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Abstract
In the article we propose an automatic power capping software tool DEPO that
allows one to perform runtime optimization of performance and energy related
metrics. For an assumed application model with an initialization phase followed
by a running phase with uniform compute and memory intensity, the tool per-
forms automatic tuning engaging one of the two exploration algorithms—linear
search (LS) and golden section search (GSS), finds a power cap optimizing a
given metric and sets it for the remaining computations. The considered met-
rics include energy (E), energy-delay sum, energy-delay product. We present
experimental results obtained for a set of benchmarks that differ in compute and
memory intensity—parallel custom built OpenMP implementations of: numer-
ical integration, heat distribution simulation (HEAT), fast Fourier transform
(FFT), and additionally NAS parallel benchmarks: CG, MG, BT, SP, and LU.
Tests were performed using multi-core CPUs that are representatives of modern
servers and the desktop family: 2× Intel Xeon E5-2670 v3 CPU (Haswell-EP) and
Intel i7-9700K CPU (Coffee Lake). The results show that our approach enabled
considerable improvements for the tested metrics, for example, for HEAT and
Coffee Lake we minimized energy by 50% at the cost of a 15% increase in exe-
cution time (LS), for FFT energy was minimized by 40% at a 25.5% increase in
execution time (GSS), for SP and Haswell energy was minimized by 25% at the
cost of an 18.5% time increase and for Coffee Lake energy was decreased by 56%
with a 12% time increase.

K E Y W O R D S

automatic power capping, green computing, HPC, performance-energy trade-off, software tools

1 INTRODUCTION

Nowadays, providing high-performance computing (HPC) resources can be expensive, especially when the power
required by computing centers exceeds megawatts. Under such circumstances, every method that allows users to decrease
power consumption is extremely desirable, and even low energy savings are multiplied by the effects of scale. Thus, new

Abbreviations: EDP, energy-delay product; EDS, energy-delay sum; GSS, golden section search; HPC, high-performance computing; PDU,
power distribution unit.
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techniques enabling the control of computing equipment’s electric characteristics are developed and deployed in almost
all new CPU/GPU devices.

Power capping is one of the recently introduced mechanisms, operating at the hardware level, intending to limit the
current power level of performed computations. Using this functionality seems to be a straightforward method to save
the costs of electricity. However, quite often power limitations can cause an unacceptable performance decrease, or even
opposite effect to the energy consumption.1

The main goal of our research is to provide means for optimization of energy consumption applicable to a range of
CPU devices. We assumed the usage of power capping and focused on the solutions either giving the highest energy saving
or being a compromise between performance degradation and energy consumption reduction. The contribution of the
article is as follows:

1. A new method of optimizing energy consumption at application runtime, using the power capping functionality pro-
vided by modern CPUs, and considering both single objective (energy) and multi-objective (energy and performance)
optimization (power capping as a new API available for a range of CPUs as well as GPUs can exploit various power
management techniques and is available for various system domains as described further).

2. Review of existing static target metrics (considering performance in a time domain) for multi-objective
energy-performance optimization, along with the proposition of new dynamic (considering performance as the
number of instructions executed within a fixed period of time) versions of these metrics.

3. An automatic tool for an HPC environment—published and available online as a part of the Software Power Limiting
Tools (SPLiT) suite*, implementing both the aforementioned method with two exploration algorithms (linear search
(LS) and golden section search (GSS)) and dynamic versions of selected metrics (optimizing energy (E), energy-delay
sum (EDS), or energy-delay product (EDP)).

4. An empirical proof of the method’s effectiveness by experiments performed on both desktop and server CPUs using
the proposed tool, and considering typical HPC applications including our custom developed (code available online*
as “minibenchmarks”) numerical integration (INT), fast Fourier transform (FFT), heat distribution (HEAT) as well as
the well-known conjugate gradient (CG), multi-grid (MG), block tri-diagonal solver (BT), scalar penta-diagonal solver
(SP), and lower-upper Gauss–Seidel solver (LU) from the NAS parallel benchmarks suite.2

The following Section 2 presents related works, Section 3 shows our motivations along with the foundation for the
dynamic power capping and the DEPO tool concept and design. Section 4 discusses dynamic versions of selected target
metrics, Section 5 presents the implementation details of the proposed tool. Section 6 describes the testbed environments
and applications, experiments and their results, performed using the aforementioned workload types representative for
HPC. Finally, conclusions and future works are outlined in Section 7. Appendix A discusses and justifies the approach
using the Intel Running Average Power Limit (RAPL) driver verified against power distribution unit (PDU) measure-
ments for the FFT, HEAT, and INT applications on the Haswell system, especially taking the measurement window and
averaging used in the proposed implementation.

2 RELATED WORK

In the first part of this section we characterize the current landscape of energy-aware HPC,3,4 including tools for energy
management and control, optimization techniques and methods of power/energy control, energy and power efficiency
metrics, power and energy modeling approaches, placing this work in that context. Additionally, we outline the details of
the most relevant works, again denoting key differences and comparison to our approach. In the second part of this section
we review currently existing target metrics for multi-objective energy-performance optimization and we justify why there
is a need for using any single choice metric when optimizing automatically the energy consumption with performance
considerations.

2.1 Current approaches and classification of energy-aware HPC

The currently available software tools for energy management of the hardware components are usually used for power
monitoring and/or power controlling. Depending on the vendor, the most popular ones are as follows: RAPL5 (for Intel

*https://projects.task.gda.pl/akrz/split/

 1097024x, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3139 by C

am
bridge U

niversity L
ibrary, W

iley O
nline L

ibrary on [14/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://projects.task.gda.pl/akrz/split/


2600 KRZYWANIAK et al.

CPUs), APM6 (for AMD CPUs), energy scale7 (for IBM CPUs), and NVML/nvidia-smi8 (for NVIDIA GPUs). In this work
we adopt RAPL as an underlying layer of our configuration and optimization software.

The currently available optimization techniques utilize different target metrics, we can distinguish the several main
groups, see Table 1. The first group represents methods related to maintain a specified limited power, but maximizing per-
formance of the system. Such an approach is useful in the case of limited auxiliary resources, such as the capacity of energy
lines or air conditioning. The second group provides techniques targeting optimization of both energy and performance.
They are important for solutions, where energy is an important factor, but the performance needs to be maintained on
some reasonable level. Finally, the third group covers methods for energy minimization, without consideration of other
aspects of system functioning. In this work we target our optimization on an energy minimization and on performance
and energy trade-offs represented by three target metrics: E, EDP, and EDS, as described in Section 4.

From the point of view of system complexity, we can distinguish various hardware levels that are considered in the
context of energy-aware parallel computing.4 The most basic one is a single device, with the focus on used frequencies
and core number, the next is a multiprocessor system where more than one CPU/GPU is involved in computations, then
clusters (also in the context of big data processing26) and clouds (including the context of data centers, virtual machines,
and resource provisioning policies27) where multiple compute nodes are taken under consideration, and finally grids
being collections of clusters. In this work we focus on shared memory systems with multicore CPUs.

For the above metrics and hardware levels, Table 2 presents a review of tools dedicated for power/energy consumption
control. In this work we adopt an approach for automatic search through various energy-power configurations using CPU
power capping for optimization of the considered metrics.

T A B L E 1 Main groups of power/energy-aware criteria and related, state-of-the-art optimization solutions

Criteria Description of the solution

Performance with power limit Selection of devices and scheduling for minimization of application execution time with an
upper bound for the total power consumption of CPU and GPU compute devices9

Integration of power limitation into a job scheduler and SLURM implementation10 also
including RAPL11

A hybrid software/hardware power capping system which is based on a decision framework
that makes decisions on the desired configuration1

Scheduling of sporadic real-time tasks for thermal management with minimization of the
peak temperature, using homogeneous ARM processors12

Minimizing peak temperature in a multicore system by selecting core speeds13

Task scheduling with thermal consideration applicable to a heterogeneous real-time
multiprocessor system14

Temperature-aware workload placement a in data center15

Performance and energy trade-off Concurrent kernel scheduling/execution on a GPU and frequency scaling16

A framework detecting recurrent workload patterns to reconfigure multiple subsystems,
including NIC and HDD, dynamically and reduce overall energy consumption17

Fine-grained autotuning of an HPC application combined with DVFS scaling18

Bi-objective optimization with makespan and average energy consumption19

Energy minimization Reducing power consumption of CPUs on which processes perform I/O operations or are
idle20

Energy-aware selection of a subset of differently-clocked cores in a heterogeneous chip to
perform a specific HPC application21

DVFS optimization during time of lower activity22 especially on particular nodes23

Prediction modeling of potential optimization, based on various application and system
parameters (performance counters), using a non-negative multivariate regression24

Product of energy and execution time (EDP) optimization by computation partial offloading
to GPU25
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T A B L E 2 Software tools for power/energy-aware management.
Power
management method

Description of
the tool

Selection of the devices/scheduling Scheduling a parallel application into a heterogeneous CPU and CPU+GPU cluster
nodes9

Energy-Aware-Multi-Cluster (EAMC) job scheduling policy integrated into the
SLURM scheduler28

DVFS (dynamic voltage and frequency
scaling), DFS (dynamic frequency
scaling) or DCT (dynamic concurrency
throttling)

READEX (Runtime Exploitation of Application Dynamism for Energy-efficient
eXascale computing) OpenMP and MPI code instrumenting tools for
optimization of energy-aware HPC computing29

A multi-agent based intelligent energy management framework for a reduction of
power of idle or partially loaded CPUs20

LEO (learning for energy optimization) a framework based on a probabilistic
graphical model for obtaining Pareto-optimal power and performance trade-offs30

A framework implementing two EDP-optimizing (energy delay product)
algorithms: SEA and SPRA31

An extension to SLURM scheduler to implement a “uniform frequency” in different
configuration modes10

Power capping CoPPer framework using power capping and adaptive control to approximate
non-linearities in the power and performance relationship32

PShifter: dynamic redistribution of power budged between cluster nodes using
power limitation for faster processes33

Application optimizations A framework modeling impact of optimization and providing recommendations for
energy savings24

Preparing best application configuration and settings on a GPU25

Controlling CPU frequency, disk spinning and network speed scaling34

Hybrids of the above A software/hardware approach with power capping based on a framework that
makes decisions on configurations going through nodes1

A reinforcement learning framework using power capping and uncore frequency
scaling for optimization of the power consumption and run time35

Scheduling/software as well as resource management with the use of RAPL11

Scheduling kernels within a GPU as well as frequency scaling16

Subsequently, we provide a concise comparison of selected approaches presented in respective research works to
energy-performance oriented optimization in high-performance computing and presentation of the contribution and
differences presented by us within this article.

