and the Fact 1 
as a heuristic of scheduling. The application of relative mo- 
bility heuristic guarantees moving range of starting a task in 
execution which does not delay the execution of any other 
tasks on the critical path. Therefore, data dependence be- 
tween tasks is satisfied and the length of the critical path 
will not increase in each scheduling step. As a result, the 
algorithm is possible to generate a near optimal schedule in 
the sense of guaranteeing the parallel time of the produced 
schedule which is not longer than the critical path of the 
original task graph. 

Nevertheless, the task to processors assignment strategy of 
the MD algorithm does not guarantee the algorithm to pro- 
duce a shorter parallel time scheduling solution when the 
algorithm is used to schedule tasks into both bounded and 
unbounded number of processors. It is because the strategy 
assigns the selected task into a processor in which the pro- 
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cessor is selected from scanning through the available pro- 
cessor set of the first one that satisfies the Fact 1. Although 
this strategy can determine the minimum number of proces- 
sors required to execute the parallel program. The selected 
processors may not be the ones that can finish the task in 
minimum time. This result in accumulate of unnecessary 
increased parallel time in each scheduling step. As a result, 
usage of processors in the available processors set cannot be 
fully utilized. Parallelism of the scheduling task graph can- 
not be maximized and parallel time of the produced schedule 
cannot be minimized in the situation of scheduling tasks into 
both bounded and unbounded of processors. 

3 The proposed Relative Mobility Schedul- 
ing algorithm (RMS) 

In this section, a more aggressive scheduling algorithm called 
the Relative Mobility Scheduling algorithm (RMS) is pro- 
posed to schedule tasks into both bounded and unbounded 
number of processors. The goals of the algorithm are to 
maximize utilization of the available processors and to max- 
imize parallelism of the scheduling task graph such that the 
parallel time of the produced schedule can be minimized. 
An algorithmic description of the RMS algorithm is shown 
in algorithm l a  and lb .  In step 1 shown in algorithm la ,  
the Relative Mobility (M,.) of all tasks in the scheduling 
task graph is determined. In step 2, a priority list L' is 
generated using the heuristic of M, and then the highest 
priority free task n; of the list is selected to be scheduled. 
In step 3, the given processors set P is scanned through 
to identify a processor Pm such that n; executed in that 
processor would satisfy Condition 1 shown in algorithm l b  
and finish in minimum time. The Condition 1 is modified 
from Fact 1 of the Wu's algorithm in which supports the 
scanning process. After that, dependence constrain of the 
scheduled task is reorganized and the task is removed from 
the list. In step 4, the M,. of all remaining free tasks are 
recalculated and the steps 2-3 are repeated until all tasks in 
the task graph are scheduled. 

1: Calculate relative mobility for all tasks. 
2: Let L include all tasks initially. Let L' be the group of unexamined 

tasks in L with minimum relative mobility. let n; be a task in L' 
that does not have any predecessors in L'. 

3: Find a processors Pm in a given processors set P in which '2; would 
satisfy Fact1 and finish in minimum finish time (or the earliest finish 
time is reached). When n; is scheduled on pm, all edges connecting 
ni and other tasks already scheduled to  P, are changed t o  zero. 

If 1 ~ ;  is scheduled before task nj on P,. add an edge with cost zero 
from nj to  n; in the graph. If '2; is scheduled after task nj on the 
processor, add an edge with cost zero from nj t o  n; in the graph. 
Remove nj from L. 

4; Recalculate relative mobility for the modified graph. Repeat steps 2 
to 4 until L is empty. 

Algorithm la, The RMS algorithm. 

Necessary and sufficient condition for scheduling a task to  a processor 

P,(where P, E P): 
Assume a task np is considering t o  be scheduled to  Pm , in which 

1 tasks, nm,, n,,, ..., nm,, have been scheduled into P,,,. If 
the moving intervals of these tasks do not intersect with the moving 
interval o f  np. then np can be scheduled to  P,. Otherwise, assume 

the moving intervals of tasks nm,, n,,+,, ..., nmJ (l<i<j<l) 
intersect the moving interval of np. np can be scheduled t o  Pm, if 
there exists k (i<k<j+l), 

W(np) F min(TF(np),TL(nm,)) - 
maz(%(np), G ( n m k - 1 )  + W(nmk-1)).  

