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Abstract: High-performance computing (HPC), according to its name, is traditionally oriented toward
performance, especially the execution time and scalability of the computations. However, due to
the high cost and environmental issues, energy consumption has already become a very important
factor that needs to be considered. The paper presents a survey of energy-aware scheduling methods
used in a modern HPC environment, starting with the problem definition, tackling various goals set
up for this challenge, including a bi-objective approach, power and energy constraints, and a pure
energy solution, as well as metrics related to the subject. Then, considered types of HPC systems and
related energy-saving mechanisms are described, from multicore-processors/graphical processing
units (GPU) to more complex solutions, such as compute clusters supporting dynamic voltage and
frequency scaling (DVFS), power capping, and other functionalities. The main section presents a
collection of carefully selected algorithms, classified by the programming method, e.g., machine
learning or fuzzy logic. Moreover, other surveys published on this subject are summarized and
commented on, and finally, an overview of the current state-of-the-art with open problems and
further research areas is presented.

Keywords: high-performance computing; energy-aware scheduling; energy-aware metrics; DVFS;
power capping

1. Introduction

Traditionally, high-performance computing [1] has been primarily performance ori-
ented, firstly increasing in performance and size by adding more (cluster) nodes and
increasing central processing unit (CPU) frequency, then increasing the number of cores
when the achievable clock frequency reached its plateau. Finally, when accelerators such
as GPUs specifically well suited for running massively parallel ideally sequential instruc-
tion sequences by thousands of threads were introduced, they also allowed increasing
performance/watt. Currently building new HPC systems very much considers power
requirements [2] with power per system such as: 21.1 MW for the 1.102 EFlop/s Frontier,
29.9 MW for the 442 PFlop/s Fugaku, and only 2.94 MW for the 151.9 PFlop/s LUMI
systems at the top of the current TOP500 list (https://www.top500.org/lists/top500/—
TOP500: a list of the 500 most powerful non-distributed computer systems in the world,
accessed: 15 December 2022). Moreover, the current increases in electricity costs have led
researchers to optimize computations with consideration of both power (such as maximum
power required through computations important when the maximum power load of a
(sub)network is crucial) or total energy used or consideration of mixed performance and
power/energy metrics [3].

Consequently, in view of these developments and conditions, in this paper we aim at
investigating energy-aware scheduling and optimization in high-performance computing
by considering and analyzing several aspects in this area, i.e.,:
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• energy-aware metrics [4–6];
• types of systems in the context of their heterogeneity as well as compute device types

including multi- and many-core CPUs and accelerators such as GPUs [1];
• algorithmic approaches used to solve the energy-aware related scheduling problems [7,8];
• additional aspects such as filtering data and accuracy of measurements [9,10].

The methodology adopted for the selection of research works for analysis included
consideration of papers from the recent 15 years available on the Google Scholar platform
(which contains a wider selection of research type of works than the highly regarded Web
of Science and Scopus databases) that consider and apply energy-aware scheduling in
the field of high-performance computing in a context wider than tailored to one specific
application. Specifically, this applies to those that propose an approach applicable to
scenarios and applications following a universal model, framework applicable to a class of
codes, etc. We analyzed up to 100 papers returned for combinations of keywords including
energy/energy-aware/power + scheduling + high performance computing/HPC/parallel
computing. We subsequently considered metrics that are part of the optimization goal,
compute device types and environments, and specific algorithms used to solve the stated
goal. This allowed us to perform an investigation of algorithm × optimization metric ×
system type, resulting in the identification of research gaps and open problems in energy-
aware HPC scheduling. We shall note that we exclude works focusing on cloud-specific
research problems and technologies but at the same time, we realize that HPC solutions
can and are deployed within clouds and HPC-level energy-aware computing are within
our interests.

The outline of the paper is as follows. In Section 2, we review existing surveys
concerning the topic. We discuss the definition of energy-aware scheduling for HPC systems
and related concepts such as resource allocation, data partitioning as well as (workflow)
scheduling in Section 3. We then discuss metrics and criteria considered for optimization as
well as mechanisms allowing obtaining various performance-power/energy configurations
such as DVFS and power capping. This leads us to review existing energy-aware scheduling
approaches by the following device/system types: CPU, GPU, hybrid CPU+GPU, and
finally, homo-/heterogeneous clusters. In Section 4, we proceed with analyzing algorithms
used to solve the energy-aware scheduling problems by type and formulation. In Section 5,
we follow with conclusions, open problems, and areas for further research that stem from
our analysis.

2. Related Review Works

Work [3] provides a broad overview of articles on energy-aware tools, techniques,
and environments used in high-performance computing. The work describes energy
management tools for various architectures. It lists approaches for various types of
architectures—a single device, cluster, grid, and cloud. The work describes the optimization
metrics used. It also aligns metrics with energy-aware tools and presents benchmarking,
prediction, and simulation tools for the described problem. The authors indicate the need
for the unification of energy management interfaces on different architectures. Attention is
drawn to the need for the development of performance and energy models for CPU-GPU
systems instead of empirical approaches. The conclusions show that further development
of energy-aware methods for heterogeneous environments is needed. The authors indicated
optimization goals worth investigating, based on minimizing the product of energy and
time. It was also suggested that there is a need for building tools for automatic power-
performance tradeoffs and auto-configurable power capping. The need for validation of
the quality of energy tools was also mentioned.

Article [11] analyzes currently explored areas in the field of energy-aware HPC and
clouds. It categorizes the methods used to save energy for the HPC systems and analyzes
the taxonomy of energy-aware HPC computing. The article also concludes the open areas
of research in the reviewed topic. Finally, several open questions on the development of
energy-aware HPC computing are presented. The authors pose a question about the method
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of monitoring distributed systems in the context of energy (which can be carried out from
cores to entire clusters). They also claim that there are not enough energy models estimating
power consumption for programs, which translates into the inability to accurately estimate
the cost for the user. They point out the need for the development of energy-aware tools
for different levels of the HPC system (to prevent possible deviations at different levels). It
also shows the lack of transparent business interfaces that allow for easier management of
tradeoffs between energy and performance.

Article [12] describes possible methods of analyzing the performance of HPC systems,
taking into account energy consumption. Additionally, it lists and describes the tools
that are available for HPC systems for energy-efficiency analysis. It defines the most
important characteristics required for energy measurement tools. The work also carried
out several experiments with energy monitoring tools. The tools were classified in the
context of the overhead of the tool, portability, accuracy, code improvement suggestions,
and interface friendliness.

Review [7] examines resource allocation and energy-efficient algorithms for job schedul-
ing in parallel systems. In the work, the listed solutions were simulated and compared
using selected metrics (queue and wait time, slow down, and energy consumption). Sim-
ulations were carried out in the work, comparing 13 algorithms and showing their pros
and cons. An analysis of workloads was performed, categorizing them into Narrow, Wide,
Short, and Long jobs. It also analyzes selecting the appropriate heuristic for a given prob-
lem. The paper concludes that energy is the dominant cost in maintaining HPC systems.
The authors, after analyzing many scheduling and resource allocation algorithms, con-
clude that to obtain the best energy savings, planning policies should be used dynamically
depending on the situation.

Survey [8] describes the problems and challenges of energy-aware scheduling and
resource allocation. Many types of architecture are taken into account, such as single-core
systems, multicore systems, and distributed systems. The work reviews resource allocation
algorithms, scheduling algorithms, and energy-saving tools. Additionally, it contributed to
the field of taxonomy. The conclusions allowed them to indicate the lack of solutions in the
following areas. It is shown that most algorithms assume that all resources are available
during the entire planning phase, which is not always true. The authors also point out that
tradeoffs other than execution time and energy have been only slightly explored. Attention
is drawn to the relationship between temperature and energy. Another conclusion is that
algorithms based on slack allocation may perform better for workflow tasks.

In [13] Maiterth et al. present energy-savings efforts focused on energy- and power-
aware job scheduling and resource allocation, performed in nine large HPC centers located
over three continents. The survey is based on a questionnaire consisting of eight questions
answered by the data centers’ staff. The described solutions are practical procedures
introduced in the centers, including power capping, job killing, splitting compute nodes by
virtual machines, etc. The paper is valuable from the engineering point of view, but it does
not provide a more formal and theoretical review of the power-aware scheduling problem.

An interesting perspective of green data centers functioning is presented in survey [14].
In comparison to our work, it focuses on thermal and cooling aspects of the task scheduling,
where the proper distribution of the heat in server racks is the objective. The paper
presents the thermal modeling as well as possible solutions to keep the server room intact,
without some hard to cool or even dangerous phenomena such as hot spots. The proposed
methods are based on two approaches: reactive, where the spotted problem is resolved a
posteriori, and proactive, where the problem is going to be avoided before its occurrence,
e.g., using a thermal model of the server room followed by the proper task assignment to a
compute node.
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3. Problem Formulation

This section presents the problem definitions of energy-aware scheduling for HPC sys-
tems and related problems—resource allocation, data partitioning, and workflow schedul-
ing. The symbols used in these and further formulas are listed in Table 1.

Table 1. Symbols used in the formulas.

Symbol Description

J set of tasks/jobs
R set of resources
j task/job
r resource
time(j, r) execution time of task j on resource r
energy(j, r) energy needed by task j on resource r
sj start time of task j
aj resource assigned to task j
communication(x, y, ax, ay) communication time between resources ax, ay

performing tasks x and y
D set of the precedence pairs
Aj set of the resources assigned to task j
ExecT execution time
EC energy consumption
α, β factors
W weights
PpW performance per watt
RPpW reference performance per watt
TGI The Green Index
REE relative energy efficiency
EDP(EC, ExecT) energy delay product
EDS(EC, ExecT) energy delay summation
EDD(EC, ExecT) energy delay distance

Let J be a finite set of tasks (sometimes also called jobs) and R be a finite set of resources
to be used. Let time(j, r) be a function that returns the execution time of job j ∈ J on resource
r ∈ R, and energy(j, r) will be the function that returns the energy needed by job j ∈ J on
r ∈ R [15,16]. Energy-aware scheduling consists of finding the sequence of start times of
the tasks {s1, s2, ..., s|J|} and assigned resources to the tasks {a1, a2, ..., a|J|} in such a way
that [17]:

∀sx : ¬∃sy : sx ≤ sy + time(y, ay) ∧ sy ≤ sx + time(x, ax) ∧ ax = ay

∀ax : ax ⊂ R

optimizing:

min/max(OptimizationGoal({s1, s2, ...s|J|}, {a1, a2, ...a|J|}))

The optimization goal is minimized/maximized depending on the formulation of a
function that involves basic metrics such as execution time, energy, and power. Additionally,
constraints involving such metrics might be added as necessary conditions.