Within the READEX (Runtime Exploitation of Application Dynamism for Energy-efficient eXascale computing)
approaches and tools for the optimization of energy-aware HPC computing have been developed.29,36 Specifically, a
MERIC tool allows one to instrument a parallel application and subsequently perform energy-aware optimization. MERIC
inserts synchronization MPI and OpenMP barriers into an application code in order to make sure that all running pro-
cesses and/or threads are synchronized. It requires an HDEEM or×86 adapt library for accessing RAPL counters, Cpufreq
or ×86 adapt library for CPU frequency management, and a PAPI and perf event for access to hardware counters. Then
the programmer is responsible for code analysis, identification of regions such as compute, communication, I/O and
instrumenting the application using the supported API. The CPU frequency, uncore frequency and number of OpenMP
threads are set by MERIC for each region for optimization. The approach allows so-called static tuning for which all
parameters are set before an application is started and dynamic tuning when some parameters can be set at runtime.
The RADAR generator allows users to evaluate results from MERIC automatically while Score-P is said to provide auto-
matic instrumentation. In terms of applications, for ESPRESO (combination of finite element, boundary element tools
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2602 KRZYWANIAK et al.

and TFETI/HTFETI domain decomposition solvers) code considerable energy savings (4% for static tuning and additional
7.46% for dynamic tuning) were shown when run on a cluster with two Intel Xeon E5-2680v3 (Haswell-EP) processors
per node,29 for Lattice Boltzmann simulation code that is, (compared to default maximum frequency settings) 9% of CPU
package energy for static tuning and additional an 3.5% for dynamic tuning at the cost of less than a 3% increased exe-
cution time run on 2 Intel Haswell E5-2630v3 CPUs. Compared to that, we focus on an automatic approach for runtime
application of a power cap optimizing a given function involving execution time and energy without any changes to the
source code. We collect application progress using hardware counters and explore performance-energy configurations
automatically searching for optimization of one of several metrics incorporating execution time and energy used which
should be free of overheads due to potential instrumentation.

Komoda et al. presented an interesting approach, dedicated to a heterogeneous CPU-GPU environment, where DVFS
mechanisms were used to decrease power level.37 The authors proposed a new model estimating performance/energy
consumption, and used it to improve task assignment (either to CPU or GPU), which resulted in decreasing waiting times
of kernel barrier synchronization, and in turn better performance of the system. Setting device frequencies and the task
mapping in advance of the application execution in a CPU+GPU environment using empirical models was adopted. Using
the above solution gave precise, flexible and efficient power capping functionality. The following applications were used:
BFS—graph traversal, HOTSPOT—heat simulation, KMEANS—clustering, PF—model estimation, and SGEMM—BLAS
library. Compared to that approach, we focus on experimental and automatic search for optimized configurations.

Mishra et al.30 proposed an algorithm optimizing the energy-performance trade-off using the DCT technique for power
control. The optimization is performed using a hierarchical Bayesian model, set up with historical (off-line) data and
tuned to the current application execution in runtime (on-line).

Several benchmarks were used from different suites including PARSEC (blackscholes, bodytrack, fluidanimate,
swaptions, ×264 ), Minebench (ScalParC, apr, semphy, svmrfe, Kmeans, HOP, PLSA, non fuzzy kmeans (Kmeansnf)),
Rodinia (cfd, nn, lud, particlefilter, vips, btree, streamcluster, backprop, bfs), jacobi solver, filebound and the swish++
search web-server. In our approach we use power-capping mechanisms and provide automatic selection of the
energy-performance ratio at application runtime using built-in metrics, without prior execution data gathering.

Berned et al.31 proposed off-line heuristics optimizing an EDP metric for parallel applications, they use DCT mech-
anisms for power limitation and the results showed a significant decrease of energy consumption, with a moderate
performance penalty. In this context, many benchmarks were used from the NAS Parallel suite: block tri-diagonal solver
(BT) CG, embarrassingly parallel (EP), discrete 3d fast Fourier transform (FT), integer sort (IS), lower–upper Gauss–Seidel
solver (LU) multi-grid on a sequence of meshes (MG), scalar penta-diagonal solver (SP), unstructured adaptive mesh
(UA); from the Rodinia Benchmark Suite: Hotspot (HS), LavaMD2 (LM), Leukocyte (LT), Needleman–Wunsch (NW); fast
Fourier transform (FFT), Jacobi (JA), n-body (NB), STREAM (ST), Poisson (PO). Our solution uses an on-line approach
without prior application execution and is based on power-cap mechanisms. Moreover, our method supports EDP as well
as other metrics.

Zhu et al.38 presented a new scheduling method optimizing the performance of parallel programs execution on inte-
grated CPU-GPU chips under a given power cap. The authors provided a new performance model based on a measured
application memory throughput while executed on GPU or CPU cores. Then they proposed a scheduling algorithm reflect-
ing device characteristics related to the performance and power capping. Experimental results, performed using a typical
OpenCL based, Rodinia benchmark suite, showed the effectiveness of the method in comparison to random and default
(Linux) scheduling algorithms. In this context, the results of our work can be combined with scheduling at a higher level
in which various energy-performance configurations could be considered for each assignment.

Rountree et al.39 presented the power capping functionality and its adoption for total power limitation of the used
devices, with the assumption of maximizing the system performance. They proposed an idea of the data center bound by
the maximum used electric power instead of compute power capacities. Under such circumstances, the power capping is
going to play the main role in setting up the boundaries of intensity of possible electricity usage. Additionally, they pre-
sented performance differences between various instances of the same CPU type, measured under the power limitation,
showing that in practice their compute power can vary significantly, which is not so visible for conditions when no power
cap is introduced.

In this work we focus at a lower level that can potentially be used to allow various power caps for various users in an
HPC center and allow per-user optimization as well as global constraint involvement.

Haidar et al. presented a study of the correlation between power usage and performance for various numerical ker-
nels typical of real scientific applications,40 gathered using the Intel Xeon Phi architecture, showing how power capping
enables reduced energy consumption with a negligible performance loss. The analysis showed that the highest energy
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saving can be achieved while using memory intensive applications, where the power limits do not significantly influence
the performance.

A set of the benchmarks mirroring typical science applications in HPC, as well as having different compute/memory
intensity were used including: Jacobi, LBM, HPCG, XSBench mini-app, Stream benchmark. We perform a similar work,
although using a different set of applications and multi-core CPUs focusing on the automation of the optimization process.

Fukazawa et al.41 in their research focused on analysis of performance/execution time versus power limit config-
urations, using Intel RAPL and Magnetohydrodynamic (MHD) simulation code. Specifically, CPU and DRAM power
consumption values are measured for two parts of the code—calc-part and data-part under various CPU power caps
between 100 and 260 W. It is shown that for the latter part, under power capping considerable CPU power consumption
can be obtained with minor increases in the elapsed time while DRAM power consumption stays at a constant level. This
allows visible energy optimization at potentially minor increase of execution time. A parallel system with Sandy Bridge
Xeon E5 CPUs was used for tests. Tiwari et al.42 focused on building a model that considers power allocation for CPU and
DRAM domains and its impact on performance when power capping.42 A function is defined that predicts performance
change when using power caps for CPU and DRAM domains. Using low level tools for application instrumentation as
well as rule-based machine learning, this impact is estimated. The model considers performance changes from CPU and
DRAM domains with power caps as well as cache hits and misses, memory accesses, ratio of floating point operations,
instruction mixes and data dependence metrics. The authors demonstrated an average absolute mean error of 6% with
the error below 10% for more than 86% of the application hotspots. Several codes were used: miniGhost, CoMD, kernels
from various computational domains—dense linear algebra (matrix-matrix, matrix-vector multiplication), stencil compu-
tations, linear algebra solvers (LU decomposition). Compared to those works, we adopt a different approach focusing on
the automation of the configuration process and also algorithms that identify configuration fast and with good precision
but we are planning to incorporate DRAM domain consideration in the future work extending the final algorithms.

Conoci et al. in their work43 adopted performance and power limit aware optimization of a configuration with
self-adaptation of parallel applications able to find a good configuration (frequency, cores, and threads placement) satisfy-
ing a user requirement on power consumption and performance. The approach obtains relevant performance and power
models on-the-fly. The applications they used were: Blackscholes, Bodytrack, Canneal, Dedup, Facesim, Ferret, Fluidan-
imate, Freqmine, Raytrace, Streamcluster, Swaptions, Vips. Our solution picks up a slightly different problem, where on
the left-hand side is total energy used by the application. We consider the maximal power constraint to be maintained by
the hardware supported power-capping mechanisms.

CoPPer library, proposed by Imes et al.,32 uses power-capping mechanisms for performance management supporting
the power minimization, for soft real-time applications. It allows the use of hardware power capping to meet application
performance requirements with high energy efficiency, avoiding over-allocating power when not beneficial. Applica-
tions from the PARSEC benchmark suite, MineBench, STREAM and SWISH++ were tested. Similarly to our approach,
that solution controls the performance by applying power limits. However, it uses its own performance indicators being
implemented in the additional code dependent on the application, and does not provide flexible metrics referring to an
energy-performance trade-off.

Conoci et al.44 proposed techniques for optimization of throughput of a multithreaded application under a given
power cap where two variables are considered: P-state and the number of threads. The authors tested two strategies:
exploration as well as model (with performance and power-usage model construction) based. Both models resulted in
errors below 5%. As a conclusion following tests, one of the two strategies can be recommended as follows: exploration one
for workloads with unimodality of the scalability profile, and a model-based one for workloads with distinctly different
profiles. Three groups of applications were distinguished: with highest performance for the highest number of available
cores, middle as well as just one core, respectively. In our approach the number of threads is imposed when running an
application and considered fixed, not a variable. Power settings are set with a power cap and are meant to optimize a
function corresponding to an acceptable/desired trade-off between application execution time and energy used.

2.2 Review of existing target metrics

For multi-objective optimization, all possible optimal solutions may form a Pareto-optimal front, where one of the
solutions might be arbitrarily selected. This indeed was our first approach.45

Running any application for different power limits generates a set of results consisting of total execution time and
total energy consumption. Many of the result points were typically included in the Pareto-optimal front. Figure 1 presents
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2604 KRZYWANIAK et al.