Where w(n;) is the cost of n;; and 
The T F ( ~ ~ )  and Ts(np) computation should assume that task np 
is scheduled to  processor Pm; and 
When nP is scheduled to  processor Pm, np is inserted before the 
first task in the task sequence of processor Pm that satisfies the 
inequality listed above; and 

if 
if 12m,+l does not exist, T~(n,j+l) =OO. Otherwise, the task 
cannot be scheduled to  P,. 

Algorithm Ib, (Condition 1 of the RMS algorithm): 
Necessary and sufficient condition for scheduling a task. 

does not exist. Ts(nm,-,) = 0, W'(nm,-l)  = 0; 

The major improvement of the RMS algorithm over the MD 
algorithm is in the task to processor assignment strategy. 
The RMS algorithm uses a strategy of scheduling a task into 
a processor in which it can finish the task as soon as possible. 
This is shown by the experiments in next section that such 
change implies an aggressive search for a better allocation of 
tasks into processors with smaller finish time. As a result, 
the unnecessary increase in parallel time in each scheduling 
steps can be reduced and a near to optimum scheduling so- 
lution can be produced in most cases of difference grain size 
of scheduling task graphs. 

4 Experimental Studies 

In this section, an experiment is set up to study perfor- 
mance of the RMS algorithm and the MD algorithm in which 
are used to scheduling tasks into different sets of proces- 
sors configurations. Owing to the scheduling problem is 
NP-complete in nature, heuristic ideas used in both MD 
and RMS algorithm cannot always lead to an optimal so- 
lution. Thus, it is necessary to compare the average per- 
formance of these algorithms by using randomly generated 
graphs. In this experiment, more than 7000 random gener- 
ated graphs are used. They are divided into three groups of 
different granularity (ratio of task cost over communication 
cost: R/C) : 

Group 1 (Gl): 
Group 2 (G2): 

Fine-grain, R/C range = 0.1-0.3. 
Median-grain, R/C range = 0.8-1.2, 
the average cost of computation 
and communication are close. 
Coarse-grain, R/C range = 3-10. Group 3 (G3): 
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Sub-group 11 Layer 

18-21 
18-20 
18-20 
36-40 

sub- Group 1 Group 2 Group 3 
group R/M (%) [ Pr R/M (%) Pr R/M (%) Pr 

A 27.46 0.92 24.38 0.87 25.86 0.91 

620 

I 

I 
I 

Table 1, Sub-grouping of random generated task graphs. 

Group 1 

Each group is further classified into six subgroups summa- 
rized in Table 1 that more than 400 graphs each in which 
they are in different number of layer and tasks configuration. 
These task graphs are scheduled by both MD and RMS al- 
gorithm into three different sets of processors configurations: 

Unbounded number of processors (IPI 2 IN!) ;  and 
Minimum number of processors which is 
determined by the MD algorithm required 
to execute the task graph (\PI = Pmin); and 
Bounded number of processors 

Set 1: 
Set 2: 

Set 3: 
(IN1 > IPI > Pmin) .  

,where \PI is the number of processor in a processor set P ,  
IN1 is the total number of tasks in the scheduling task graph 
and Pmin is the minimum number of processors which is 
determined by the MD algorithm required to execute the 
task graph. 
Two arguments are used to measure the figure of merit of 
RMS over MD algorithm. They are the probability of par- 
allel time produced by the RMS algorithm shorter than the 
MD algorithm (Pr) and parallel time improvement ratio of 
RMS over MD algorithm (R/M). The R/M ratio is defined 
as follow: 

PT" R I M =  (1- -) 
PTmd 

Group 2 Group 3 Sub- 

group 

A 

B 
C 
D 
E 
F 

Sub- 
group 

A 

Group 1 Group 2 Group 3 
R/M (%) Pr R/M (%) Pr R/M (%) Pr 

28.61 0.91 19.49 0.84 17.65 0.83 

1 Average (1 68.61 1 0.96 1 47.02 1 0.96 1 30.42 1 0.95 1 
Table 2, To schedule graphs into Set l()Pl 2 !NI) .  

Table 3, To schedule graphs into Set 2 (\PI = Pmin). 