In other words, it is a system for allocating time slots of available resources to corre-
sponding tasks and maximizing or minimizing (depending on the objective) the selected
energy-efficiency goal. Both the takeoff time and the number of resources are limited. Only
one job can be processed on each resource at a time in this formulation [18,19]. Depending
on the system, the resources can be specific cores, CPU devices, dedicated accelerators,
or entire compute nodes. The workload can also be defined in the form of a workflow de-
fined as a directed acyclic graph (DAG) [20,21], where nodes represent the tasks and edges
represent precedence relation, which imposes further constraints on the scheduler [22].
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Such dependencies can be included in the set of pairs indicating that the start time of a
given task is greater than the completion time of the second task (hereafter referred to as
the D set). The scheduling formula would be updated with the following constraint [17]:

Let us define a function communication(x, y, ax, ay) that returns the communication
time between the devices ax and ay performing tasks x and y. Let D be a finite set of pairs
of tasks, where:

∀{x, y} ∈ D : sx + time(x, ax) + communication(x, y, ax, ay) ≤ sy

optimizing:

min/max(OptimizationGoal({s1, s2, ...s|J|}, {a1, a2, ...a|J|}, D))

The above condition can also be used to prioritize tasks for scheduling issue [23].
Occasionally, the resources that can be allocated to a job may be limited to a subset of

the set of all devices [24]. Furthermore, the number of resources allocated to a task can be
greater than one [25]. In this case, we assume that the time and communication functions
take a set of assignments instead of values as parameters. Let Pj be a set of devices that can
be assigned to task j ∈ J. The goal is to find the assignment set Aj (instead of a sequence
{a1, a2, ..., a|J|}) and start times {s1, s2, ..., s|J|} for each job in such a way that:

∀x ∈ Aj : x ∈ Pj

∀sx : ¬∃sy : sx ≤ sy + time(y, Ay) ∧ sy ≤ sx + time(x, Ax) ∧ Ax ∩ Ay 6= ∅

∀{x, y} ∈ D : sx + time(x, Ax) + communication(x, y, Ax, Ay) ≤ sy

optimizing:

min/max(OptimizationGoal({s1, s2, ..., s|J|}, A1, ..., A|J|, D))

In other words, it is the process of selecting available resources for a task. Resources
must fulfill job processing requirements (both the software and hardware) and meet per-
formance expectations. In this case, we also take care to process the task with the lowest
possible power level, which will not disturb the imposed restrictions. Such assigned re-
sources to tasks are often defined as resource allocation [26]. The approach is widely used
in cloud computing environments [27].

The data partitioning problem overlaps with scheduling and resource allocation
problems. Data partitioning is an isomorphic problem of resource allocation, but instead of
allocating resources to tasks, we allocate data to resources. In this problem, we assume that
we are solving a problem that is partitioned among many resources [28].

Energy-aware scheduling, resource allocation, and data partitioning can also be for-
mulated using well-known techniques such as linear integer programming and genetic al-
gorithm (GA) [29,30]. For this purpose, it is necessary to define suitable optimization goals.

3.1. Optimization Goals

Energy-aware optimization can be either focused on energy consumption (EC) only
or can take under consideration other factors, usually the performance of the underlying
systems (e.g., execution time (ExecT) of scheduled tasks). The former can be simply stated
as energy itself (e.g., in joules or kWh) or can be expressed in a more sophisticated form such
as in [31], with a metric described as instructions per joule equivalent or performance per
watt (PpW), where it was used for efficiency setting out the Koomey’s law, showing Moore’s
law time progression of the manufactured hardware. This formulation, in a FLOPS/watt
form, is also used as a primary objective of the supercomputer evaluation in Green500 list
(https://www.top500.org/lists/green500/—GREEN500: a list of the 500 most powerful
non-distributed computer systems in the world, energy-aware view, accessed: 15 December
2022). Another variation of the metric is its relative version proposed in [4]: The Green

https://www.top500.org/lists/green500/
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Index (TGI). It uses PpW by dividing the evaluated configuration by the reference solution
to obtain the relative energy efficiency, also called PoweerUp [32]:

REE =
PpW

RPpW

Such a metric is measured for different benchmarks and then, to obtain TGI, it is summed
up with the specific weights, defined according to the importance of the benchmarks:

TGI = ∑ (Wi · REEi)

In the case of considering the performance factors, we need to cope with multi-
objective optimization. A typical approach used in multi-objective optimization is to
combine the objectives into one meta-objective by providing a specific goal (i.e., the fitness
function), reflecting their importance to the user. In this case, one of the most popular func-
tions is the energy delay product (EDP), which is defined as a result of the multiplication
of time and energy used to complete the computational task [33]. The variations of this
function cover different degrees of time power:

EDP(EC, ExecT) = EC ∗ ExecTw

where w have values of 1, 2 or 3 [5,6].
In [34], the authors claim that the EDP does not allow for a precise definition of

the tradeoff between the energy and performance—showing a list of their criteria for its
evaluation, including such characteristics as stability or intuitiveness. Thus, they propose
other energy-aware functions: energy delay summation (EDS) and energy delay distance
(EDD). The former can be defined as the sum of energy cost and execution time multiplied
by the factors that limit the impact of its components:

EDS(EC, ExecT) = α ∗ EC + β ∗ ExecT

The latter (EDD) is formulated as a Euclidean distance from the most optimal point to
the currently measured one:

EDD(EC, ExecT) =
√

EC2 + (β ∗ ExecT)2

3.2. Mechanisms Allowing Performance Energy Configurations

Energy-aware scheduling algorithms usually exploit different hardware/software
configurations, where the same job demonstrates different power-performance tradeoffs,
e.g., heterogeneity of the used environment, with more and less energy efficient compute
units. To generate even more possible configurations, it is possible to use some power-
limiting mechanisms. Increasing the number of configurations leads to a larger space for
searching for an appropriate plan for the scheduler. By attempting to maximize or minimize
optimization goals, power tradeoffs can be made at the expense of performance. The dy-
namic power management (DPM), dynamic voltage and frequency scaling (DVFS), and
power capping mechanisms, which can be applied dynamically or statically, are presented.

3.2.1. DPM

Dynamic power management (DPM) allows temporarily lowering the frequency or
turning off a node during idle states [35]. DPM can be used for many elements of the
HPC system (e.g., disks and processors). Restoring resources to service is cost-effective
in performance [36]. For this reason, the scheduler is the right place to apply DPM be-
cause of its predictability. This makes it possible to extend the scheduler with further
energy mechanisms.



Energies 2023, 16, 890 7 of 28

3.2.2. DVFS

Dynamic voltage and frequency scaling (DVFS) is a method of power control by
regulating the voltage and frequency of the device. This mechanism has been adapted to
the energy-aware schedulers for additional energy management [37]. DVFS can be applied
with tools such as CPUfreq, the interface of which allows for limiting and dynamically
setting the frequency of the CPU or disabling a particular core. Since DVFS itself is not
accurate enough, additional mechanisms were introduced that together result in power
capping [38]. To achieve higher accuracy, power models are used to calculate appropriate
parameters for the DVFS dynamically [39,40].

3.2.3. Power Capping

Power capping can be used for a particular device by setting a power threshold, which
may not be exceeded by the device [41]. Device manufacturers provide appropriate tools to
apply power capping, such as NVIDIA System Management Interface (nvidia-smi), RAPL
(Intel), Energyscale (IBM), and APM (AMD) [42]. They also allow limiting not only the
main computing units but also such components as DRAM (RAPL) [43]. Tools such as
RAPL use the DVFS mechanism and clock throttling. The tool additionally monitors power
consumption to dynamically adjust frequency scaling. RAPL also uses energy consumption
prediction models to achieve the highest possible accuracy [38]. The interface of tools such
as RAPL provides several functionalities, such as long-term/short-term limits averaging
windows (dynamically adjusted), information about the maximum and minimum power
consumption that can be set on the device, or control of the current energy consumption.
Various power capping algorithms are under intense investigation [44]. The use of power
capping and its effects on performance are also being researched [45].

3.3. Energy-Aware Scheduling for Particular System Types

Scheduling can be defined at many levels, starting from the management of particular
threads, through controlling individual computing devices, such as nodes gathered within
a cluster, either based directly on the hardware or virtualized in the cloud, to computational
grids—federated clusters, usually located in different geographical locations. Moreover,
in the case of heterogeneous systems, devices may differ in their architectures and the way
of their programming such as APIs. Some of the jobs, as mentioned in Section 3, can only be
performed on a particular architecture. In the case of energy-aware scheduling, the different
energy consumption of the various devices has to be taken into account. The approaches of
scheduling used for various combinations of systems are discussed below.

3.3.1. CPU

The use of multiple CPUs, each of which can handle multiple threads for multiple tasks
simultaneously, requires appropriate planning [46]. Technologies such as power capping
or DVFS allow the frequency of the cores to be changed dynamically, allowing additional
configurations for energy-aware scheduling [11,23,47]. With tools such as RAPL (Intel) or
APM (AMD) it is possible to create more power configurations with power capping [48–50].

The RAPL driver is capable of controlling and monitoring power domains including
PP0—CPU cores, DRAM—memory, and PKG—representing the whole CPU socket [10].
DPM can be also used to reduce power consumption during idle state [35]. Processor
cores can be heterogeneous and include energy-efficient and higher performance units. It
can also be a subject of scheduling [51]. Another way to extend available configurations
and manage possible resources is virtualization, which is especially used in the cloud (not
addressed in this article) [52–55].

3.3.2. GPU

Currently, the considerable resources of GPU cards available in HPC centers that many
users work with require queuing systems or schedulers to allow efficient operation of
the devices. For this reason, various methods are being investigated to use these types

Peter Hu



Energies 2023, 16, 890 8 of 28

of accelerators as energy-efficiently as possible. Appropriate distribution of tasks among
devices might be a basic approach leading to obtaining energy savings [56]. Especially for
different GPU cards, the analysis and prediction of performance and energy consumption
can be used to create a new policy and apply it to tools such as SLURM [57]. Another
functionality that a suitable scheduler can include is the consolidation of GPU tasks [58].
If it is possible to perform two tasks simultaneously, this can bring benefits in terms of
efficiency and energy savings. The tasks must be linked in such a way that the memory
and the number of SMs are sufficient for execution. For additional efficiency and energy
optimization, additional auto-tuning tools may be used to adjust the number of blocks,
the number of threads per block, and the frequency (allowed by modern GPU cards) [59].
Using a tool such as NVIDIA System Management Interface (nvidia-smi) for power capping
as well as in the case of a CPU can create additional configurations [49]. In addition,
schedulers can be adapted to specific tasks. For machine learning (ML) applications,
a system with dynamic batching and coordinating DVFS of the GPU was effectively used
to reduce power consumption [60]. Energy-aware schedulers are also widely studied in
applications such as GPU-RAID [61,62]. In terms of scheduling, a programmer should also
keep in mind that the use of the CPU has an impact on the performance of the GPU, which
is used for communication, among others [63]. In this case, if the scheduler running on the
CPU absorbs too many resources, it can affect the work of the GPU.

3.3.3. Heterogeneous Environments

Currently, the heterogeneity of high-performance computing systems is present both
within individual computing nodes, due to the presence of multicore CPU(s) and GPUs or
other types of accelerators, and when integrating many non-homogeneous nodes, either
within LAN or cluster environments. Some models (later also called heterogeneous proces-
sors) specify the usage of heterogeneous compute devices (can be multicore CPUs, GPUs,
or other accelerators) that can be applied to either single-node or multi-node systems.

Due to the diversity of architectures in a heterogeneous system, more complex sched-
ulers are required. It should be assumed whether jobs should be limited to a given pool of
devices (due to the lack of implementation) or whether implementation should be enforced
in frameworks that support cross-platform, such as OpenCL [64], Vulkan, and OneAPI.
Additionally, power consumption and execution time prediction algorithms are required
for different architectures because their power consumption and performance per task are
different [65]. In heterogeneous environments, special attention is paid to communication
due to possible bottlenecks that the scheduler must take into account. This is also an
important aspect because, for some low-complexity jobs, the turnaround time including
communication time for the fastest devices (usually the GPU) may be longer than the
execution on the CPU. The scheduler must also take into account that some of the resources
are used for themselves (prediction, job scheduling, using energy-aware tools). When
using mechanisms to control energy consumption, such as DVFS or power capping, it is
necessary to cooperate with multiple tools [40]. In the case of a cluster CPU + GPU system,
it is necessary to account for both CPU-GPU communication overhead and inter-node
communication on the CPU side i.e., CPU cores needed for such purposes as not doing so
will slow down overall processing [29,66].