F I G U R E 1 Pareto-optimal front plotted for an exemplary static result of FFT application execution on Haswell-EP (left) and Coffee
Lake (right) systems for different power caps. The results are normalized with the result obtained for default system configuration as a base.

one of the application’s (FFT—fast Fourier transform) results obtained on two considered CPUs with the Pareto-optimal
front highlighted from all available results. On the horizontal axis we put normalized execution time and on the vertical
axis the normalized energy consumption was placed. All the results are normalized with a base result (total execution
time or total energy consumption) obtained for a default system settings (no power caps applied). Any value less than
1 represents a better than default result (less energy consumed or shorter execution time) and, consequently, any value
above 1 is worse than the default result.

However, after in-depth analysis, we found out that a fully automatic implementation needs a more direct way to
find desired optimization, as the whole procedure takes a lot of time to collect a proper set of measurements to build the
front. Moreover, even having solutions, the tool needs to select one of them, using some additional criteria, to introduce
a final, target power-cap. Thus, we decided to stick with a well-defined metric function, which can be easily exchanged
for a different one if user requirements change.

In our case, the metric function, which value is going to be minimized, has the following form:

M ∶ (E, t) ∈ R+ ×R+ → R+, (1)

where E and t are respectively estimated energy and time required for the application execution.
The proposed tool is metric agnostic, that is, it can use any monotonically increasing function to define the goal of the

energy/performance optimization. The simplest case represents a minimal energy (E) goal, where the execution time is
not taken under consideration:

ME(E, t) = E. (2)

On the opposite side, where the performance is maximized, without any power considerations, the following metric
can be used:

Mt(E, t) = t. (3)

There are several metrics being in between these two extremes, and the usually used one is energy time product, a.k.a.
EDP:46
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KRZYWANIAK et al. 2605

MEDP(E, t) = Et. (4)

In some works,47,48 it appears in a more general form:

MEDP(E, t) = Etw (5)

with a range of used w parameter, that is, w = 2 or w = 3.
Roberts et al. argue that EDP is unsuitable for energy aware optimization,49 and they propose two other metrics: EDS:

MEDS(E, t) = 𝛼E + 𝛽t, (6)

and energy-delay distance (EDD):

MEDD(E, t) =
√
(𝛼E)2 + (𝛽t)2. (7)

3 DEPO TOOL—MOTIVATION, CONCEPT, AND DESIGN

The analysis of the state-of-the-art research can be summarized by conclusions that there is a lack of tools for automatic
configuration of HPC systems especially the ones involving power caps mechanisms for both CPU and GPU based solu-
tions. In order to advance this field of study even further, we propose and present an implementation of an automatic and
dynamic tool for finding the desired performance-energy consumption trade-off configurations for a given application.
In the following Section 3.1 we summarize our previous works and present initial experiments which are a foundation
for the dynamic power capping concept. Then, in Section 3.2 we introduce the concept and the design of the DEPO tool.

3.1 Dynamic power capping foundations

Our previous works explored power capping usability in HPC in a static way. The research was based on manual config-
uration of a testbed system where we performed a series of tests using different power limits.45 We have observed that
setting a power cap on a system results in non-trivial energy savings and performance degradation trade-offs. However,
one cannot easily predict potential benefit and loss caused by a particular power limit level. We have observed that the
Energy characteristic, defined as a total energy consumption level against power limit level, is specific for an application
and testbed system pair.

Afterwards, we extended our experiments using a subset of NAS parallel benchmarks2 applications, well known in
the HPC environment, and proposed an automatic tool that we called EnergyProfiler that can execute a series of tests
on any compatible modern Intel CPU, and produce an energy characteristic as an output.50 After publishing the code in
SPLiT suite we have renamed the EnergyProfiler into StaticEnergyProfiler (StEP). Additionally, we performed tests for
various input data sizes per each computational workload type. This allowed us to conclude that at least for some classes
of iterative applications, performing the same computation on the data with the same layout at each iteration, the energy
characteristic is indeed specific for an application-system pair, but does not depend on the computational problem size.
As long as the memory is not a limitation, we can assume that the workload, executing specific types of computations,
will have its energy minimum for the same power limit level, no matter if it is executing for an hour or just a few seconds.
This revealed the potential of automatic tools for finding the desired energy efficient system configurations, based on a
series of short computational workload samples.

The main disadvantage of the static method for finding the best system configuration using the static StEP tool is
that we have to measure the total execution time of a workload application. Without knowledge of total execution time
and total energy consumption of the testbed workload the static method cannot apply any of the static target metrics
evaluating the energy/performance impact of the particular power limit level. Therefore, the StEP tool based on static
power capping exploration method is useful only when a tuned application is frequently repeated or allows for a short
sample run before long target execution .

The new approach proposed in this article is dynamic power capping. The main assumption is that the power capping
exploration phase, as well as the decision on selecting the best power limit level for any given workload, is performed
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2606 KRZYWANIAK et al.

at runtime. In order to design such an approach we need to use a method which allows for estimating the progress of
computations. This can be represented by the number of instructions executed on a CPU.

Figure 2 presents an exemplary static result obtained with the StEP tool exploring different power caps, extended by
CPU counters monitoring. The figure presents normalized total energy consumption, as well as total execution time and
total number of instructions, executed for an example testbed workload (FFT). The figure also shows evaluation of static
target metrics: EDP and EDS (k = 2).

The results confirm the intuitive assumption that, regardless of the current power cap level and the performance
impact of it, the total number of instructions required for completing a computational problem is constant for an applica-
tion. This is a foundation for dynamic power capping design as it solves the problem of the runtime application progress
estimation.

3.2 DEPO tool—concept and design

The main contribution of this article is the concept of a dynamic power capping mechanism, its design and implementa-
tion, followed by a series of experiments proving its usability and effectiveness. We have implemented a new tool allowing
for quick exploration of available power caps range for an unknown application. Examination of software power limits
does not require the application to finish its execution. All the measurements are performed at runtime. The general idea
is to find the best suited power cap at the beginning of the application execution and use it for the rest of the computations.
We call the new tool DEPO which can be expanded as dynamic energy-performance optimization.

Figure 3 presents a component communication diagram, describing the general idea of our DEPO tool. A tuned appli-
cation is executed simultaneously with the tool, notifying it about exact times of start and end of the computations. The
power monitoring and controlling interface is implemented using the Intel RAPL driver. The tool automatically detects
all available packages (CPUs) and reports the current energy consumption for a system as a sum of energy readings from
each available package. The power limits are applied in the form of a power budget, which means that the limit assigned
by the DEPO tool is split equally between available packages. Specifically, for a single CPU system the whole power bud-
get is assigned to a single package. Consequently, for a system with two CPUs the power budget is split in half and each
half of a power budget is applied as a power cap for each of the two packages (CPUs).

Power capping using the RAPL driver allows for defining long term and short term power limits. Using
RAPL it is possible to set both power limit values, as well as the corresponding time windows. The time win-
dow defines the time period within which the average power consumption is forced to not exceed the requested
power cap.

F I G U R E 2 Static result obtained with StEP tool with CPU counters on Haswell-EP (left) and Coffee Lake (right).
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KRZYWANIAK et al. 2607

F I G U R E 3 DEPO general component communication diagram

The DEPO tool applies the power caps using only the long term power limit, and allowing for power consumption
peaks exceeding the requested power limit value. The long term time window is set to 100 ms. The short term power limit
has always a default value specific for a CPU model. The short limit time windows in the systems tested in this article had
a 2 ms value. We do not apply limits to the DRAM domain.

The Intel PCM API is used to monitor the number of executed instructions while running the application. The DEPO
tool executes a series of measurements for different power caps and searches the most appropriate one. The used metric
(E, EDP, or EDS) and the search type (linear or GSS) can be chosen by the user according to his/her preferences.

The DEPO tool is designed to be API agnostic so that it may be easily modified to work with other platforms for
example, NVIDIA GPUs. The Intel specific RAPL API might be then replaced by NVML API calls for power consumption
monitoring and controlling. We have already applied such an approach51 for the StEP tool. When we replace another Intel
specific PCM API with for example, NvBit52 instruction or kernel counting, it would make DEPO tool able to be used for
dynamic power capping with NVIDIA GPUs.

The implementation details of the DEPO tool are summarized in Section 5.

4 DYNAMIC VERSIONS OF SELECTED TARGET METRICS

In Section 2.2 we described several target metrics allowing for evaluation of energy-performance trade-offs while using
power caps. For the research described in this article we have selected the following metrics: simple energy (E, Equation 2),
energy-delay product (EDP, Equation 4), and energy-delay sum (EDS, Equation 6). However, this set can be easily
extended with other ones.

Figure 4 presents graphical visualization of the E, EDP, and EDS metrics on the total energy consumption and total
execution time plane. The axes represent normalized energy consumption (vertical axis) and normalized total execution
time (horizontal axis). The result obtained for default system setup (no power caps) was used as a reference and is repre-
sented by point with values (1,1). The energy (E) metric is just a simple horizontal line which divides the plane into the
upper and lower subplanes. Any result on the lower subplane is better than the default one in terms of optimization of
the E metric.

The EDP metric is represented by a hyperbole passing through point (1,1). Any result below the hyperbole is better
than the default one in terms of EDP metric.

The EDS metric is presented for three different values of the k parameter which represents the maximal acceptable
proportional execution time increase. The k parameter is directly correlated with Equation (6)’s 𝛼 and 𝛽 coefficients as
described in Section 4.3. Any result below the EDS line is better than the default one in terms of EDS metric.

The general interpretation of the graphical visualization of these metrics is that any result represented by a normalized
energy-time pair that is below the metric line is accepted by the metric and any other is rejected. The optimal (minimal)
value for each metric is the point with maximal Euclidean distance between the result point and the metric line.

All the metrics reviewed above are useful only when total energy consumption and/or total execution time of the
computational problems under examination are known, which makes these metrics static. To be able to evaluate the
impact of dynamically changing power limit levels at runtime, we need to substitute total energy consumption and total
execution time with their dynamic equivalents.
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2608 KRZYWANIAK et al.

F I G U R E 4 Graphical visualization of E, EDP, and EDS (for three different k values) metrics for an example workload (FFT) executed
on Haswell-EP (left) and on Coffee Lake (right).

In the static approach,45 for the comparison purposes, we used the total time of the application execution. However,
the dynamic version of the evaluation needs to be performed at runtime, before the application execution is finished,
therefore the total time has to be substituted by some other metric. Since, as described in Section 3.1, we observed that
any application requires the same total number of instructions I to complete the computation regardless of the power
cap, we decided to use instructions per second ratio ipsT instead. This approach, after the adjustment of the application
startup (see Section 5.2), provides appropriate results, see Section 4.4 for further analysis.