1 ;  
Average 

33.16 
34.72 
38.72 
37.65 
39.77 
35.25 

0.92 
0.94 
0.96 
0.97 
0.96 
0.95 
- 
- 

23.43 1 ::Cl: 1 25.8 1 ::;: 
22.21 21.56 
33.85 0.98 26.73 0.93 
49.95 0.97 34.52 0.95 
57.79 0.98 37.53 0.95 
35.27 0.94 28.67 0.93 

I 
I Table 4, To schedule graphs into Set 3 ([NI > lpl > Pmin). 

The result of scheduling groups G1, G2, G3 under three dif- 
ferent configurations of processors are summarized in Table 
2, 3 and 4. It is shown in these tables that the R/M ratio of 
RMS algorithm is higher than that of MD algorithm when 
tasks are scheduled into both bounded and unbounded num- 
ber of processor (Table 2 to 4). It is interesting to find in 
Table 4 that even the RMS is used to schedule task into pro- 
cessors set Set 3 (IPI = Pmin), the produced parallel time 
is better than that of the MD algorithm in most situation. 
These are because the MD algorithm stops to find a more 
suitable schedule of task after the first available processors 
satisfied Fact 1 is found. On the other hand, the RMS algo- 
rithm is more aggressively finding better schedule of proces- 
sors that can make the parallel time shorter. This not only 
can maximize the utilization of available processors, but also 
increase the parallelism of the final schedule. As a result, the 
R/M of RMS algorithm is better than that of MD algorithm 
in both bounded and unbounded set of processors. 

It is observed that the improvement ratio R/M in fine-grain 
groups is the highest and then gradually decreases as the 
granularity increase under different processor configurations. 
Although the granularity approaches to 10, there are over 
90% of parallel time produced by the RMS algorithm being 
shorter than that of MD algorithm in 25 %. This finding im- 
plies that the parallel time produced by the RMS algorithm 
is shorter than that of the MD algorithm in most situations 
of fine-grain task graph. For the granularity is increasing, 
the parallel time produced by the RMS algorithm becomes 
close to but probably shorter than that of the MD algorithm 
produced. 

Furthermore, owing to both MD and RMS algorithm are 
using heuristic information to make a scheduling decision. 
This algorithm does not guarantee to produce an optimum 
solution. As a result, parallel time produced by RMS is 
not always shorter than that of MD algorithm. In the ex- 
periment a probability value (Pr) is used to determine the 
probability of parallel time produced by RMS is better than 
that of MD algorithm. It is found that 90% of parallel time 
produced by RMS is shorter than that of MD algorithm in 
the three different processors configurations. This implies 
that the RMS algorithm is not better than MD algorithm 
in all situations, but it is better than MD algorithm in most 
situations. 

' 

, 

; 
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The weakness of the RMS algorithm is that the minimum 
number of processors needed to execute the program cannot 
be determined as compare with the MD algorithm. How- 
ever, the parallel time of the scheduled graph produced by 
the RMS algorithm is better than that of the MD algorithm 
in most situations, especially in scheduling fine grain task 
graphs and scheduling tasks into unbounded number of pro- 
cessors. 

5 Conclusion 

An aggressive task scheduling algorithm called RMS algo- 
rithm is proposed in this paper. Using this algorithm im- 
proved performance is achieved. This algorithm can also 
schedule all kinds of task graphs in shorter parallel time with 
relatively lower time complexity. It is also found that from 
the experiment studies the proposed RMS algorithm can ag- 
gressively schedule tasks with aims at maximizing proces- 
sors utilization and increasing parallelism of scheduling task 
graph. As a result, the parallel time of the final schedule time 
can be minimized. The proposed algorithm is a high perfor- 
mance scheduling algorithm and is very suitable to be deploy 
in scheduling parallel of tasks with wide range of granularity 
into homogeneous parallel and distributed systems. 
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