3.4. Time and Power/Energy Measurements

Optimization using the aforementioned goals that involve metrics such as execution
time and power as well as energy consumption requires proper measurement techniques.

Execution time is typically measured on the CPU side as it allows measuring the
wall times between the start and end of computations spawned either on CPU cores or on
accelerators such as GPUs the latter typically involving GPU management threads running
on CPU cores [66]. Appropriate system calls such as clock_gettime() (clock_getres() ac-
quires precision of a given clock clockid, potentially down to nanoseconds) or MPI_Wtime()
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(intended to be a high-resolution, wall time clock function, in case of a parallel application
running on a cluster) or similar are used.

In terms of power and energy measurements, either power measurements from APIs
made available by computing device (CPUs and GPUs) manufacturers are taken or power
readings from hardware meters (typically amounting to whole computing nodes) are
used. For the former, often used APIs include Intel RAPL for Intel CPUs (also through
interfaces such as PAPI) or NVIDIA NVML for NVIDIA GPUs. We shall note that NVIDIA
declares NVML power readings being accurate within ±5% of the current power draw.
The nvmlDeviceGetPowerUsage() function can be called to retrieve the power usage of a
device—in paper [67] the sampling frequency of reading the sensors was set to a maximum
of 66.7 Hz. In the same paper, the authors performed measurements of energy consumption
of approx. Forty instructions executed on Maxwell, Pascal, Volta, and Turing NVIDIA
GPUs and verified that for all tested instructions average mean absolute percentage error
(MAPE) of the MTSM (multi-threaded synchronized monitoring) software method (using
readings from NVML) turned out to be 6.39 while mean root mean square error (RMSE)
was equal to 3.97. Typically used hardware meters in this context belong to the Yokogawa
WT300 series power meter with basic accuracy of 0.1% and 100 ms data update rate. Energy
measurements are obtained by integrating power data over time.

Some works have reported inaccuracies of APIs such as Intel RAPL and NVIDIA
NVML compared to hardware meters and consequently, unsuitability of incorporating the
former into mechanisms for dynamic energy-aware optimization [68]. On the other hand,
a comparison of the accuracy of RAPL and NVML against hardware measurements has
been found adequate for power-capped optimization of energy, EDP, and EDS for CPUs
in [10], where power caps were applied for application runs with specific problem sizes.

4. Energy-Aware Scheduling Algorithms

In this section, selected energy-aware scheduling algorithms are described and classi-
fied by their types. Their most important features are summarized in Table 2 and concisely
visualized in Figure 1.

Figure 1. Analyzed papers with scheduling algorithms.
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4.1. Randomized Algorithms

In [69], the authors first studied CPU-GPU utilization models obtaining power-CPU
utilization and power-GPU utilization dependencies and focused on optimization of an
energy-efficient job scheduling problem with conditions on both the deadline and utiliza-
tion (as close to optimal as possible) constraints and minimizing job execution energy
consumption. Then they compared a Utilization Aware and Energy-Efficient Heuristic
Greedy Algorithm (UEJS) and a Hybrid PSO Algorithm (H-PSO) showing benefits of the
latter in terms of average energy consumption compared to UEJS by 36.5%, Max-EAMin by
36.3% and GA by 46.7%.

In [70], minimization of EDP formulated as a product of mean stretch time and
normalized mean power is considered for job scheduling on the condition that no two
jobs are scheduled on a server at the same time. An energy-aware greedy algorithm with
particle swarm-optimized parameters is proposed and it was shown that a solution can
be optimized by using malleable jobs (the number of allocated servers can be changed at
runtime) and powering off idle servers.

In [71], the authors tackled the problem of finding a non-preemptive schedule of a set
of jobs minimizing the average sum of energy and weighted completion time and proposed
a randomized approximation algorithm that they subsequently de-randomized in order to
find an approximation algorithm that was deterministic. This is considered in the context
of scheduling on unrelated parallel machines taking into account time and energy as well
as release dates depending on machines. Subsequently, they extended their approach to an
algorithm minimizing average completion time with a bound on energy consumption.

4.2. Machine Learning

In [72], the authors proposed a framework for data centers that allows obtaining
interesting energy consumption and response times for scenarios involving incoming
job streams without any stationary assumptions regarding jobs. The approach is based
on reinforcement learning (RL) through constructing a proper reward—negative of the
weighted sum of average job response time and average power consumption within a time
slot. The authors used Google cluster usage data trace and were able to obtain energy
savings of 5.4%, 17.8%, and 24.5% at the cost of 0%, 29%, and 73% extensions of the job
response times, respectively.

In [46], the authors proposed to use two mechanisms for the reduction of power
consumption in a data center while preserving an SLA. This involved turning off machines
that are idle and consolidating, i.e., minimizing the number of machines used. For the latter,
they proposed to use supervised machine learning for the prediction of power consumption
and user satisfaction level of a job. This is then considered a machine learning scheme
using a dynamic backfilling scheduler. Various turnoff and -on thresholds were considered
and power vs. SLA fulfillment has been analyzed. Finally, the authors compared five
scheduling algorithms i.e., random, round robin, backfilling, dynamic backfilling, and their
machine learning DB, for three workloads: grid (obtained for Grid5000), service (from
Ask.com), and heterogeneous (mix suited for data centers). While for the grid workflow,
original backfilling algorithms were considerably better than the others in terms of power
consumption, for both the service and the heterogeneous workloads the proposed algorithm
offered considerably better power consumption by approx. 16% and 7% at the slight CPU
usage penalties of 3% and 4%, respectively.

In [73], the authors proposed an energy-aware partitioned-based task scheduling
algorithm using deep reinforcement learning which firstly places tasks in partitions and,
subsequently, tasks are assigned servers within those partitions. They proposed an energy
consumption model and the usage of an autoencoder to deal with a multi-dimensional
model to speed up convergence. The solution was tested in small, medium, and large
scale environments showing generally superior results compared to Tetris and H20 in
terms of normalized accumulated energy consumption and in between (larger than Tetris)
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normalized accumulated waiting time, e.g., for 120,000 tasks saving approx. 27.5% more
energy compared to Tetris and increasing the waiting time by 6.8%.

In [74], the authors have adopted machine learning in order to optimize energy
efficiency defined as the amount of work completed per unit of energy and learning
preferred socket allocation, using HyperThreading and CPU DVFS settings in order to
optimize energy efficiency at various points of application execution. This approach does
not require any code changes and maps a selection of hardware counter values onto the
aforementioned settings but may require costly training. The authors used an 80 physical
core (16 logical core) system with 512 GB DRAM and 4 sockets as well as 21 benchmarks
for training, including a selection of, in particular, NAS Parallel Benchmarks, AMG, Kripke,
LULESH, Quicksilver, XSBench, RSBench, CoMD, HPGMG-FV [2], Jacobi solver, and
STREAM. Results were evaluated using bioinformatic HPC applications HipMer, IDBA,
Megahit, and metaSPAdes, reaching a 39% reduction of power consumption with an
average increase of execution time of 31%.

In [49], the authors considered the problem of scheduling jobs being HPC applications
onto a parallel system meeting a power bound optimizing bounded slowdown (BSLD)
which is the ratio of actual wait and execution time divided by specified job runtime.
The approach uses a machine learning model for predicting CPU power consumption (the
authors simplify the GPU estimation by adding maximum power consumption of GPUs if
engaged) and scheduling either using the priority rules-based (PRB) algorithm or a hybrid
solution with a relaxed constraint programming (CP) model for an initial schedule and a
heuristic approach for the final schedule. They have reported an average gain of 8.5% vs.
state-of-the-art testing for the Eurora supercomputer.

4.3. Dynamic Programming

Dynamic programming [75,76] is used for energy-aware scheduling for a heteroge-
neous multicore processor architecture in [77]. Characteristics of this work are assumptions
that consider a workflow as well as limiting execution time and assuming the probability
of execution while minimizing energy. The authors have proposed a minimum energy
under probability constraints algorithm to select a core and voltage level for each task to
satisfy the probability constraints, subsequently, a leaf-partition algorithm is applied for
finding an execution order and a trading energy for time algorithm is used for minimization
of execution time. The solutions were shown to demonstrate results better than existing
algorithms with up to approx. 30% improvement.

4.4. Fuzzy Logic

In [78], the authors adopt the fuzzy logic [79] approach for scheduling programs
to appropriate cores within a system—based on metrics such as instruction dependency
distance, data reuse distance, and branch transition rate. The proposed scheduling approach
has been shown to provide up to 15% average reduction in EDP compared to random
scheduling. The authors tested a single ISA heterogeneous four-core processor with various
specifications for each core and integer and floating point SPEC CPU2000 benchmarks.

4.5. Integer Programming

In the first phase of the approach proposed in [80] jobs are scheduled with heuristics
based on a greedy algorithm or integer linear programming (ILP/LP)—the HILP model
(several metrics based on utilization, execution time, and earliest deadline). In the second
phase, frequency is adjusted using DVFS and the designed integer linear programming
(ILP) model. Tests on synthetic data showed a large acceleration of HILP over typical
ILP in finding the right solution to the proposed model. The algorithm also can select
hyperparameters to establish a tradeoff between performance and energy.
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In [81], the authors tackled the problem of static scheduling of moldable (i.e., with a
fixed degree of parallelism) tasks with a focus on energy minimization while maintaining
time deadlines. They test how core allocation, assignment, frequency scaling, and ordering,
subject to the application of constraints, impact the quality of the solution. Experiments
were performed for synthetic task sets and StreamIt benchmark suite applications. A generic
core with a power consumption model analogous to ARM’s big.LITTLE architecture was
used. The authors concluded that except for frequency constraints, most constraints do
not allow for lowering scheduling times compared to a solution with an ILP. They also
considered stepwise scheduling with the steps allocation, mapping and ordering, and
frequency scaling and assessed heuristics for the steps compared to ILP. A fully heuristic
solution was inferior to ILP for small and medium size tasks, they also indicated the
possibility of quality heuristics for frequency scaling, which not being the case for allocation
and mapping.

In [82], the authors proposed MaxJobPerf, which is an ILP-based scheduling algorithm
for a job scheduling problem with two constraints: processors as well as available power.
The objective function maximizes longer waiting jobs and higher frequencies deciding
which jobs from the current waiting queue shall be launched and run at what frequencies.
They compared the new policy against EASY without frequency scaling and PB guided
showing better results in the context of the bounded slowdown (BSLD) metric. The authors
used an Alvio scheduling simulator with a DVFS feature and the proposed MaxJobPerf.

4.6. Evolutionary Algorithms

Maximizing peak inlet temperature within a data center via task assignment has been
tackled in [83]. Two solutions were proposed to solve the problem: XInt-GA using a genetic
algorithm as well as XInt-SQP adopting quadratic programming (firstly used a solution
using a real domain and finding a close integer solution meeting constraints). In terms
of results performed for a simulation of a data center, the authors argue that the reached
inlet temperatures, compared to existing approaches, are 2–5 Celsius degrees lower and
ultimately allow for 20 to 30% cooling cost reduction.