4.1 Dynamic minimum of energy (E)

Starting with general energy equation which defines total energy consumption as a product of average power and total
execution time:

Etotal = Pavg ⋅ ttotal. (8)

We can replace total execution time with total number of instructions Itotal divided by instructions per second ratio ipsT
measured for the time period T:

ttotal =
Itotal

ipsT
. (9)

We also know that average power Pavg in a time period T is a ratio of energy measured for a fixed period of time ET and
the period itself T:

Etotal =
ET

T
⋅

Itotal

ipsT
. (10)

Using the number of instructions IT measured within the time period T we can replace ipsT and simplify to the following
form:
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KRZYWANIAK et al. 2609

Etotal =
ET

IT
⋅ Itotal. (11)

Simplifying and combining the above equations with Equation (2) we can write:

ME(E, t) =
ET

IT
⋅ Itotal. (12)

Since the total number of instructions Itotal is constant for a given application, we can simplify the minimum energy metric
to its dynamic version:

Edyn =
ET

IT
, (13)

which may be interpreted as average energy per instruction ratio within a fixed period T. Thus, in order to find
minimal energy consumption we can seek for minimum of energy per instruction or maximum of instructions
per Joule.

4.2 Dynamic energy delay product (EDP)

The second target metric that we have selected is energy consumption and execution time product which is known in
literature as energy delay product.46 Static version of this metric was defined in Equation (4). Using Equations (12) and
(9) we can define EDP as:

MEDP(E, t) = I2
total ⋅

ET

IT
⋅

1
IT
T

. (14)

Remembering that total number of instructions Itotal is constant and has no impact on the above optimization target
formula we obtain final form of EDPdyn:

EDPdyn =
ET ⋅ T

I2
T

, (15)

where ET represents energy consumption within period T.

4.3 Dynamic energy delay sum (EDS)

The third target metric that we selected for dynamic power capping is energy delay sum (EDS) for which a general idea
was presented in Equation (6). EDS is a weighted sum of total energy consumption and total execution time. Its geomet-
ric interpretation is a linear function on an energy and time plane which divides the surface into two subplanes. The line
is constructed based on two points: a reference result and some assumed abstract point which considers zero energy con-
sumption and maximal accepted execution time degradation. Usually the potential increase of execution time is defined
as k ⋅ tref where k is a coefficient determining the potential performance loss ratio.

Any result point obtained for some different system configuration which is exactly on the EDS line is equivalent to
the reference result. Any point below the line is better than the default and, consequently, any result point above the EDS
line is rejected by this metric. Figure 4 presents a graphical interpretation of all static metrics including three potential
EDS lines with different k values.

Based on the aforementioned two points (tref,Eref) and (k ⋅ tref, 0) on a time-energy plane we can build a linear function
equation:

E − Eref =
0 − Eref

k ⋅ tref − tref
⋅ (t − tref), (16)
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2610 KRZYWANIAK et al.

F I G U R E 5 Comparison of relative static metrics (E, EDP, EDS) values against their dynamic equivalents calculated for the same series
of static experiments run with the StEP tool on Haswell-EP (left) and Coffee Lake (right) for the FFT application.

which, after combining with Equation (6) provides 𝛼 and 𝛽 weights as:

𝛼 = k − 1
k ⋅ Eref

, 𝛽 = 1
k ⋅ tref

. (17)

Using coefficients from Equation (17) and dynamic equivalents of energy from Equation (11) and time from Equation (9)
we can replace static energy and time in Equation (6) and result in:

EDS = k − 1

k ⋅
Itotal⋅ETref

ITref

⋅
Itotal ⋅ ET

IT
+ 1

k ⋅ Itotal
ipsTref

⋅
Itotal

ipsT
. (18)

After reductions and simplification of the above equation dynamic version of energy delay metric EDSdyn is:

EDSdyn =
1
k
⋅

ITref

IT
⋅
(
(k − 1) ⋅ ET

ETref

+ 1
)
. (19)

4.4 Evaluation of dynamic metrics on static results obtained with StaticEnergyProfiler

Before implementation of dynamic power capping we compared our theoretical dynamic version of target metrics to static
results obtained with the StEP tool running the FFT application. We have selected the FFT application as a representa-
tive for the initial test as it is the most complex problem in terms of its combination of computation and communication.
Also, its power characteristic is the most variable. Thus, the FFT application shall be the biggest challenge for the
tested dynamic approach. We used total execution time t and total number of instructions I ratio to calculate the aver-
age value of instructions per second ipsT measured within a fixed time period T. Also, dividing total energy E by total
number of instructions I we modeled a dynamic version of energy measurements. The value of the k coefficient in the
EDS metric for the purpose of this experiment was set to 2.0 which means that we accept execution time doubling
at most.

Figure 5 presents comparison of static and dynamic metrics E, EDP, and EDS calculated for the same series of
static experiments run with StEP tool for the FFT application on both Haswell-EP and Coffee Lake systems. The same
experiments series was also a base for previous Figures 4 and 2.

We can observe that values of dynamic versions of E, EDP, and EDS metrics almost perfectly match the values of their
static equivalents for the Coffee Lake system. The relative errors between static and dynamic versions of considered met-
rics calculated for static results obtained on the Coffee Lake system are smaller than 0.4%. For the server type Haswell-EP
system the relative errors are less than 1% for E and EDS metrics and less than 2% for the EDP metric. This means that
replacing the total execution time domain by the total number of instructions retired domain in proposed target metrics
does not have significant impact on the final target metric value for the Coffee Lake system and has a negligible impact

 1097024x, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3139 by C

am
bridge U

niversity L
ibrary, W

iley O
nline L

ibrary on [14/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KRZYWANIAK et al. 2611

for the Haswell-EP system. These results constitute a strong foundation for the proposed design and implementation of
a tool for dynamic power capping.

5 IMPLEMENTATION DETAILS OF DEPO TOOL

This section describes the implementation details of the proposed DEPO tool. First, in Section 5.1 we refer to our previous
work and present the new open sourced set of tools for power monitoring and controlling called SPLiT. We also summarize
all the Intel specific APIs that have been used in the DEPO tool. In Section 5.2 we introduce the idea of dynamic power
capping phases. Search algorithms for the tuning phase are described in Section 5.3 and, in Section 5.4, we select the
dynamic versions of target metrics.

5.1 SPLiT: Software power limiting tools—The ECO library extension

In our previous work50 we introduced a tool named EnergyProfiler which was built on our original energy consumption
optimization (ECO) library. The ECO library aimed at defining a simple application programming interface (API) for
power and energy consumption monitoring as well as software power limits controlling. The main goal for the ECO library
is to allow easy building of simple custom applications for energy efficient (controlling) and energy aware (monitoring)
computing. We have published the tools for software power monitoring and controlling as the Software Power Limiting
Tools suite, available online*.

The underlying layer of ECO library is an Intel Running Average Power Limit (RAPL) driver which uses model specific
registers to monitor the energy consumption of CPU and control its software power limits. The RAPL driver is able to
monitor and control several power domains such as PP0—representing CPU cores, DRAM—representing memory and
PKG—representing the whole CPU socket. The availability of particular domains depends on the CPU model. Since the
SandyBridge Intel CPU family release, the PKG power domain is always available in modern Intel CPUs. The power
capping API introduced with Intel’s RAPL driver creates an abstract layer allowing for setting the power limits intuitive
for the user power units (microwatts). The underlying technology is vendor specific and, according to Haidar et al.,40 for
Intel’s RAPL it is a combination of Dynamic Voltage and Frequency Scaling (DVFS) and clock cycling modulation at low
power levels.

Our previous work was focused on exploring the advantages of static power capping. The power limits
were applied only to PKG domain (which refer to CPU cores) with no impact on DRAM domain. Based on
the foundation of the ECO library, we have developed a set of applications for energy aware high-performance
computing (HPC) such as: SetPowerLimit, GetPowerConsumption, and EnergyProfiler (now renamed to StEP:
StaticEnergyProfiler).

In this article we extend the ECO library with new features and a new application for HPC. First of all, we have added
the ability to monitor CPU counters such as executed instructions and CPU cycles. We have upgraded GetPowerConsump-
tion (GPC) and StaticEnergyProfiler (StEP) tools to report the number of the instructions for each testbed application
execution. The extended version of StEP was already useful for preliminary research for this article as described in
Section 3.1.

Monitoring of CPU counters is realized with a processor counter monitor (PCM) Intel open source API.53 In the
ECO library we use a PCM object programmed for PCM::DEFAULT_EVENTS, through which we collect the counter
states, using a dedicated getAllCounterStates() method. Finally, we read the number of instructions actually
executed by CPU to complete the monitored application with getInstructionsRetired(). The PCM library was
compiled without -DPCM_USE_PERF flag, which indicates that the performance measurements do not rely on Linux
perf support.

For generating graphical reports online we used gnuplot-iostream,54 which is basically a header-only library
wrapping gnuplot application for C++ developers.

The ECO library, as well as any application within the Software Power Limiting Tools (SPLiT) collec-
tion, are written using the C++17 programming language and were compiled with the gcc version 7.5.0
compiler.
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2612 KRZYWANIAK et al.

5.2 Dynamic power capping phases

The DEPO tool performs power cap tuning and monitors the power consumption after applying the best power cap.
Therefore, in the DEPO tool we can distinguish a clear preparation phase before the execution phase with desired system
setup. HPC applications rarely represent a purely homogeneous workload type and usually there is some startup time
required before the application starts to perform at the target power consumption level. Therefore, we need to add some
wait-for-steady-state time before testing the power caps. Otherwise, we would base our decisions on the energy readings
for the low power consumption startup phase while the main computations require much more power. For this reason,
we split the preparation phase into a wait phase and a tuning phase. Figure 6 presents the DEPO phases scheme in parallel
with the testbed application on a timeline.

Before the tuning phase starts, there is a need for detection if the tuned application is already running at its target
power consumption level. A solution might assume some fixed startup time and introduce some sleep time before tuning
phase. Unfortunately, such an approach would not be universal and might not be good enough for many HPC applications
with non-trivial power characteristics.

As a more generic solution we decided to base the steady state detection on the filtered power readings. We used simple
moving average (SMA) to get the current average power value. We analyze the variability of the current power and when
the filtered power deviation is lower than the assumed fixed 𝜀 the tuning phase is triggered.

Technically, we calculate SMA50(P) for 50 recent power samples. For better accuracy with steady state detection we
calculate SMA100(SMA50) for 100 recent SMA50 values. Finally, we select the minimal and maximal sample for each
SMA100 value and calculate the relative err = (max−min)

SMA100
error. When err < 𝜀 the tuning phase is triggered. The 𝜀 value

was selected experimentally and equals 0.03 for our experimental setup.