A typical example of an evolutionary solution for the energy-aware scheduling prob-
lem was presented in [84]. The authors used the workflow version of the problem along
with a specific structure of the destination system represented by an undirected graph
of compute nodes, connected by edges related to network links. The authors presented
three algorithms: (i) plain genetic (Plain GA), (ii) cellular automata supported by genetic
approach (CA + GA), and (iii) heuristic, giving preferences to high-efficiency machines in
allocation (EAH), based on a typical FIFO algorithm. The used fitness function is based
on energy minimization only. The simulation experiments showed the new algorithms
having similar performance results in comparison to typical, time-only approaches, how-
ever, the energy consumption seemed to be much lower. The best results were achieved
by CA + GA; however, other algorithms were much faster and more memory efficient,
especially EAH.

In [85], Mezmaz et al. proposed a new parallel bi-objective hybrid heuristic algo-
rithm combining a genetic approach with an earlier released greedy solution [86] adapted
to validate and evaluate the offspring created with crossover and mutation operations.
They used a heterogeneous environment (different compute node types) and dynamic
voltage scaling (DVS) to adjust the power level applied to an application, represented as
a workflow. The algorithm returns a whole set of results, being the approximation of the
Pareto dominant solutions (front), related to different energy-performance pairs; thus, no
specific function/metric is used. The performed experiments, based on an FFT real-world
application, showed a reduction of energy consumption by 47.5% with the 12% completion
(execution) time penalty.



Energies 2023, 16, 890 13 of 28

In [87], Guzek et al. proposed three evolutionary scheduling solutions, based on well-
known multi-objective evolutionary algorithms: NSGA-II [88], MOCell [89], and IBEA [90].
As in the previously described approach, the scheduled tasks are organized into a workflow,
for the power differentiation the environmental heterogeneity and DVFS technique were
exploited, also the result was presented as a whole collection of the (possibly) Pareto-
dominated solutions, thus no specific metric was used. After the performed analysis, all
three algorithms proved to converge to accurate solutions and confirm their effectiveness.
No real-world application tests were performed, even in a simulation environment.

Two new GA-based algorithms for scheduling a batch of independent tasks in a
computational grid environment were described by Kolodziej et al. in [91]. The proposed
solution was based on a hierarchical approach, with performance being the prioritized
objective, so no metric was necessary. The power was controlled using various types of
compute nodes supporting DVFS technology. The solution was tested using a HyperSim-G
simulator, with different sizes of task batches and computational grids. The results showed
a possibility of significant energy reduction, up to 33% savings, but with no comparison to
other, pure performance-oriented, algorithms.

In [92], Kassab et al. assessed four genetic algorithms for scheduling a bag of tasks
with a global power cap set for cores of one CPU, keeping the objective of the optimiza-
tion to minimize the execution time. The energy consumption is controlled by selecting
specific tasks to execution, while they differ in peak power, provided before the schedul-
ing. The proposed algorithms differ in their approach to performing crossover operations:
1pX-W—with only one point crossover, OX-W and MX-W—both with two-point crossover,
the former with order crossover and the latter with the classical one, and finally noX-
W—without crossover at all. All of them use wheel selection and are typical to genetic
algorithms mutation operations. The experiments were performed using an eight-core CPU
simulator, showing an advantage of the GA approach over list scheduling algorithms [93].

4.7. Constraint Programming

A new scheduling method, based on a queue system, similar to that used in HPC cen-
ters, e.g., SLURM (https://slurm.schedmd.com—SLURM: an open source, fault-tolerant,
and highly scalable cluster management, and job scheduling system, accessed: 15 December
2022) was proposed by Borghesi et al. in [49]. The authors used constraint programming to
impose a power limit on the whole HPC cluster, where the differences between the power
consumption of the queued jobs enabled control of the total power usage. The simulation
experiments were performed using historical traces of the Eurora supercomputer (468th on
TOP500 in June 2013) and showed good results (better performance) in comparison with
RAPL power capping and DVFS purely based methods.

4.8. Other Algorithms

Article [94] by Mishra et al. presented two approaches for real-time workflow schedul-
ing. The both gave performance higher priority and focused on reclaiming slacks between
tasks execution, using DVFS to lower faster tasks speed and decrease power usage of the
whole execution. The first approach, static power management (S-PSM), shifted a static
schedule reducing slacks related to the worst-case workflow execution, while the second,
dynamic power management (DPM), additionally tried to reclaim the stack caused by
tasks finished earlier than their worst-case scenario. The authors implemented several
algorithms based on the aforementioned approaches and performed their tests in a simu-
lator environment, showing up to 20% energy-saving improvement in comparison with
other schedulers.

Chesie et al. proposed two algorithms based on well-known first in, first out (FIFO)
and backfill (BFF) strategies, where an additional constraint related to peak power limit
(cap) was introduced [95]. They enable the scheduling of GPU jobs from a queue, with de-
fined maximum power consumption for each job; thus, no hardware power management

https://slurm.schedmd.com
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mechanisms, such as DVFS, were necessary. The experiments showed peak energy reduc-
tion up to 24% and the execution time increased by around 2%.

In [96], Wang et al. presented a workflow scheduling algorithm for a homogeneous
cluster, with a possible tradeoff between energy and execution time, where the user defines
an additional constraint: a maximal time of delay in percent; thus, no additional metric is
needed. The solution is based on the earliest task first (ETF) approach, with scaling down
frequencies (using DVFS) of the non-critical tasks, and in case of indicated tradeoff, also
for the critical ones. The experiments performed in the simulation environment showed
44% of the maximal energy reduction and the solution superiority over other energy-aware
algorithms in this aspect.

In [97], Nesmachnow et al. proposed a collection of 20 energy-aware heuristics for
a heterogeneous grid environment, based on a list scheduling algorithm, where power
control is imposed by differences in task execution on various compute nodes, without
using DVFS or other direct hardware mechanisms. The proposed solutions differ in a
degree of tradeoff, which varies from performance only, through percentage-based best
matching of task-machine pairs, to pure energy approach; thus, no fitness function (metric)
is defined. The authors argued the proposed heuristics are more appropriate than other
existing aggregating and Pareto approaches, showing the results of experiments performed
in a simulation environment.

Article [98] by Aupy et al. described several heuristics for scheduling a workflow
by setting up the maximum execution time constraint but also taking into account the
third objective: reliability. The proposed heuristics are dedicated to a continuous model
of processor speed, where its frequency can be set up freely (note, that a typical DVFS
technology uses a discrete approach). The simulation results showed that using frequency
scaling and task re-execution mechanisms, it is possible to increase reliability while reducing
energy consumption.

Rizvandi et al. in [16] proposed an algorithm (MMF-DVFS) for reclaiming slacks in
a previously prepared performance-only schedule, e.g., list scheduling, where only two
(minimal and maximal) DVFS frequencies are used. The authors provide the simulation
results showing that their approach has higher energy reduction, without a significant
performance influence than the reference algorithm (RDVFS), based on the whole range
of frequencies.

In [99], Yang et al. proposed an algorithm scheduling queued jobs (sets of tasks)
into a homogeneous cluster of compute nodes. Their goal was to decrease the power
consumption during on-peak hours when the cost of energy is lower; thus, accumulating
the power-intensive jobs during off-peak hours. In general, the utilized energy amount
is the same, and the goal is to decrease the total cost, as is presented in the electricity bill.
Their solution introduced the 0-1 knapsack policy, which selects optimal (most or least
energy consuming, for off-peak and on-peak hours, respectively) jobs within a defined
time window. The simulation experiments, based on real cluster (IBM Blue Gene/P) traces,
showed a cost reduction of up to 23%.

In [100], Barik et al. presented algorithm partitioning computations between CPU
and GPU, using developed power models of hardware and software components, imple-
mented for a tablet and a workstation with integrated CPU/GPU chips. The scheduling
algorithm performed a linear search for the best solution, using the sixth-order polynomial
approximation of the energy-performance hardware model and online profiling for the
workloads, which need to be adapted for flexible CPU and GPU execution. The experiments
performed for EDP and pure energy objectives showed results very close (over 90%) to the
ones delivered by a near-perfect brute force solution.
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An energy-aware task scheduling algorithm (EAMM) algorithm based on the Min-Min
method [101] was presented in [102]. It is a batch schedule of a set of independent tasks
that prioritizes the shortest expected job completion time (calculated taking into account
the power state). The algorithm was designed for batch-type scheduling. EAMM can save
34% of energy compared to the base Min-Min version without extending the execution
time (up to 1%).

A different approach of batch scheduling was proposed in [103]—the min-energy-
max-execution (MEME) algorithm. It takes turns assigning jobs with the lowest energy
consumption and the highest execution time. The authors showed the advantage of the
algorithm in execution time and energy savings over Min-Min, MCT [101], and PPIA [104]
scheduling algorithms.

Work [105] describes energy-aware scheduling by minimizing duplication (EAMD).
This is a duplication-based scheduling modification that reduces energy consumption by
minimizing the number of duplications. Compared to other duplication-based algorithms,
heterogeneous limited duplication (HLD) [106] and heterogeneous critical parents with fast
duplicator (HCPFD) [107], they gain energy savings of up to 15.59%. The algorithm can
also be used as an additional phase to other scheduling algorithms.

The authors of [108] proposed two algorithms, energy-aware duplication (EAD) and
performance-energy balanced duplication (PEBD) based on duplication. These algorithms
add duplication but take into account the use of energy. PEBD differs from EAD in that it
compromises energy consumption and performance. The results show an improvement
in a performance-energy tradeoff of up to 20% over other traditional duplicating and non
duplicating algorithms.

Article [109] proposes the energy-efficiency with duplication (EED) and energy-
efficiency with non-duplication (EEND) heuristics. The algorithms work under the con-
straints of execution time. EED strives to reduce duplication and pool resources with the
subset relationship. EEND is based on EED scheduling but omits duplication execution.
The algorithm gains 50% energy savings over the EAD algorithm. EED can improve the
normalized execution time by 18% and the EEND has a worse normalized execution time
by 25% to the TDS reference [110].

In [111], Mammela et al. used dynamic power management (DPM) mechanisms,
including switching off the entire compute nodes, with the the well-known scheduling
algorithms first in, first out (FIFO), backfill first fit (BFF), and backfill best fit (BBF), turning
them into their energy-aware versions: E-FIFO, E-BFF, and E-BBF, respectively. The new
algorithms were compared to the base ones, obtaining 6–16% energy savings (the largest
savings for E-FIFO), in simulation and real testbed HPC environments with relatively low
resulting delays for both execution time and task response time: up to 3.2% and 2.3%,
respectively.

For map-reduce jobs, the energy-aware scheduling EMRSA algorithm and its modifi-
cations EMRSA-I and EMRSA-II were proposed [112,113]. The algorithms work using a
queue, taking into account their defined metric—energy consumption rate, time of map,
and reduce jobs as well as deadlines. Tests on the Hadoop cluster show that EMRSA,
EMRSA-I, and EMRSA-II minimize an average of 40% of energy than known execution
time minimization algorithms.

Article [114] describes an algorithm called EDL for offline (batch) and online schedul-
ing using DVFS. The algorithm dynamically sets the value of DVFS parameters and uses its
heuristic for scheduling jobs. A heuristic is based on the model built and uses, among others,
the earliest deadline first (EDF) metric. The algorithm can achieve 30–33% average energy
savings, almost reaching the theoretical limit of the model, which is 35%. The comparison
was made by real-world power measurement traces.

Expanding the EAS, the Linux job scheduling algorithm was proposed in [115].
Scheduling takes into account execution time and energy consumption based on pre-
vious runs. Using NAS Parallel Benchmarks [116], the authors show possible tradeoffs
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between energy and execution time. For selected test cases, the algorithm can save up to
21.5% of energy at the expense of 3.8% of execution time.

The energy-aware service level agreement (EASLA) [117] algorithm adjusts the maxi-
mum slack to the maximum subsets of independent jobs to reduce energy consumption
and improve parallel jobs execution. The test algorithm achieved from 10.49% to 22.68%
compared to slack distribution approaches. Improvement of the sub-algorithm for EASLA
was proposed in [118]. The authors used DVFS to downscale frequency and ensure the
same execution time by predicting schedule length. The upgrade can save up to 14.93%
more energy compared to the base version of EASLA.

In [119], energy-aware dag scheduling (EADAGS) was proposed. The scheduler is
based on the use of DVFS and decisive path scheduling (DPS) [120]. After scheduling with
DPS is done, DVFS is used during slack times. This solution gained a 40% energy-saving
advantage with the same execution time over the base DPS.

The energy-aware forward list scheduling (eFLS) algorithm [121] sorts jobs by worst-
case execution time (WCET) using depth-first search (DFS) and breadth-first search (BFS)
taking into account the use of DVFS. Dedicated tie-breaking methods (time laxity, energy
laxity) were used to generate multiple schedules and choose the one with the lowest
energy consumption. The authors managed to obtain a heuristic almost consistent with the
presented ILP model (deviation up to 15.8%). The heuristic saves an average of 25.1% more
than the base forward list scheduling (FLS) algorithm but with an average of 19.3% longer
execution time.

In [122], virtualized homogeneous earliest start time (VHEST) and the energy-aware
scheduling algorithm (EASA) were proposed for virtualized data centers. The first VHEST
algorithm is based on the well-known HEFT algorithm [123] with an overlapping insertion
policy. EASA is a multi-objective heuristic to maximize utilization and minimize execution
time. The authors demonstrated a significant advantage of EASA compared to VHEST and
HEFT in terms of energy saving. EASA saved an average of 31% more energy with less
than 2% longer execution time than HEFT (EASA is 18% better than VHEST in terms of
energy savings).

The list scheduling algorithm and variations were proposed in [124] (the algorithm is
called LS for CPUs) and [125] (the algorithm is called LESA for heterogeneous). In both
cases, a series of metrics to sort the list are described. The LS authors have proposed many
modifications to the algorithm that outperforms the LS algorithm in the defined validation
metric—normalized schedule length (NSL). The LESA algorithm also imposes energy usage
limits on jobs using DVFS and the computed limits based on the model. Under energy
constraints, compared to other scheduling algorithms, including the well-known HEFT,
LESA gets an average of 1.81 times smaller execution time.

Energy-dynamic level scheduling (EDLS) [126] adjusts energy utilization with DVFS
to obtain energy-efficiency tradeoffs for a workflow of jobs. EDLS is an energy-aware
modification of the DLS scheduling algorithm [127]. It prioritizes jobs that require less
energy. For the algorithm, the energy dynamic level (EDL) metric is introduced, taking into
account the energy use in the dynamic level (DL) metric described in [127]. The algorithm
saved up to 70% of energy compared to the EDL base algorithm.

Spatio-temporal thermal-aware online scheduling. described in the article [128] is
based on thermal constraints, which are provided by adjusting the DVFS parameters.
Scheduling also considers minimizing the execution time by matching jobs to resources to
balance load times. The authors compared their solutions to round robin and assigned jobs
to resources with the lowest temperature. The proposed algorithms gained an advantage
in minimizing the execution time by up to 10% while reducing energy consumption.

Article [129] describes the power-aware algorithm for scheduling (PAAS) using a
knowledge base to regulate DVFS minimizing energy consumption. The job assignment
itself is done taking into account the shortest processing time. The algorithm reduces
energy consumption by an average of 12.64% comparing the optimal frequency and voltage
to the maximum while ensuring optimal execution time.
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The reformed scheduling method with energy consumption constraint (RSMECC) [130]
calculates the energy consumption for the entire workflow and DVFS energy constraints
for each job based on the defined model. The algorithm generates a schedule for each
assignment and chooses the best one based on the defined job start times, jobs finish times,
energy consumption, and execution time. The algorithm was compared with, inter alia,
the HEFT algorithm, yielding a shorter execution time for the given energy constraints.

The energy-conscious scheduling (ECS) heuristic described in [86] makes a trade-
off between efficiency and energy consumption by minimizing the bi-objective function
through scheduling decisions. ECS also has a second phase in which it analyzes possible
energy savings without increasing the execution time. In addition, a modification to the
ECS + idle [131] algorithm was proposed, which takes into account the energy consumed
during the idle state. The algorithm was compared with the aforementioned HEFT and
duplication-based bottom-up scheduling (DBUS) [132], which do not take energy into
account. The algorithm uses DVFS. The algorithm improves power consumption up to 12%
vs. HEFT and up to 46% vs. DBUS, execution time up to 5% vs. HEFT, and up to 23% vs.
DBUS. ECS-idle improved execution time and energy consumption by an average of 2%
and 7% compared to ECS.

Article [133] describes an energy-aware scheduling algorithm for parallel application
(ESPA) using DVFS and DPM techniques. The algorithm clusters jobs to select an appro-
priate schedule. Then it selects energy management strategies based on the type of jobs
(critical, communication time, idle time). The algorithm can save 12.95% more energy than
HEFTA and shorten execution time by 2.11%.

The algorithm proposed in [134] is a Quantum-Inspired Algorithm (QHA) for design-
ing and managing appropriate heuristics (hyper-heuristic) for energy-aware scheduling.
Choosing a heuristic allows getting better results for different types of applications and
configurations. The algorithm can speed up the heuristic search process by 38 percent to
the standard search method. QHA lowered the energy consumption ratio by 26.5% and
11.3% over HEFT and ECS.

In [135], the Cuckoo search algorithm (GACSM) using Gaussian random walk to
balance exploration and exploitation and adaptive discovery probability modifications for
greater population diversity was used for the problem of scheduling and matching DVFS
values. The algorithm applies a final heuristic to improve performance based on a defined
cost-to-time metric. Energy savings were 14.9% greater than EASLA, 6.9% greater than
ICMPACO, and 8.4% greater than QHA.

The energy-aware stochastic task scheduling algorithm (ESTS) proposed in the arti-
cle [136] is a heuristic that minimizes execution time and energy consumption at the same
time. The algorithm has O(|J| ∗ (|R|+ log|J|)) complexity. Developers create heuristics
based on their metrics of the probability of meeting the constraints and utilize DVFS. Energy
consumption and execution time experiments have shown the advantage of ESTS over
reference EDF-DVFS [137] by 20.3/4.2% and 2.4/18.8% (depending on the input parameter
to the algorithm).

In [138], through the proposition of a regression model for estimating energy con-
sumption on a heterogeneous system, the authors proposed mapping a program onto an
appropriate core in various phases. They demonstrated that the proposed approach can
give approx. 10–20% EDP reduction compared to static and periodic sampling approaches,
respectively, tested on the Intel QuickIA platform for astar, bzip2, h264ref, hmmer, lbm, and
libquantum and using SPEC CPU2006 and denoise, the deblure, reg, and seg benchmarks.

In [139], the authors deal with the optimization of EDP for applications running on
heterogeneous multicore processors. The approach assumes that various phases of an appli-
cation are identified at runtime and for each thread-to-core (assuming heterogeneous cores)
is found and applied. The proposed phase EDP has been evaluated in a simulator showing
a 16% average and up to 29% reduction in EDP compared to all possible static assignments
with a minimal to moderate reduction in speed-up when optimizing energy consumption.
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In [28], the authors presented an approach including an algorithm and a solution
for the selection of computing devices such as CPUs and GPUs as well as subsequently
partitioning and assignment of data packets to these devices in a cluster, to be processed by
OpenCL kernels, also taking into account communication costs such that total execution
time is minimized while the power consumption of selected devices under load is below
a predefined threshold. As a solution, a greedy approximation algorithm was applied
to solve the optimization problem generalized to a 0/1 knapsack formulation. It was
also shown how execution time depends on the number of data packets generated for a
particular power limit as too small a number results in the inability to balance the load
and too large causes overhead due to communication (specifically due to communication
startup times) and management costs. For an application of MD5 password breaking and
a heterogeneous cluster with Core i7, GTS, two GTX as well as Tesla and Quadro GPUs,
for a range of power limits from approx. 200 to 1500 W, measured speed-ups almost match
simulated ones considering scheduling and communication overheads and consistently
increase with increasing power limits.

In [140], the authors consider optimization towards obtaining Pareto fronts that in-
volve execution time and energy consumption of a workload executed on a homogeneous
cluster with multicore CPUs. Firstly, the authors demonstrate that for homogeneous clus-
ters with multicore CPUs, because of NUMA and resource contention, dependencies of
speed (MFlop/s) and dynamic energy consumption are not smooth and non-linear versus
problem size (such as for FFTW executed using 24 threads on Intel Haswell CPUs). Then
they formulate a bi-objective optimization problem considering performance and energy
consumption BOPPE that takes as input processor speed and energy profiles versus prob-
lem size. As a solution to the problem, the authors proposed the ALEPH algorithm, which
determines globally Pareto-optimal solutions for energy and performance of a workload
of a given size (certain granularity is assumed) of complexity O(m2 p2) (p—number of
processors, m—cardinality of sets representing speeds and energy values). For matrix
multiplication and FFT applications and assumed 5% performance drop, they saved on
average and maximum 9/44% and 8/20% respectively. Additionally, the authors showed
the possible coupling of ALEPH with DVFS for a better set of Pareto solutions. In [141],
the authors presented HEPOPTA for data partitioning for bi-objective optimization con-
sidering execution time and energy for data-parallel applications executed in a system
that consists of several heterogeneous processors. The algorithm takes as input discrete
dynamic energy and time functions (vs. data size) and obtains Pareto fronts for imbalanced
solutions. The authors benchmarked applications such as matrix multiplication, 2D fast
Fourier transform, and gene sequencing using two connected heterogeneous servers with
CPUs, GPUs, and Intel Xeon Phi, and demonstrated significant gains in execution time and
dynamic energy used compared to balanced solutions e.g., on average 26% and 130% for
matrix multiplication, 7% and 44% for FFT, and 2.5% and 64% for gene sequencing. In [142],
the authors applied an algorithm for a continuous case (execution time strictly increasing
and energy linear increasing) for optimization of parallel application execution on a hybrid
heterogeneous platform to two problems: optimizing for dynamic energy and performance
as well as for total energy and performance. They showed that a given solution vector is
Pareto-optimal for execution time and total energy if and only if it is Pareto-optimal for
execution time and dynamic energy. They presented maximum total energy savings of 8%
(performance drop pf 5%) for matrix multiplication and 16% (performance drop pf 1%) for
gene sequencing, using a system with two Intel CPUs, NVIDIA K40C P100 and an Intel
Xeon Phi.
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Table 2. Scheduling algorithms, systems, and optimization metrics used for them.