5.3 Search algorithms in tuning phase

The tuning phase aims for finding the best power cap for a current workload according to the given target metric (one
of: E, EDP, or EDS). The power cap is selected after a series of energy and power measurements obtained for different
power limit levels, and performed within a fixed time period T which is defined by the user. The DEPO tool supports two
algorithms for exploring the power caps: LS and GSS.

LS is a simple method of a gradual increase of the current power limit. The search starts from the lowest value close to
idle consumption power demand and increases to reach either the double value of application maximal power consump-
tion or the maximal available power cap—whichever is greater. After each gradual step the target metric is evaluated and
referred to the current best value. The best power cap is stored each time the metric evaluation results with better val-
ues. The full power cap range is always explored from the maximal available power limit to the minimal power demand
determined by system idle power consumption.

The second algorithm (GSS) implements a well known technique for finding function extreme points in a specific
interval, first introduced by Kiefer in 1953.55 The GSS is also an iterative method but its goal is to narrow the considered
range until it is lower than assumed fixed parameter 𝛿. When the interval is small enough, the assumption is that the
desired point is found in the middle of the final subrange.

The main difference between LS and GSS is that in the former the whole available power range is always explored.
On the other hand, in the latter the next step, which narrows the power caps range, is always based on the previous two
steps. The decision about rejection of some unexplored subrange is final so there are always some power cap subranges
which were not tested in GSS.

F I G U R E 6 Dynamic power capping phases
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KRZYWANIAK et al. 2613

Another intuitive observation is that, assuming the same time period T for a single power cap test, the GSS might be
much faster in finding global optimum than LS. Obviously, LS also might be faster than the GSS method because it is
possible that one might choose some large (more than 10%) power decrement value so the algorithm finishes in just a few
iterations. However, in such a case, the selected power cap would probably result in the target metric value being more
off the globally optimal value.

Exemplary experimental results for a single testbed application run with DEPO with both search algorithms are
presented in Section 6.3.

5.4 Dynamic target metrics

The DEPO separates the method of power cap search from the chosen optimized target metric. The tool might then
work with any user defined target function, that might be evaluated at runtime, based on available system readings.
The tool currently implements three target metrics as described in Section 4 so the optimization functions implement
Equation (13) (E), Equation (15) (EDP), and Equation (19) (EDS).

6 EXPERIMENTAL RESULTS

In this section we present the configuration and the results of our experiments. Section 6.1 describes the testbed systems
used in the experiments. Section 6.2 presents all the tuned applications used in the experiments. Before the actual evalua-
tion of the DEPO tool we performed a series of preliminary experiments in order to find proper configuration parameters
for the tool, especially the time window for probing current power usage during execution of the application. Section 6.3
presents the results of these tests. Then, in Section 6.4, we present a comparison of used dynamic power cap searching
algorithms: LS and GSS. Eventually, in Section 6.5, we presented the results of the extensive evaluation of the tool with
the finally selected search algorithm (GSS) using the well-known NAS parallel benchmarks suite.2

6.1 Testbed systems

The following tests were conducted in two environments, specified in Table 3, representative of modern CPUs for desktop
(Testbed 1) and server (Testbed 2) systems respectively. The platforms differ specifically in: HyperThreading technology
(not present in Testbed 1 and present in Testbed 2), numbers of physical processors (1 in Testbed 1, 2 in Testbed 2), number
of cores versus clock frequency (higher frequency and fewer cores in Testbed 1, lower frequency and considerably more
cores in Testbed 2).

From the power consumption perspective the two considered platforms differ in thermal design power (TDP) as well
as default and maximal available power cap level. Testbed 1 has TDP at 95 W but max power cap is 255 W with default

T A B L E 3 Testbed configurations

Testbed system Testbed 1—Coffee Lake Testbed 2—Haswell-EP

CPU model Intel® Core™ i7-9700K CPU 3.60 GHz
Coffee Lake

2 × Intel® Xeon® E5-2670 v3 CPU 2.30 GHz
Haswell-EP

Number of physical/logical cores 8/8 24/48 (2 × 12/2 × 24)

System memory size (RAM) 32 GB (4 × 8 GiB) 128 GB (8 × 16 GiB)

Operating system Ubuntu 18.04.4 LTS Ubuntu 16.04.7 LTS

Compiler/version gcc v. 7.5.0 (Ubuntu 7.5.0-3ubuntu1 18.04) gcc v. 7.5.0 (Ubuntu 7.5.0-3ubuntu1 16.04)

Thermal design power (TDP) 95 W 240 W (2 × 120 W)

Default power cap 255 W 240 W (2 × 120 W)

Max available power cap 255 W 480 W (2 × 240 W)
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2614 KRZYWANIAK et al.

power cap set to the maximal value of 255 W. Testbed 2 has TDP at 240 W (2 CPUs × 120 W), but the default power cap
is set to 240 W (2 × 120 W) while the maximal available power constraint is 480 W (2 × 240 W).

6.2 Testbed applications

For the testing purposes we have used eight different workloads which are representative, parallel applications. Three
of the applications are custom developed and five of them are taken from the well-known in HPC benchmarking NAS
parallel benchmarks suite.2

Similarly to our previous work,45 the first three custom build applications solve typical computational problems with
the support of commonly used in HPC, open source tools and libraries, like OpenMP or GCC. Their implementation is
based on the shared memory processing paradigm with threads used for providing parallelization and scalability. The
minibenchmarks’ source code is published and available online*.

In this article, we assume the application execution to be uniform, that is, during the application execution the
compute load is approximately the same: intensity of the usage of the system components like the memory or the
compute cores does not change significantly in time. We consider an exception for a beginning phase, when
due to initialization (e.g., data loading or preparation) instructions differ from the following computational phase.
The proposed testbed applications follow this assumption, however we are aware of other possible models of the
application execution, for example, with iterative computations/communication phases, and consider their analysis in
future work.

The first application (denoted INT) solves a numerical integration over a given range, specified by the input arguments
and for an arbitrary chosen function: f (x) = 1

1+x
. The range is split between the threads, and each thread calculates its

own part. Afterwards, the total sum is computed by invoking a reduction operation, and the final result is printed out. The
precision of the calculations is controlled by a number of subpartitions to be integrated, provided as an input argument.

Figure 7 presents power consumption measurements for the proposed numerical integration testbed application
executed on both testbed systems: Haswell-EP and Coffee Lake. The application starts performing at the target power
consumption level almost immediately after it has been launched. The power consumption is steady during the whole
running time.

The second application (denoted HEAT) simulates heat distribution in a square room using a simplified 2D model,
based on the example presented by Sanders et al.56 The area is split into N × N cells, where one cell in a corner is a heater.
The simulation is performed in iterations where the current iteration uses the input data produced as the output of the
previous one. Thus, each cell state can be calculated independently by a separate computation unit (i.e., core). Such an
approach can be used to achieve high scalability, however it also requires keeping an additional memory buffer with the
previous iteration’s output data.

Figure 8 presents power consumption measurements for the proposed heat distribution simulation testbed application
executed on both testbed systems: Haswell-EP and Coffee Lake. The HEAT application’s power profile is more complex
than the previous numerical integration. Although on the server Haswell-EP system the application starts to perform at
the target power consumption level almost immediately after launch, the power profile of the same application run on
the desktop Coffee Lake system varies in its power demand during the whole execution period. The HEAT application

F I G U R E 7 Exemplary power profile of INT testbed application on Haswell-EP (left) and Coffee Lake (right) systems without power
caps.
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KRZYWANIAK et al. 2615

F I G U R E 8 Exemplary power profile of HEAT testbed application on Haswell-EP (left) and Coffee Lake (right) systems without power
caps.

executed on the latter system seems to reach target power demand close to 100 W immediately after launch but there are
clear low power moments during the computations when the power consumption drops to 60 W.

The third application (denoted FFT) is a typical fast Fourier transform implementation, with the Radix-2 parallel
algorithm supporting decimation-in-time approach.57 The input data, consisting of a vector with N complex numbers,
is automatically generated, shuffled and then used to perform log2 N parallel iterations. For the testing purposes the
computations are repeated multiple times, according to a given parameter and the input data is overwritten by the results,
thus the computations use only one memory buffer of size N.

Figure 9 presents power consumption measurements for the proposed FFT implementation testbed application
executed on both testbed systems: Haswell-EP and Coffee Lake. The third application presents a non-trivial power con-
sumption profile on both testbed systems. The FFT application has a clear startup phase before the power demand for the
computations reaches target level. FFT also presents periodical power demand drops which can differ from the regular
power demand up to 75%.

The above applications were implemented in the C language v. C99, using OpenMP with the GCC v. 4.88 compiler and
with double precision floating number support. The execution code was optimized with the −O3 parameter and default
OpenMP configuration (for the thread number, affinity and the computation partitioning) was used, without further
tuning in the testbed environment.

As an additional representative HPC workload we selected five applications from the well known NAS parallel
benchmarks (NPB) suite which is a set of programs designed to evaluate the performance of parallel supercomput-
ers.2 From the kernels subset we selected CG which is characterized by irregular memory access and communication
and also multi-grid on a sequence of meshes (MG) which realizes long- and short-distance communication and is
memory intensive. We did not use the EP and discrete 3D fast Fourier transform (FT) kernels as they are basically
the same as two of our tuned applications considered earlier in this section: INT and FFT respectively. On the other
hand, the execution time of the integer sort (IS) kernel was too short to make use of the DEPO tool on both testbed
systems.

F I G U R E 9 Exemplary power profile of FFT testbed application on Haswell-EP (left) and Coffee Lake (right) systems without power
caps.
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2616 KRZYWANIAK et al.

From the subset of pseudo applications we used all three available programs which were block tri-diagonal solver
(BT), scalar penta-diagonal solver (SP), and lower-upper Gauss–Seidel solver (LU).

All five selected NPB applications were written in Fortran using OpenMP. The code was compiled with a gfortran
compiler, version 7.5.0 with default for the NPB -O3 optimization level and memory model (-mcmodel) set to medium.
Power profiles for these applications and the two systems are shown in Figures 10–14.

The NPB applications can be run with different input data sizes which are defined as benchmark classes. For most of
the tests we used class D which is the first class of large test problems group. For the purpose of the DEPO tool validation
we considered only the total execution time of the tuned application and for almost all of the tests class D satisfied our
minimal requirement of total execution time longer than 250 s. Only for the MG kernel executed on the Haswell-EP we
had to make an exception and accept the application’s execution time for the class D smaller than 138 s as the use of class

F I G U R E 10 Exemplary power profile of NPB: BT application executed for class D on Haswell-EP (left) and Coffee Lake (right) systems
without power caps.