Algorithm Algorithm Optimization Goals/Metrics System Energy-Aware Workload

Type (O—Optimized, C—Constrained) Type Mechanism Type

R
an

do
m

iz
ed

al
go

ri
th

m
s UEJS with H-PSO [69] EC (O), ExecT (C), Utilization (C) Heterogeneous cluster Independent tasks

Particle Swarm optimized greedy
algorithm [70] EDP (O) Homogeneous cluster Independent tasks

LP relaxation [71] Average weighted completion time (O),
EC (O, C) Heterogeneous cluster Independent tasks

RL based scheduler [72] EC (O), Weighted ExecT (O) Homogeneous cluster Independent tasks

M
ac

hi
ne

le
ar

ni
ng ML approach based on supervised

learning [46] EC (O), Machines usage (O), ExecT (C) Heterogeneous cluster Independent tasks

DRL [73] EC (O) Heterogeneous cluster Independent tasks

ML Classifiers [74] Energy efficiency (amount of work com-
pleted per unit of energy) (O), Power (C) Homogeneous cluster DVFS Single application

Scheduling-based Power Capping using
CP and ML [49] Wait time (O), ExecT (O), Power (C) Heterogeneous cluster Independent tasks

Dynamic programming Accelerated Search [77] EC (O), Probability of execution (C), Ex-
ecT (C) Heterogeneous multicore DVFS Workflow

Fuzzy logic Important inherent program analysis [78] Branch Transition Rate (O), Cache effi-
ciency (O), Issue width (O) Heterogeneous multicore Independent tasks

In
te

ge
r

pr
og

ra
m

m
in

g Search space design for search
unrestricted, crown, bookshelf, and pipe

schedulers [81]

Complex objective function (ExecT, num-
ber of cores, frequency) (O), ExecT (C) Homogeneous multicore DVFS Independent tasks

MaxJobPerf [82] Wait time (O), Frequency (O), EC (C) Homogeneous cluster DVFS Independent tasks

XInt-SQP [83] Cooling cost (O, C) Homogeneous cluster Independent tasks, Online scheduling

HILP [80] Utilization (O), ExecT (O, C), EDF (O) Homogeneous multicore/cluster DVFS Independent tasks

RNRA, RIRA [143] EC (O) Heterogeneous cluster DVFS Independent tasks

XInt-GA [83] Cooling cost (O, C) Homogeneous cluster Independent tasks, Online scheduling

Ev
ol

ut
io

na
ry

al
go

ri
th

m
s

Plain GA [84] EC (O) Heterogeneous cluster Workflow

Plain GA, CA + GA [84] EC (O) Heterogeneous cluster Workflow

Parallel bi-objective hybrid genetic
algorithm. [85] Pareto front (O) Heterogeneous virtualized cluster DVFS Workflow

NSGA-II, MOCell, IBEA [87] Pareto front (O) Heterogeneous cluster DVFS Workflow

GA with elitist or struggle replacement
mechanisms [91] EC (O), ExecT (O) Heterogeneous computational grid DVFS Independent tasks

1pX-W, OX-W, MX-W, and noX-W GA
with power constraints. [92] ExecT (O), Power (C) Homogeneous multicore Independent tasks

Constraint programming Hybrid dispatcher [49] Power (C) Heterogeneous cluster Independent tasks

Power-aware scheduler [95] Power (C) Heterogeneous cluster Independent tasks

EAH [84] EC (O) Heterogeneous cluster Workflow

S-PSM, DPM [94] EC (O), ExecT (C) Homogeneous cluster DVFS Workflow

ETF [96] EC (O), ExecT (C) Homogeneous cluster DVFS Workflow

20 algorithms based on list heuristics [97] EC (O), ExecT (O) Heterogeneous computational grid Independent tasks

Greedy algorithm for knapsack problem
with power constraints [28] ExecT (O), Power (C) Heterogeneous cluster Single application

Heuristics with continuous frequency
scaling [98] EC (O), ExecT (O, C), Reliability (O, C) Homogeneous cluster DVFS Workflow

Greedy policy, 0-1 knapsack policy [99] Electricity cost (bills) (O) Homogeneous cluster Independent tasks

Prediction and planning with a
regression model. [138] EDP (O) Heterogeneous multicore Online scheduling

PRB [49] ExecT (O) Heterogeneous cluster Independent tasks

E-FIFO, E-BFF, E-BBF [111] EC (O), ExecT (C) Homogeneous cluster DPM Independent tasks

EMRSA, EMRSA-I, EMRSA-II [112,113] EC (O), ExecT (C) Heterogeneous cluster MapReduce jobs

EDL [114] EC, ExecT (C) Heterogeneous clusters DVFS Independent tasks, Online scheduling

O
th

er

Extended EAS [115] EC (O), ExecT (O) Heterogeneous clusters Independent tasks

EAMM [102] EC (O), ExecT (O) Heterogeneous cluster Independent tasks

EAMD [105] EC (O), ExecT (O) Heterogeneous cluster Workflow

CPU/GPU partitioning [100] EC (O), EDP (O) CPU + GPU node Independent tasks

MMF-DVFS [16] ExecT (C), EC (O) Heterogeneous cluster DVFS Workflow

EASLA [117], Improved EASLA [118] EC (O), ExecT (C) Heterogeneous clusters DVFS Workflow

QHA [134] EC (O, C), ExecT (O, C) Heterogeneous cluster DVFS Workflow

EADAGS [119] EC (O), ExecT (O) Heterogeneous cluster DVFS Workflow

eFLS [121] EC (O), ExecT (C) Heterogeneous cluster DVFS Workflow

VHEST, EASA [122] Utilization (O), ExecT (O) Homogeneous virtualized cluster Workflow

EDLS [126] EC (O), ExecT (O) Heterogeneous cluster DVFS Workflow

LESA [125] ExecT (O), EC (C) Heterogeneous cluster DVFS Workflow

Spatio-temporal thermal-aware
scheduling [128] ExecT (O), Temperature (C) Homogeneous cluster DVFS Independent tasks, Online scheduling

PAAS [129] EC (O), ExecT (O) Homogeneous cluster DVFS Independent tasks

EED, EEND [109] EC (O), ExecT (C) Homogeneous cluster DVFS Workflow

RSMECC [130] AST (O), AFT (O), ExecT (O), EC (C) Heterogeneous cluster DVFS Workflow

ECS [86], ECS + idle [131] EC (O), ExecT (O) Heterogeneous cluster DVFS Workflow

ESPA [133] EC (O), ExecT (O) Heterogeneous cluster DVFS, DPM Workflow

GACSM [135] EC (O), ExecT (C) Heterogeneous cluster DVFS Workflow

LS [124] EDP (O), EC (O, C), ExecT (O, C) Homogeneous cluster Independent tasks

ESTS [136] EC (O, C), ExecT (O, C) Heterogeneous cluster DVFS Independent tasks

EAD, PEBD [108] EC (O), ExecT (O) Homogeneous cluster Workflow

Phase_EDP [139] EDP (O) Heterogeneous multicore Independent tasks, Online scheduling

ALEPH [140] Pareto front (O) Homogeneous cluster DVFS Single application

HEPOPTA [141] Pareto front (O) Heterogeneous processors Single application

LBOPA-TE [142] Pareto front (O) Heterogeneous processors Single application
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5. Conclusions, Open Problems, and Areas for Further Research

This article presents definitions for several versions of the problems (scheduling,
resource allocation, workflow, and data partitioning). Optimization goals used in energy-
aware HPC and techniques to reduce energy consumption are described. Modern schedul-
ing algorithms for HPC systems, which are presented in Table 2, have been analyzed and
categorized. We formulate conclusions based on the analysis of approaches, workloads,
optimization goals, and target systems, described in previous sections and summarized in
Figure 1:

1. We conclude that there is a variety of problem formulations and corresponding al-
gorithm types that tackle the problem of energy-aware scheduling for HPC systems,
including machine learning (with reinforcement and supervised learning), dynamic
programming, fuzzy logic, integer programming, randomized algorithms, evolution-
ary algorithms, constraint programming, and others.

2. Most optimization goals involve metrics such as execution time/makespan, energy,
and power, either in functions such as EDP or EDS or optimizing some while putting
constraints on others, e.g., minimization of execution time under power limit. A lim-
ited number of works specifically consider cooling costs and temperatures.

3. Application models include mostly a bag or stream of incoming independent or
periodic tasks or a workflow (DAG) composed of tasks in nodes of the graph with
edges denoting dependencies.

4. System types targeted include mostly heterogeneous but also homogeneous clusters
and homogeneous and heterogeneous multicore environments.

5. Most works use DFVS as a mechanism for controlling the power/energy of compute
devices, some combine DVFS and DPM (including turning off machines), and a limited
number of works use explicit power capping.

Additionally, based on the analysis of the area and specific works, we can further
outline detailed problems and challenges that, we believe, require focus and solutions in
the forthcoming period:

1. Which optimization goals shall be considered for what purposes e.g., consideration
of EDP and EDS as ones involving time and energy (relative coefficients such as in
EDS might depend on current electricity costs), pure energy or in some cases or areas
minimization of execution time under power limit (across time) seems to become
more important due to the risk of blackouts, etc.

2. Analysis of the impact of frequency of data monitoring on both accuracy (specifically
referring to power/energy monitoring) as well as consideration of parameters appli-
cable to data (power, load, etc.) filtering (such as low pass filters [9]) such as running
averages which impacts the latency of energy-aware monitoring and correspondingly
the scheduling algorithm vs. the possibility to deal with highly changing application
and/or system load.

3. Following the discussion on measurement accuracy in Section 3.4, the accuracy of
APIs such as Intel RAPL and NVIDIA NVML requires constant assessment in view of
new generations of CPUs and GPUs and new APIs’ versions. Additionally, another
topic for investigation is use cases and conditions (possibly involving usage of data
filtering) for which the aforementioned APIs provide reliable results compared to
ground truth hardware meters.

4. Some works present other approaches to energy-/power-aware aspects of the com-
putations, such as system efficiency or thermal-awareness in scheduling [14]. It is
important to consider and analyze power under load for parallel applications by
components such as fans and other cooling components, power supplies, and power
distribution units (PDU) depending on their types and classes. Moreover, further con-
sideration of temperatures, along with performance and power/energy consumption,
in the context of power required for cooling/air conditioning can have a significant
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influence on HPC systems. Specifically, power capping might affect not only execution
times and power/application energy consumption but can lower the temperature.

5. The problem of finding (hyper)parameters for auto-tuning of algorithms for energy-
aware scheduling. This might involve parameters of the scheduling algorithm,
i.e., how to find parameters for algorithms finding desired performance-energy con-
figurations automatically such as monitoring/tuning windows [10] but also system
and application parameters [144] for thorough optimization of a run.

6. Consideration of (mixed) precision vs. energy and (mixed) precision vs. performance
combined with energy trade-offs. This is especially important for ML applications
deployed in a GPU environment, where single or even half float precision can be used
to deliver reasonable results and the underlying hardware can provide a significant
boost to the performance and/or energy efficiency.

7. The testbed environments, especially for HPC, where the hardware technologies are
extremely advanced, and therefore expensive, often cannot be easily used for experi-
ments. Thus, for existing simulators that consider performance and energy during
scheduling—such as MERPSYS [145]—energy and time accuracy vs. simulation time
functions shall be developed.

8. Several algorithms relatively recently deployed for scheduling optimization such
as deep reinforcement learning [146] shall consider energy aspects in the future.
The trend of replacing classical programming constructs with ML alternatives is
spreading around all computer science areas [147], especially for problems requiring
heuristics. Thus, it seems to be reasonable to assume that scheduling, and specifically
its energy-aware version will be more and more supported by such an approach.

9. Since the main technology used for controlling the power lever is DVFS, we see
a need for consideration of power caps in energy-aware scheduling, which apart
from frequency scaling, uses other complementary techniques, e.g., thread throttling.
Similarly to DVFS, it can be extensively used for heterogeneous cluster systems such
as CPU+GPU systems—both single nodes and clusters, in the context of the dynamic
application of power caps. This is especially relevant as more and more hardware
accelerators are being proposed [2].

10. Consideration of an extended scheduling problem in which additional performance-
energy configurations are considered, i.e., those that result from consideration of
computing device’s performance for various power caps, as shown, e.g., in [10] for
CPUs and in [42,148] for GPUs.

The most promising area where there is a lack of a solution seems to be an auto config-
urable power capping system, based on a hybrid approach—optimized thread scheduling
with power limitation by tools such as RAPL on CPU + GPU heterogeneous systems,
also with consideration of resource and network contention both within a single node
but also the interconnect in a cluster. Autoconfiguration may be based on auto tuning
approaches [144]. The key relationship between the deviations of energy consumption
measurements with the use of the software tools and the physical meter to the size of the
input data also remains an open area.

Author Contributions: Conceptualization, B.K., P.C. and J.P.; methodology, P.C.; validation, B.K., P.C.
and J.P.; formal analysis, B.K., P.C. and J.P.; investigation, B.K., P.C. and J.P.; writing—original draft
preparation, B.K., P.C. and J.P.; writing—review and editing, B.K., P.C. and J.P.; supervision, P.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2023, 16, 890 22 of 28

Abbreviations
The following more significant abbreviations are used in this manuscript:

HPC High-Performance Computing
ExecT Execution Time
EC Energy Consumption
DAG Directed Acyclic Graph
PpW Performance per watt
RPpW Reference Performance per watt
TGI The Green Index
REE Relative Energy Efficiency
EDP Energy Delay Product
EDS Energy Delay Summation
EDD Energy Delay Distance
GPU Graphical Processing Unit
CPU Central Processing Unit
DVFS Dynamic Voltage and Frequency Scaling
DVS Dynamic Voltage Scaling
DPM Dynamic Power Management
ML Machine Learning
RL Reinforcement Learning
CP Constraint Programming
GA Genetic Algorithm
ILP Integer Linear Programming
LP Linear Programming
(O) Optimized
(C) Constrained

References
1. Czarnul, P. Parallel Programming for Modern High Performance Computing Systems; CRC Press: Boca Raton, FL, USA, 2018; ISBN

9781138305953.
2. Dongarra, J. HPC: Where We Are Today and a Look into the Future; Parallel Processing and Applied Mathematics, PPAM: Gdansk,

Poland, 2022.
3. Czarnul, P.; Proficz, J.; Krzywaniak, A. Energy-Aware High-Performance Computing: Survey of State-of-the-Art Tools, Techniques,

and Environments. Sci. Program. 2019, 2019, 1–19. [CrossRef]
4. Subramaniam, B.; Feng, W.C. The Green Index: A Metric for Evaluating System-Wide Energy Efficiency in HPC Systems.

In Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops PhD Forum,
Shanghai, China, 21–25 May 2012; pp. 1007–1013. [CrossRef]

5. Laros III, J.H.; Pedretti, K.; Kelly, S.M.; Shu, W.; Ferreira, K.; Vandyke, J.; Vaughan, C. Energy delay product. In Energy-Efficient
High Performance Computing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 51–55.

6. Martin, A.J.; Nyström, M.; Pénzes, P.I. ET 2: A metric for time and energy efficiency of computation. In Power Aware Computing;
Springer: Berlin/Heidelberg, Germany, 2002; pp. 293–315.

7. Chandio, A.A.; Bilal, K.; Tziritas, N.; Yu, Z.; Jiang, Q.; Khan, S.U.; Xu, C.Z. A comparative study on resource allocation and energy
efficient job scheduling strategies in large-scale parallel computing systems. Clust. Comput. 2014, 17, 1349–1367. [CrossRef]

8. Sheikh, H.F.; Tan, H.; Ahmad, I.; Ranka, S.; Bv, P. Energy- and Performance-Aware Scheduling of Tasks on Parallel and Distributed
Systems. J. Emerg. Technol. Comput. Syst. 2012, 8, 1–37. [CrossRef]

9. Ilsche, T.; Schöne, R.; Schuchart, J.; Hackenberg, D.; Simon, M.; Georgiou, Y.; Nagel, W.E. Power measurement techniques
for energy-efficient computing: Reconciling scalability, resolution, and accuracy. SICS Softw.-Intensive Cyber-Phys. Syst. 2019,
34, 45–52. [CrossRef]

10. Krzywaniak, A.; Czarnul, P.; Proficz, J. DEPO: A dynamic energy-performance optimizer tool for automatic power capping for
energy efficient high-performance computing. Softw. Pract. Exp. 2022, 52, 2598–2634. [CrossRef]

11. Cai, C.; Wang, L.; Khan, S.U.; Tao, J. Energy-Aware High Performance Computing: A Taxonomy Study. In Proceedings of the 2011 IEEE
17th International Conference on Parallel and Distributed Systems, Tainan, Taiwan, 7–9 December 2011; pp. 953–958. [CrossRef]

12. Benedict, S. Energy-aware performance analysis methodologies for HPC architectures—An exploratory study. J. Netw. Comput.
Appl. 2012, 35, 1709–1719. [CrossRef]

http://doi.org/10.1155/2019/8348791
http://dx.doi.org/10.1109/IPDPSW.2012.123
http://dx.doi.org/10.1007/s10586-014-0384-x
http://dx.doi.org/10.1145/2367736.2367743
http://dx.doi.org/10.1007/s00450-018-0392-9
http://dx.doi.org/10.1002/spe.3139
http://dx.doi.org/10.1109/ICPADS.2011.59
http://dx.doi.org/10.1016/j.jnca.2012.08.003


Energies 2023, 16, 890 23 of 28

13. Maiterth, M.; Koenig, G.; Pedretti, K.; Jana, S.; Bates, N.; Borghesi, A.; Montoya, D.; Bartolini, A.; Puzovic, M. Energy and
Power Aware Job Scheduling and Resource Management: Global Survey—Initial Analysis. In Proceedings of the 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Vancouver, BC, Canada, 21–25 May 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 685–693. [CrossRef]

14. Chaudhry, M.T.; Ling, T.C.; Manzoor, A.; Hussain, S.A.; Kim, J. Thermal-Aware Scheduling in Green Data Centers. ACM Comput.
Surv. 2015, 47, 1–48. [CrossRef]

15. Juarez, F.; Ejarque, J.; Badia, R.M. Dynamic energy-aware scheduling for parallel task-based application in cloud computing.
Future Gener. Comput. Syst. 2018, 78, 257–271. [CrossRef]

16. Rizvandi, N.B.; Taheri, J.; Zomaya, A.Y.; Lee, Y.C. Linear combinations of dvfs-enabled processor frequencies to modify the
energy-aware scheduling algorithms. In Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, Melbourne, Australia, 17–20 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 388–397.

17. Sinnen, O. Task Scheduling for Parallel Systems; John Wiley & Sons: Hoboken, NJ, USA, 2007.
18. Kafil, M.; Ahmad, I. Optimal task assignment in heterogeneous distributed computing systems. IEEE Concurr. 1998, 6, 42–50.

[CrossRef]
19. Dorronsoro, B.; Pinel, F. Combining Machine Learning and Genetic Algorithms to Solve the Independent Tasks Scheduling

Problem. In Proceedings of the 2017 3rd IEEE International Conference on Cybernetics (CYBCONF), Exeter, UK, 21–23 June 2017;
pp. 1–8. [CrossRef]

20. Pietri, I.; Sakellariou, R. Energy-Aware Workflow Scheduling Using Frequency Scaling. In Proceedings of the 2014 43rd International
Conference on Parallel Processing Workshops, Minneapolis, MN, USA, 9–12 September 2014; pp. 104–113. [CrossRef]

21. Topcuoglu, H.; Hariri, S.; Wu, M.Y. Task scheduling algorithms for heterogeneous processors. In Proceedings of the Eighth
Heterogeneous Computing Workshop (HCW’99), San Juan, PR, USA, 12 April 1999; pp. 3–14. [CrossRef]

22. Bhuiyan, A.; Guo, Z.; Saifullah, A.; Guan, N.; Xiong, H. Energy-Efficient Real-Time Scheduling of DAG Tasks. ACM Trans. Embed.
Comput. Syst. 2018, 17, 1–25. [CrossRef]

23. Bambagini, M.; Marinoni, M.; Aydin, H.; Buttazzo, G. Energy-Aware Scheduling for Real-Time Systems: A Survey. ACM Trans.
Embed. Comput. Syst. 2016, 15, 1–34. [CrossRef]

24. Zeng, Q.; Du, Y.; Huang, K.; Leung, K.K. Energy-Efficient Radio Resource Allocation for Federated Edge Learning. In Proceedings
of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020;
pp. 1–6. [CrossRef]

25. Ravi, V.T.; Becchi, M.; Jiang, W.; Agrawal, G.; Chakradhar, S. Scheduling concurrent applications on a cluster of cpu-gpu nodes.
In Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012),
Ottawa, ON, Canada, 13–16 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 140–147.