F I G U R E 11 Exemplary power profile of NPB: SP application executed for class D on Haswell-EP (left) and for class C on Coffee Lake
(right) systems without power caps.

F I G U R E 12 Exemplary power profile of NPB: MG application executed for class D on Haswell-EP (left) and on Coffee Lake (right)
systems without power caps.
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KRZYWANIAK et al. 2617

F I G U R E 13 Exemplary power profile of NPB: LU application executed for class D on Haswell-EP (left) and on Coffee Lake (right)
systems without power caps.

F I G U R E 14 Exemplary power profile of NPB: CG application executed for class D on Haswell-EP (left) and on Coffee Lake (right)
systems without power caps.

E problem size was blocked by insufficient memory size available on Haswell-EP system. On the other hand, for the SP
application run on the Coffee Lake system we had to decrease the problem size to class C which resulted in 253 s of the
total execution time while the same SP application executed with class D problem size ran for over 5200 s for the default
system configuration. Since the difference in execution times of the SP application on the Coffee Lake system were so
wide for the C and D classes we decided to use the smaller class as the total execution time for C class is closer to the
average execution time of every other application for both systems.

6.3 Preliminary experiments for tool parameters configuration setup

Figure 15 presents a typical execution of the FFT application on both Haswell-EP and Coffee Lake testbed systems with
GSS control algorithm while Figure 16 presents the same application and systems setup for the LS algorithm. Both DEPO
executions evaluated the EDP target metric so the goal was to minimize the energy consumption and execution time
product.

Both algorithms detect the available power caps range properly. For the Haswell-EP the available power caps range
was between 95 and 245 W while for the Coffee Lake system the range started with 15 W (idle CPU demand) and
200 W (maximal available power cap). The 300 W power cap value on each of the figures represent the default systems
configuration.

A GSS’s characteristic feature is that it starts the search using two points between the given [min, max] range. The two
points in the middle are determined by the formula min+(max−min) ÷ 𝜙 and max−(max−min) ÷ 𝜙 where 𝜙 = 1.618.
The 𝜙 = 1.618 is the famous Golden ratio number. Using phi, with its unique feature, allows for smart selection55 of the
points between given [min, max] range in a way that the new range calculated in the next iteration will reuse one of the
previous inner points as either new min or new max. Therefore, one of the next examined power caps is always based on
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2618 KRZYWANIAK et al.

F I G U R E 15 Typical power log for GSS with EDP target metric recorded for FFT application on Haswell-EP (left) and Coffee Lake
(right) systems.

F I G U R E 16 Typical power log for LS with EDP target metric recorded for FFT application on Haswell-EP (left) and Coffee Lake (right)
systems.

one of the two previous candidates being the inner subrange constraints. The powercap subrange is iteratively narrowed
down until it reaches the width less than 1% of the available power caps range.

On the other hand, LS evaluates the target metric for the whole available power caps range with fixed steps increasing
the power cap by 5%. Exploring the whole range with a relatively small increment allows for finding the power cap that
better fits the target metric’s global optimum, but the tuning phase duration takes a significant amount of time.

Results of preliminary experiments motivated us to propose the tool configuration parameters that we used in all
following experiments that we present in Section 6. We decided to use time window T = 6400 ms, which means that each
power cap is set for 6400 ms, and based on the energy consumption and the number of instructions measured within this
period the target metric is evaluated. The values of T that we tested for were: 100, 200, 400, 800, 1600, 3200, and 6400 ms.
The longer time window T we set, the more stable the results are but also the longer the tuning period takes. The value
of 6400 ms is the shortest T for which we have observed stable results with standard deviation from 5 test runs smaller
than 10% for most of the tuned applications.

We set the power cap fixed step for LS to 2% and the final subrange width for GSS was chosen as 1% of the available
power limits range.

Preliminary tests have also shown that the k coefficient, needed to evaluate EDS target metric, does not have a sig-
nificant impact on the DEPO tool algorithm, since the tool searches the minimal value of the target metric anyway. We
confirmed that performing preliminary tests with k values: 1.25, 1.5, and 2. The test showed that the minimal value for
each version of dynamic EDS metric is found always for the same power cap so we decided to stay with k = 2.

6.4 Comparing linear search with golden section search

The proposed tool supports two approaches for searching for the best power configuration: LS and GSS. Each of them
can be used to optimize the following target metrics: E, EDP, EDS. The tool supports these search algorithms and metrics
out-of-the-box, however is not limited to them and can be easily extended with additional approaches.
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KRZYWANIAK et al. 2619

The initial evaluation of the proposed dynamic power capping solution was performed for two testbed systems:
Haswell-EP and Coffee Lake Intel architectures, where we have run experiments using three self-prepared applications
(INT, HEAT, FFT). For each system-application pair we have run the DEPO tool with a tuned application for both built-in
search types: LS and GSS, and for all currently implemented target metrics: E, EDP, EDS.

Figures 17–22 present a series of results for INT, HEAT, and FFT applications run on both systems for both search types
and all three target metrics. The results are normalized based on the reference application run executed with the default
system power cap settings. One result group represents one search type-target metric pair and contains the following
measurements: average power, energy (E), execution time result, total energy and total time product (EDP), and EDS
evaluation for the k = 2 coefficient. Each bar on the charts represents the average result of 10 experiment runs. Related
values of the standard deviation are presented as T signs over the bars.

First experiments were performed for the numerical integration (INT) testbed application. In Figure 17, for the
Haswell-EP testbed system, we can observe interesting results with non-default system setup for minimization of all three
target metrics using the GSS algorithm, with energy savings 10%, 7%, 8% and the execution times extended by 11%, 2.5%,
2% for E, EDP, EDS metrics, respectively. On the other hand, LS provided better than default (no power cap) configura-
tion, only for the total energy consumption (E), where savings were on 6%–7% level. In Figure 18, for the Coffee Lake
testbed system, we can observe that for all three target metrics the DEPO tool was able to find such system settings that

F I G U R E 17 Results for INT application run on Haswell-EP system with DEPO for LS and GSS algorithms and three target metrics: E,
EDP, EDS.

F I G U R E 18 Results for INT application run on Coffee Lake system with DEPO for LS and GSS algorithms and three target metrics: E,
EDP, EDS.
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2620 KRZYWANIAK et al.

F I G U R E 19 Results for HEAT application run on Haswell-EP system with DEPO for LS and GSS algorithms and three target metrics:
E, EDP, EDS.

F I G U R E 20 Results for HEAT application run on Coffee Lake system with DEPO for LS and GSS algorithms and three target metrics:
E, EDP, EDS.

F I G U R E 21 Results for FFT application run on Haswell-EP system with DEPO for LS and GSS algorithms and three target metrics: E,
EDP, EDS.

 1097024x, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3139 by C

am
bridge U

niversity L
ibrary, W

iley O
nline L

ibrary on [14/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KRZYWANIAK et al. 2621

F I G U R E 22 Results for FFT application run on Coffee Lake system with DEPO for LS and GSS algorithms and three target metrics: E,
EDP, EDS.

the resulting parameters measured for dynamically tuned application execution were better than the default system set-
tings. Using the GSS method we reach up to 54.5%, 12%, 12% energy savings with execution times extended by 148%, 7%,
7% for E, EDP, EDS metrics, respectively. While again with LS the savings are much lower, up to 34%.

Figure 19 and 20 present results of simple heat distribution simulation (HEAT) for Haswell-EP and Coffee Lake testbed
systems respectively. For the former, the minimization of E metric results in 4% and 5.5% of energy consumption reduc-
tion, while execution time increase is close to 30% and almost 43% for LS and GSS, respectively. Similarly for EDP and
EDS, GSS shows better results providing lower energy consumption and performance drops than LS. For the Coffee Lake
testbed system, the energy savings caused by both search methods are even larger, for example, for E metric, LS and GSS
respectively provides 50% and 63% energy savings, with 15% and 59% increase of the execution time. Thus, in this the GSS
seems to work better than LS.

Finally, Figures 21 and 22 present results of an application performing FFT calculations for Haswell-EP and Coffee
Lake testbed systems respectively. For the FFT application we can observe that the final results have the highest standard
deviation error (up to 16%) which means that the result of dynamic power capping is the least stable of all three testbed
applications. This is caused by the FFT application power profile characterized by variable power consumption levels
which implies that the steady state detection is not deterministic for every execution and can affect the start time of the
tuning phase. However, the results show the significant decrease of the energy, up to 23% (LS) and 39% (GSS), or even
29% (LS) and 40% (GSS) for Haswell-EP and Coffee Lake systems, respectively.

We would like to emphasize, that the testbed applications were selected and set up to generate a stress over differ-
ent system components. The INT (the numerical integration) application, with the applied configuration, represents a
so-called EP computational problem. Each thread executes compute intensive code and works almost independently,
using designated data, which is stored in the CPU cache memory. Thus, any larger limitations of the power level cause a
great impact on the performance, for example, for the Coffee Lake CPU, gaining 54.5% energy savings with an 18% cap of
the initial power level, increases the execution time up to 248% of the original value. Thus, for such a case, the majority
of the multi-objective optimized results are found around the default power setup.

FFT is also a compute intensive application, but it requires many more synchronizations between the cooperating
threads. Thus, even when the data stays in the cache memory, possible waiting cycles can lead to much better trade-off
opportunities than in the INT case. And indeed, the experimental results show, that the applied power limitations provide
quite high energy savings (up to 40%) with moderately low performance drop (16%–25%). In this case, the two objective
optimization, with various metrics, provides a wide spectrum of the in-between solutions.

Finally, the HEAT application with its focus on memory intensive operations, shows the highest flexibility for the
optimization. The low occupation of the CPU, while waiting for main (DRAM) memory data transfers, causes that the
even high power limitations provide acceptable trade-offs. We can observe the energy savings reaching over 56%, while
the performance loss is below 14% (using the EDP metric on the Coffee Lake CPU). For such applications the DEPO tool
presents the greatest opportunities to facilitate green computing oriented implementations.
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2622 KRZYWANIAK et al.

Summarizing the results, we can notice that the more compute intensive cases are harder to improve using our
method, and the ones with lower focus on calculations provide more possibilities to introduce energy-performance
trade-offs. Moreover, comparing the LS algorithm with GSS we can observe and conclude:

1. For most of the cases LS with a 2% power cap step and GSS with a 1% target power cap range width lead to similar
power-cap settings. This might change in favor of any of them if we decided to use different DEPO settings.

2. There were just a few cases where we observed what we expected after preliminary research—the advantage of LS due
to full power cap range exploration, for example, EDP minimization for the INT application on Coffee Lake where LS
had a chance to select a lower power cap with an even better EDP value than GSS.

3. For LS with a relatively small power cap step of 2% and time window T = 6400 ms the tuning phase takes over 300 s
which is almost 30% of the selected testbed applications’ execution times. Such a long tuning phase with an additional
wait-for-steady-state phase might impact the overall result of dynamic power capping.

Thus for further usage we recommend GSS, as a default choice.
Additionally, Appendix A justifies using RAPL against PDU measurements for the FFT, HEAT, and INT applications

on the Haswell system, taking into consideration the measurement window and averaging proposed in our method.

6.5 Validation of the proposed tool using NAS parallel benchmarks workloads
with golden section search algorithm

This section presents experiments that extend the validation of the proposed tool implementing dynamic power capping
method described in this article with a well-known NAS Parallel Benchmark suite.2 The rationale for the initial set of
tests was investigation of tuning phase parameters, especially deriving the time window length as well as performing
comparison of LS and GSS. Based on the comparison of the latter summarized above, in particular the generally shorter
test phase of GSS/fast exploration of the power limits configurations, GSS was selected for an extended set of following
tests. The GSS algorithm finds the power cap performing the final selection in less than 10 steps which results in the
shorter test phase duration in comparison to LS (less than 65 s when using the time window of T = 6400 ms). With the
above exploration method and the time window, along with the minimum 250 s total execution time requirement we
obtain, in the worst case scenario (for the shortest applications), the ratio of the tuning phase to the total execution
time close to 25% which seems to be acceptable considering the potential impact of the tuning phase on the total energy
consumption and performance.

For each tested NBP kernel (application): CG, MG, BT, SP, and LU, run on both Haswell-EP and Coffee Lake systems
we evaluate all three target metrics (E, EDP, EDS) considered in previous sections. Figures 23–27 present a series of results
for each of the five NPB applications run on both testbed systems with the GSS algorithm and all three target metrics.
Each result is an average of 10 test runs. The results are presented as bars normalized with default system configuration
results as a base. Each bar has its absolute value placed above it. The standard deviation for each average result is marked
on the top of each result bar.

6.5.1 CG application

Figure 23 presents the results obtained for both Haswell-EP and Coffee Lake systems for the tuned CG application. For
both systems class D problem size was used which resulted in 910 s of total execution time on Haswell-EP and 1305 s on
Coffee Lake both in default system configurations. This implies the tuning phase to total execution time ratio below 7.5%
for the Haswell-EP system and below 5% for the Coffee Lake system.

We can observe that for Haswell-EP minimization of energy (E) results in 12% savings on energy with almost 36% of
performance degradation. The two other target metrics (EDP, EDS) minimization result in similar system configuration
selection (target power cap in range 189–193 W) and consequently similar energy savings close to 5% with 3%–4% perfor-
mance drop in both cases. We suspect that the minimal differences in target power cap selection associated with specific
metric minimization might result in some noticeable diversity in the final results and possible improvements of the EDP
and EDS metrics if the application’s total execution time was for example, 3× longer.
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KRZYWANIAK et al. 2623

F I G U R E 23 Results for CG NPB application run on Haswell-EP (left) and Coffee Lake (right) system with DEPO for GSS algorithm
and three target metrics: E, EDP, EDS.

F I G U R E 24 Results for MG NPB application run on Haswell-EP (left) and Coffee Lake (right) system with DEPO for GSS algorithm
and three target metrics: E, EDP, EDS.

F I G U R E 25 Results for BT NPB application run on Haswell-EP (left) and Coffee Lake (right) system with DEPO for GSS algorithm
and three target metrics: E, EDP, EDS.
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2624 KRZYWANIAK et al.

F I G U R E 26 Results for SP NPB application run on Haswell-EP (left) and Coffee Lake (right) system with DEPO for GSS algorithm and
three target metrics: E, EDP, EDS.

F I G U R E 27 Results for LU NPB application run on Haswell-EP (left) and Coffee Lake (right) system with DEPO for GSS algorithm
and three target metrics: E, EDP, EDS.

For the Coffee Lake system we can observe much more interesting results than for Haswell-EP. Minimization of the E
metric for the CG application resulted in 56% of energy savings with only 35% of the performance drop. EDP metric mini-
mization leads to 54% lower value of energy-time product which implies 59% of energy consumption reduction with only
13% of total execution time increase. Minimization of the EDS metric results in 23% improvement of its value which indi-
cates 46.5% of energy savings with only 14% of performance drop. The relatively high standard deviations (𝜎 = 43%–48%)
for the target power cap, total energy consumption and E/EDS metrics with only 𝜎 = 9% for total execution time were
probably caused by only one extreme result. In one of ten test runs when minimizing the E/EDS target metric the GSS
algorithm selected the target power cap close to the default one which did not cause any performance degradation but
impacted the power and energy consumption average value.

6.5.2 MG application

The results obtained for the MG NPB kernel run on both Haswell-EP and Coffee Lake systems are presented in Figure 24.
The MG application was run on both Haswell-EP and Coffee Lake systems with class D problem size which resulted in
average total execution time for default system setups equal to 137.9 s for the server system and 321.8 s for the desktop
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KRZYWANIAK et al. 2625

CPU. This implies test phase duration to total execution time ratio around 47% and 20% for Haswell-EP and Coffee Lake
respectively.

For the MG kernel run on Haswell-EP we can observe that for the first two target metrics (E and EDP) the results of
their minimization are quite good even despite the relatively long tuning phase impacting the overall result. For the E
metric we were able to save almost 14% of energy with 12% of performance drop. The EDP metric value was improved by
5% which implied 11% lower energy consumption with 6.5% longer total execution time. The EDS metric minimization
ended with its average value exactly the same as the default reference value but with 14% standard deviation and 8% of
energy savings. This allows us to expect that for the same application executed for a much longer time the overall results
with selected power cap (185 W) might be much more impressive.

For the Coffee Lake system the DEPO tool run with MG kernel allowed for significant improvements of each of the
three target metrics (E, EDP, EDS). Minimizing the E metric resulted in over 60% lower total energy consumption with
performance degradation less than 19%. For EDP minimization the energy-time product reduction reached almost 55%
which was followed by over 59% of energy savings and 13% of total execution time increase. The EDS metric minimization
resulted in almost 25% lower value of this metric which indicated over 57% of energy consumption reduction with only
8% of performance drop.

6.5.3 BT application

Figure 25 presents results obtained for the BT NPB application run on both Haswell-EP and Coffee Lake testbed systems.
The problem size used for both systems was class D which resulted in average total execution time for default system
configurations equal to 1396 and 2259 s for Haswell-EP and Coffee Lake respectively. The average test phase to total
execution time ratios were close to 5% for the first testbed system and less than 3% for the second system. However, the
BT application is an unique workload type among all five tested NPB programs as the power characteristic is variable
and unstable. Similarly to the FFT application considered in previous section, the BT NPB program characterized with
a high amplitude of power demand during whole application execution which makes finding the steady state of power
consumption difficult. This indicates that the steady state detection is not consistent among all 10 test runs and also the
wait phase is much longer than the test phase. As a consequence of that, the results obtained for the BT application have
noticeably higher standard deviation values than for any other workload type.

For the Haswell-EP system minimization of the E metric results in over 17.5% of energy consumption reduction with
a total execution time increase of less than 37%. The EDP metric minimization finds a system configuration allowing
for only 1% reduction of energy-time product which is followed by almost 14% of energy savings and less than 16% of
performance drop. The EDS metric minimization reduced its value by almost 1.5% which allowed for saving over 13% of
energy with only 10.5% of total execution time increase.

Evaluation of the DEPO tool on the Coffee Lake system for the BT NPB application showed interesting results for all
three target metrics (E, EDP, EDS). For minimization of the E metric the energy savings reached 54% with almost 51% of
total execution time increase. On the other hand, the EDP metric minimization allowed for almost 24% of energy-time
product reduction which indicated 39% decrease of energy consumption and 25.5% of performance drop. The EDS metric
minimization reduced its total value by almost 8% with the following 36% energy consumption reduction and 21% of
performance drop.

6.5.4 SP application

Results for the SP NPB application are presented in Figure 26. The tests on Haswell-EP system were performed using the
class D problem size which resulted in average total application execution time equal to 2032 s for their default system
configuration. The tests on the Coffee Lake system were run for the class C problem size and the average total execution
time for the default system setup was 237 s. This implied the test phase to total execution time ratio less than 3.5% and
close to 27% for the Haswell-EP and Coffee Lake systems respectively.

For the Haswell-EP minimization of E metric resulted in 25% of energy savings with 18.5% of performance falloff.
The EDP metric minimization allowed for 10% reduction of energy-time product which was followed by 17% of energy
consumption decrease and 7.5% of total execution time increase. The EDS minimization reduced its overall value by 4%
with corresponding 15% energy reduction and 7% of performance degradation.
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For the Coffee Lake system the results are much better in terms of minimization of all the three target metrics (E,
EDP, EDS). Even in spite of short total execution time of the SP application with the class C problem size on the Coffee
Lake system which results in relatively long test phase duration the results of using the DEPO tool for the target metrics
optimization are noticeably better than the default result. Minimization of the E metric allowed for almost 56% of energy
reduction with less than 12% of the total execution time increased. On the other hand, the EDP metric minimization
reduced the energy-time product by over 51% with 55% less energy consumption and 8.5% of performance falloff. The
EDS metric minimization reduced its value by 23% so that energy consumption decreased by 53% and the execution time
increased by 5.5%.

6.5.5 LU application

Figure 27 visualizes the results obtained for the tuned LU NPB application. For both Haswell-EP and Coffee Lake systems
the problem sizes were set to class D which resulted in average total execution time for the default system configura-
tion equal to 1524 and 4085 s for the Haswell-EP and Coffee Lake systems respectively. The test phase duration to total
execution time ratio was less than 4.5% and less than 2% respectively.

Minimizing the E metric for the NPB LU application executed on the Haswell-EP system resulted in 20% of energy
consumption reduction with total execution time increased by 18.5%. The EDP target metric minimization reduced the
energy-time product by 9% with corresponding 16% energy savings and 9% of performance drop. The EDS minimization
reduced its value by 4% which was followed by almost 15% of energy consumption reduction and 7% of performance drop.