26. Kim, J.K.; Siegel, H.J.; Maciejewski, A.A.; Eigenmann, R. Dynamic Resource Management in Energy Constrained Heterogeneous
Computing Systems Using Voltage Scaling. IEEE Trans. Parallel Distrib. Syst. 2008, 19, 1445–1457. [CrossRef]

27. Xiao, Z.; Song, W.; Chen, Q. Dynamic Resource Allocation Using Virtual Machines for Cloud Computing Environment. IEEE
Trans. Parallel Distrib. Syst. 2013, 24, 1107–1117. [CrossRef]
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29. Boiński, T.; Czarnul, P. Optimization of Data Assignment for Parallel Processing in a Hybrid Heterogeneous Environment Using
Integer Linear Programming. Comput. J. 2021, 65, 1412–1433. [CrossRef]

30. Kar, I.; Parida, R.R.; Das, H. Energy aware scheduling using genetic algorithm in cloud data centers. In Proceedings of the 2016
International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016;
pp. 3545–3550. [CrossRef]

31. Koomey, J.; Berard, S.; Sanchez, M.; Wong, H. Implications of historical trends in the electrical efficiency of computing. IEEE Ann.
Hist. Comput. 2010, 33, 46–54. [CrossRef]

32. Abdulsalam, S.; Zong, Z.; Gu, Q.; Qiu, M. Using the Greenup, Powerup, and Speedup metrics to evaluate software energy
efficiency. In Proceedings of the 2015 Sixth International Green and Sustainable Computing Conference (IGSC), Las Vegas, NV,
USA, 14–16 December 2015; pp. 1–8. [CrossRef]

33. Gonzalez, R.; Horowitz, M. Energy dissipation in general purpose microprocessors. IEEE J. Solid-State Circuits 1996, 31, 1277–1284.
[CrossRef]

34. Roberts, S.I.; Wright, S.A.; Fahmy, S.A.; Jarvis, S.A. Metrics for Energy-Aware Software Optimisation. In Proceedings of the High
Performance Computing: 32nd International Conference, ISC High Performance 2017, Frankfurt, Germany, 18–22 June 2017;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 413–430. [CrossRef]

35. Benini, L.; Bogliolo, A.; De Micheli, G. A survey of design techniques for system-level dynamic power management. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 2000, 8, 299–316. [CrossRef]

36. Darwish, T.; Bayoumi, M. 5—Trends in Low-Power VLSI Design. In The Electrical Engineering Handbook; CHEN, W.K., Ed.;
Academic Press: Burlington, MA, USA, 2005; pp. 263–280. [CrossRef]

37. Safari, M.; Khorsand, R. Energy-aware scheduling algorithm for time-constrained workflow tasks in DVFS-enabled cloud
environment. Simul. Model. Pract. Theory 2018, 87, 311–326. [CrossRef]

http://dx.doi.org/10.1109/IPDPSW.2018.00111
http://dx.doi.org/10.1145/2678278
http://dx.doi.org/10.1016/j.future.2016.06.029
http://dx.doi.org/10.1109/4434.708255
http://dx.doi.org/10.1109/CYBConf.2017.7985766
http://dx.doi.org/10.1109/ICPPW.2014.26
http://dx.doi.org/10.1109/HCW.1999.765092
http://dx.doi.org/10.1145/3241049
http://dx.doi.org/10.1145/2808231
http://dx.doi.org/10.1109/ICCWorkshops49005.2020.9145118
http://dx.doi.org/10.1109/TPDS.2008.113
http://dx.doi.org/10.1109/TPDS.2012.283
http://dx.doi.org/10.1093/comjnl/bxaa187
http://dx.doi.org/10.1109/ICEEOT.2016.7755364
http://dx.doi.org/10.1109/MAHC.2010.28
http://dx.doi.org/10.1109/IGCC.2015.7393699
http://dx.doi.org/10.1109/4.535411
http://dx.doi.org/10.1007/978-3-319-58667-0_22
http://dx.doi.org/10.1109/92.845896
http://dx.doi.org/10.1016/B978-012170960-0/50022-0
http://dx.doi.org/10.1016/j.simpat.2018.07.006


Energies 2023, 16, 890 24 of 28

38. Petoumenos, P.; Mukhanov, L.; Wang, Z.; Leather, H.; Nikolopoulos, D.S. Power capping: What works, what does not. In
Proceedings of the 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS), Melbourne, Australia,
14–17 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 525–534.

39. Tsuzuku, K.; Endo, T. Power capping of CPU-GPU heterogeneous systems using power and performance models. In Proceedings
of the 2015 International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), Lisbon, Portugal, 20–22 May
2015; pp. 1–8.

40. Komoda, T.; Hayashi, S.; Nakada, T.; Miwa, S.; Nakamura, H. Power capping of CPU-GPU heterogeneous systems through
coordinating DVFS and task mapping. In Proceedings of the 2013 IEEE 31st International Conference on Computer Design
(ICCD), Asheville, NC, USA, 6–9 October 2013; pp. 349–356. [CrossRef]

41. Borghesi, A.; Collina, F.; Lombardi, M.; Milano, M.; Benini, L. Power Capping in High Performance Computing Systems. In
Principles and Practice of Constraint Programming; Pesant, G., Ed.; Springer International Publishing: Cham, Switzerland, 2015;
pp. 524–540.

42. Krzywaniak, A.; Czarnul, P. Performance/Energy Aware Optimization of Parallel Applications on GPUs Under Power Capping.
In Parallel Processing and Applied Mathematics; Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Eds.; Springer
International Publishing: Cham, Switzerland, 2020; pp. 123–133.

43. Haidar, A.; Jagode, H.; Vaccaro, P.; Yarkhan, A.; Tomov, S.; Dongarra, J. Investigating power capping toward energy-efficient
scientific applications. Concurr. Comput. Pract. Exp. 2018, 31, e4485. [CrossRef]

44. Imes, C.; Zhang, H.; Zhao, K.; Hoffmann, H. CoPPer: Soft Real-Time Application Performance Using Hardware Power Capping.
In Proceedings of the 2019 IEEE International Conference on Autonomic Computing (ICAC), Umea, Sweden, 16–20 June 2019;
pp. 31–41. [CrossRef]

45. Ramesh, S.; Perarnau, S.; Bhalachandra, S.; Malony, A.D.; Beckman, P. Understanding the Impact of Dynamic Power Capping on
Application Progress. In Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio
de Janeiro, Brazil, 20–24 May 2019; pp. 793–804. [CrossRef]

46. Berral, J.L.; Goiri, I.n.; Nou, R.; Julià, F.; Guitart, J.; Gavaldà, R.; Torres, J. Towards Energy-Aware Scheduling in Data Centers Using
Machine Learning. In Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking, New
York, NY, USA, 13–15 April 2010; Association for Computing Machinery: New York, NY, USA, 2010; e-Energy ’10; pp. 215–224.
[CrossRef]

47. Zhao, X.; Jamali, N. Energy-aware resource allocation for multicores with per-core frequency scaling. J. Internet Serv. Appl. 2014,
5, 9. [CrossRef]

48. Rajagopal, D.; Tafani, D.; Georgiou, Y.; Glesser, D.; Ott, M. A Novel Approach for Job Scheduling Optimizations Under Power
Cap for ARM and Intel HPC Systems. In Proceedings of the 2017 IEEE 24th International Conference on High Performance
Computing (HiPC), Jaipur, India, 18–21 December 2017; pp. 142–151. [CrossRef]

49. Borghesi, A.; Bartolini, A.; Lombardi, M.; Milano, M.; Benini, L. Scheduling-based power capping in high performance computing
systems. Sustain. Comput. Inform. Syst. 2018, 19, 1–13. [CrossRef]

50. Zhang, Z.; Lang, M.; Pakin, S.; Fu, S. Trapped capacity: Scheduling under a power cap to maximize machine-room throughput.
In Proceedings of the 2014 Energy Efficient Supercomputing Workshop, New Orleans, LA, USA, 16–21 November 2014; IEEE:
Piscataway, NJ, USA, 2014; pp. 41–50.

51. Nair, P.P.; Devaraj, R.; Sarkar, A. FEST: Fault-Tolerant Energy-Aware Scheduling on Two-Core Heterogeneous Platform. In
Proceedings of the 2018 8th International Symposium on Embedded Computing and System Design (ISED), Cochin, India, 13–15
December 2018 ; pp. 63–68. [CrossRef]

52. Goiri, I.; Julià, F.; Nou, R.; Berral, J.L.; Guitart, J.; Torres, J. Energy-Aware Scheduling in Virtualized Datacenters. In Proceedings
of the 2010 IEEE International Conference on Cluster Computing, Heraklion, Greece, 20–24 September 2010; pp. 58–67. [CrossRef]

53. Zhu, X.; Yang, L.; Chen, H.; Wang, J.; Yin, S.; Liu, X. Real-Time Tasks Oriented Energy-Aware Scheduling in Virtualized Clouds.
Cloud Comput. IEEE Trans. 2014, 2, 168–180. [CrossRef]

54. Hosseinimotlagh, S.; Khunjush, F.; Hosseinimotlagh, S. A Cooperative Two-Tier Energy-Aware Scheduling for Real-Time Tasks
in Computing Clouds. In Proceedings of the 2014 22nd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, Turin, Italy, 12–14 February 2014; pp. 178–182. [CrossRef]

55. Ardagna, D.; Panicucci, B.; Trubian, M.; Zhang, L. Energy-Aware Autonomic Resource Allocation in Multitier Virtualized
Environments. IEEE Trans. Serv. Comput. 2012, 5, 2–19. [CrossRef]

56. Kandhalu, A.; Kim, J.; Lakshmanan, K.; Rajkumar, R. Energy-Aware Partitioned Fixed-Priority Scheduling for Chip Multi-
processors. In Proceedings of the 2011 IEEE 17th International Conference on Embedded and Real-Time Computing Systems and
Applications, Toyama, Japan, 28–31 August 2011; Volume 1, pp. 93–102. [CrossRef]

57. D'Amico, M.; Gonzalez, J.C. Energy hardware and workload aware job scheduling towards interconnected HPC environments.
IEEE Trans. Parallel Distrib. Syst. 2021, 1. [CrossRef]

58. Li, D.; Byna, S.; Chakradhar, S. Energy-Aware Workload Consolidation on GPU. In Proceedings of the 2011 40th International
Conference on Parallel Processing Workshops, Taipei, Taiwan, 13–16 September 2011; pp. 389–398. [CrossRef]

59. Guerreiro, J.; Ilic, A.; Roma, N.; Tomás, P. Multi-kernel Auto-Tuning on GPUs: Performance and Energy-Aware Optimization. In
Proceedings of the 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, Turku,
Finland, 4–6 March 2015; pp. 438–445. [CrossRef]

http://dx.doi.org/10.1109/ICCD.2013.6657064
http://dx.doi.org/10.1002/cpe.4485
http://dx.doi.org/10.1109/ICAC.2019.00015
http://dx.doi.org/10.1109/IPDPS.2019.00088
http://dx.doi.org/10.1145/1791314.1791349
http://dx.doi.org/10.1186/s13174-014-0009-x
http://dx.doi.org/10.1109/HiPC.2017.00025
http://dx.doi.org/10.1016/j.suscom.2018.05.007
http://dx.doi.org/10.1109/ISED.2018.8704123
http://dx.doi.org/10.1109/CLUSTER.2010.15
http://dx.doi.org/10.1109/TCC.2014.2310452
http://dx.doi.org/10.1109/PDP.2014.91
http://dx.doi.org/10.1109/TSC.2010.42
http://dx.doi.org/10.1109/RTCSA.2011.75
http://dx.doi.org/10.1109/TPDS.2021.3090334
http://dx.doi.org/10.1109/ICPPW.2011.25
http://dx.doi.org/10.1109/PDP.2015.44


Energies 2023, 16, 890 25 of 28

60. Yao, C.; Liu, W.; Tang, W.; Hu, S. EAIS: Energy-aware adaptive scheduling for CNN inference on high-performance GPUs. Future
Gener. Comput. Syst. 2022, 130, 253–268. [CrossRef]

61. Pirahandeh, M.; Kim, D.H. Energy-Aware GPU-RAID Scheduling for Reducing Energy Consumption in Cloud Storage Systems.
In Computer Science and Its Applications; Park, J.J.J.H., Stojmenovic, I., Jeong, H.Y., Yi, G., Eds.; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 705–711.

62. Pirahandeh, M.; Kim, D.H. EGE: A New Energy-Aware GPU Based Erasure Coding Scheduler for Cloud Storage Systems. In
Proceedings of the 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic,
3–6 July 2018; pp. 619–621. [CrossRef]

63. Sun, Y.; Gong, X.; Ziabari, A.K.; Yu, L.; Li, X.; Mukherjee, S.; McCardwell, C.; Villegas, A.; Kaeli, D. Hetero-mark, a benchmark suite
for CPU-GPU collaborative computing. In Proceedings of the 2016 IEEE International Symposium on Workload Characterization
(IISWC), Providence, RI, USA, 25–27 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–10.
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