Minimization of all the three target metrics (E, EDP, EDS) on the Coffee Lake testbed system resulted in similarly
small outcomes. For that system the target power cap was set relatively close to the default power consumption level.
This caused that the values of total execution time, total energy consumption and evaluated EDP and EDS metrics were
similar to values obtained for the default system configurations. The maximum energy savings were close to 1.5% and
were obtained for minimization of the E metric.

The extended validation of the DEPO tool with GSS algorithm only showed that for a typical HPC workload simulated
by five representative applications from the well known NAS parallel benchmarks, the tool is able to automatically find
appropriate system configurations allowing for total energy consumption reduction or optimization of any multi-objective
target metric which combines energy consumption with total execution time. The additional tests proved that the pro-
posed dynamic power capping method implemented by the proposed DEPO tool is able to automatically explore and
select the optimal target power cap according to the given target metric for an unknown workload type.

The tests showed that for the Haswell-EP testbed system we are able to find more interesting configurations with the
compute intensive workload types, which require more synchronization between threads (such as the BT application),
which results in variable power characteristics. When the workload type is compute intensive (CG or MG kernels) with
no bottleneck on synchronization or memory the 2-CPU (24-core) Haswell-EP system shows that the power cap close to
the default power demand is optimal for EDP and EDS metrics.

On the other hand, the tests performed on the 1-CPU (8-core) Coffee Lake desktop system showed a lot of potential
in optimization of any target metric that we used in the DEPO tool. The best results for selected NPB kernels allowed
to find such configurations that the energy consumption savings reach 50% with corresponding performance falloff less
than 20%.

We emphasize that the results for every test presented in this article were obtained for exactly the same DEPO tool
configuration. We are sure that adjusting some of the parameters like test phase time window T might result in better
optimization outcome for some of the tested workloads. Specifically, the results for the LU NPB application on the Coffee
Lake system might be much more similar to other applications’ results if we modified T or changed the exploration
method to LS. Such experiments with a different test phase time window T and preferably automatic adjustment of this
time window will remain within our future work in the dynamic power capping area.

7 CONCLUSION AND FUTURE WORKS

The article presented a new approach for automatic management of performance-energy trade-offs in parallel HPC appli-
cations. The objective was defined as minimization of one of several independent, dynamic metrics, which were analyzed
and experimentally evaluated. The proposed tool implementing the optimization uses various exploration methods along

 1097024x, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3139 by C

am
bridge U

niversity L
ibrary, W

iley O
nline L

ibrary on [14/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KRZYWANIAK et al. 2627

with the power capping mechanism. The experimental results, provided for a selection of modern CPUs, showed a wide
range of possibilities to save energy while preserving high performance of the evaluated applications.

The solution proved to be effective for finding configurations significantly optimizing selected metrics versus default
settings for the assumed model of an application. The considered model consists of an initialization phase followed by the
computational phase in which compute and memory usage intensity is uniform across the execution time. It should be
noted, that this uniformity shall be considered in the context of the measurement window and can potentially be extended
using for example, averaging using more samples acting as a low pass filter resulting in deriving power caps for averaged
phases.

In terms of algorithmic comparison of the approach adopted by us to the other solutions described in Section 2 we shall
mention that some of the latter differ in adopting an off-line approach,31 using off-line data,30 adopt additional code32

and the majority employ various performance and/or energy models30,37,38,42-44 for optimization. We propose an on-line
approach using auto measurements for runtime tuning without a need for code instrumentation at the cost of a specific
application model described above.

Specifically, we can formulate conclusions on how effective the solution proved to be in acquiring substantial improve-
ments over energy and performance results of the default power cap settings. Generally, we can conclude consistent
behavior of 5%–20% gains in energy with 0%–10% for EDP and smaller 0%–5% for EDS for Haswell and much larger gains
in energy up to 60% for Coffee Lake with 5%–50% for EDP and 0%–25% for EDS.

In terms of the GSS to LS comparison, we can generally summarize that GSS was able to achieve slightly better energy
savings and did it faster than LS. Gains for EDP and EDS were typically either similar or around 5%–10% better for GSS,
with over 20% for EDP only for the heat application.

We expect the proposed solution to be widely used for many HPC applications, especially in cases where specific green
computing requirements need to be applied. Thus, in the future we plan to continue the development of the proposed
approach by considering the following topics:

1. Introduction of an automatic time window adjustment during the sampling period to optimize the initial setup time
and precision of the proper power-cap level.

2. Consideration of power caps for the DRAM domain.
3. Analysis and adaptation of more complex application models, where the compute load changes significantly at run-

time, for example, with iterative computations/communication phases. Such an approach has been proposed within
the already mentioned MERIC tool that allows to instrument an application with specific API29 for example, for distin-
guishing phases such as propagate and collide for Lattice Boltzmann simulation code36 and subsequent energy-aware
optimization using DVFS. However, this requires additional effort from the programmer.

4. Energy versus performance trade-off for GPUs, can also be used for the automatic energy consumption optimization.58

However, similarly to CPU, an additional metric reflecting the performance needs to be considered.
5. Modeling59,60 and simulation61 of using power-cap functionality for energy consumption and performance trade-off

in multi-node, parallel HPC systems.
6. Development of more sophisticated, automatic mechanisms of power consumption control for hybrid and heteroge-

neous systems, where each node or even subsystem has different trade-off characteristics, which can grant a potential
chance for higher savings in energy and execution times.
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APPENDIX A. ACCURACY OF THE POWER MEASUREMENTS

In this article, we use Intel CPUs for the experiments; thus, we decided to employ the RAPL (Running Average Power
Limit) library. This is a mature tool, with over 10 years of development and improvement history, since its introduc-
tion.5 Many related works show that despite these disadvantages RAPL is a robust approach for both CPU62-65 and
DRAM66 hardware components. However, there are also some researches putting in doubt its general reliability for power
measurements.67

Thus, in our specific case, we performed a separate validation of the accuracy of the power/energy RAPL measure-
ments provided to the proposed tool. The validation was realized using two gauges installed in two separated physical
locations. Figure A1 presents a configuration deployed along with the server containing Haswell CPUs, used for the ear-
lier described and analyzed tool validation experiments. The gauges are placed in the power supply units (PSU), being
a part of the server, and in an power distribution unit (PDU), completely external to the evaluated computer. Results
are gathered by an external server using SNMP messaging over Ethernet network, and the measurements are performed
every 100 ms.
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F I G U R E A1 Configuration of the Haswell server used for power measurement validation

The used PDU is HPE Metered 3Ph 22 kVA/60309 5-wire 32 A/230 V Outlets (30) C13 (3) C19/Vertical INTL PDU
(D9N56A),68 with inlet and load segment monitoring, Ethernet interface and security features: local/LDAP authenti-
cation. The PDU meets IEC 62053-21, Class 1 standards for ±1% or better accuracy in power monitoring, including
amperage, voltage, wattage and kilowatts per hour.

The used power supply units’ type is HPE 1400 W Flex Slot Platinum Plus Hot Plug Power Supply Kit (720620-B21),
supporting power efficiency of 89.9% for 230 V (Titanium power efficiency certification from 80Plus program) and pro-
viding multiple operating efficiency modes for redundant power supplies.69 Each PSU contains a power meter (wattage),
unfortunately there are no details about its accuracy; thus, we used it as a double check of the measurements.

The above infrastructure is a part of a GreenLab facility, being a part of the Tryton supercomputer70 (a cluster, con-
sisting of 1600 nodes, with the total compute power 1.5 PFLOPS) located in Centre of Informatics—Tricity Academic
Supercomputer & networK (CI TASK) at Gdansk University of Technology.

Figures A2 and A3 present the measurements of the FFT and HEAT applications, respectively, where they were exe-
cuted multiple times with decreasing power-cap values. We can notice that the observed RAPL values are lower than
PDU ones and visually are at a constant distance, confirmed by the difference chart. The closer examination confirms the
high linear correlation between values provided by these meters, with Pearson correlation coefficient equals 0.9750 and

F I G U R E A2 Power measurements over time performed on PDU and RAPL meters, and their difference for multiple FFT application
executions with the decreasing power-cap values, on the Haswell server.
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F I G U R E A3 Power measurements over time performed on PDU and RAPL meters, and their difference for multiple HEAT
application executions with the decreasing power-cap values, on the Haswell server.

F I G U R E A4 Power measurements on PDU versus RAPL meters for FFT and HEAT applications on the Haswell server
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F I G U R E A5 Power measurements during the tuning phase performed on PDU and RAPL meters, and their difference, with the
averaged values for each tuning window, for the FFT application on the Haswell server.

F I G U R E A6 Power measurements during the tuning phase performed on PDU and RAPL meters, and their difference, with the
averaged values for each tuning window, for the HEAT application on the Haswell server.
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F I G U R E A7 Power measurements during the tuning phase performed on PDU and RAPL meters, and their difference, with the
averaged values for each tuning window, for the INT application on the Haswell server.

0.9742 respectively. The linear regressions performed over time shows a flat slope being close to 0: −3.2131 × 10−6 and
−1.5568 × 10−6, with the low standard errors: 4.7449 × 10−8 and 1.7252 × 10−8, implying the low uncertainty: 1.48% and
1.11%.

A similar examination was performed for these results without the time component, see Figure A4. The linear regres-
sions show the slope being close to 1.0 or 45◦: 1.0412 and 1.0382, with the low standard errors: 1.3360 × 10−3 and
9.7849 × 10−4, implying the low uncertainty: 0.13% and 0.09%, and in general the mean offset between RAPL and PDU
measurements equals 96.73 and 97.07 W for FFT and HEAT applications respectively.

Let us consider a specific case which occurred in our tool. During the tuning phase the decision about the final
power-cap value is taken; thus, the power measurements performed in this period are especially important. Despite the
high correlation and almost fixed bias of the RAPL measurements, we can still notice some noise, with values scattered
over and under the leading line, see Figures A2 and A3. However, the tool averages the measurements taken during each
tuning window: a 6400 ms time frame. Figures A5–A7 present visualization of the tuning phase for the FFT, HEAT, and
INT applications, respectively. We can notice that the noise is completely smoothed, and further statistical analysis shows
high correlation of the RAPL and PDU measurements, with values of Pearson coefficient equal 0.9992, 0.9995, and 0.9994
for the FFT, Heat, and INT applications, respectively.

The above analysis confirms that the RAPL power measurements reflect the real power levels with a (nearly) constant
bias, especially for the case of our tool. The results measured by the PSU meter, and also with the other applications,
seem to be compliant with the presented observations. Thus, we can conclude that the proposed tool provides the proper
support of power evaluation in the scope of our interests.
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