
Bioinformatics Past Paper

• Algorithm, Software, Examples

◦ [Which] Name

◦ [Input] assumptions/conditions/constraints

▪ foundation of reasoning / fill incomplete info/gap

▪ exclude potential limitations

◦ [Output] requirements

◦ [How] methods, description, main steps

◦ [Why] Motivation / Intention / Purposes

◦ [Extension] comparison (pros and cons), speedup, application, complexity.

Lecture 1: Genetics

Reference online resource: Teaching

Youtube @bioinfalgorithms accompanying the textbook "Bioinformatics Algorithms: An Active Learning

Approach".

features DNA RNA

strand structure double helix single-stranded

nitrogenous base A, T, C, G A, U, C, G

base pairs A-T, C-G A-U, C-G

sugar Deoxyribose Ribose

function long-term storage of genetic info protein synthesis and gene regulation

stability more stable (-H) stable due to hydroxyl group (-OH)

nitrogenous bases: Adenine (A), Thymine (T), Cytosine (C), Guanine (G), Uracil (U).

• The total number of codons is .

• The total number of amino acids is 20.

• Codon degeneracy: multiple codons can are mapped toP the same amino acid, for redundancy if

codon are mutated.

concept gene genome

definition
specific DNA segment for proteins or

RNA encoding
complete set of genetic material

functionality heredity, gene code for proteins
all genes and non-coding

sequences

size various sizes
entire DNA content of the

organism
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region and

feature
DNA genes programming functions

start marker promoter region
function declaration (e.g.,def
func())

coding region exons (encode protein information) function body

non-coding

region
introns (sequences) comments or placeholder code

end marker termination signal (of transcription) closing brace or return statement

purpose
defines the structure and expression of

a gene

defines the structure and behavior of

funcs

execution
transcription and translation to produce

proteins

execution of the function when

called

DNA -- transcription  messenger RNA (mRNA) -- translation  protein, codon, amino acid.

Firstly, transcription happens, where a specific segment of DNA is copied into messenger RNA (mRNA).

Secondly, translation occurs, where the mRNA is used to synthesize a protein, by attaching to a

ribosome.

• The ribosome (composed of ribosomal RNA (rRNA) and proteins) reads the codons (three

nucleotides of mRNA specifying a particular amino acid) until the ending signal appears.

• Transfer RNA (tRNA) molecules bring amino acids to the ribosome. Each tRNA has an anticodon

that is complementary to the mRNA codon.

• The ribosome facilitates the formation of peptide bonds between amino acids, linking them

together to form a growing polypeptide chain.

Gene network [extensions]

• Wagner algorithm

Lecture 2: Sequence alignment

Distance metrics

Hamming distance vs edit distance

Dynamic programming

• very similar DNA sequences

◦ banded dp, for the aligned  with .

◦ For .

◦ complexity: , where  is the band width.

Scoring matrices

→ →

x , yi j ∣i − j∣ ≤ k

j ∈ [max(1, i − k), min(∣w∣, i + k)]
O(∣v∣ × k) < O(∣v∣ × ∣w∣) k



• Point Accepted Mutation (PAM) matrix.

Gaps

• non-linear: dp with time , due to the loop over .

◦ compromise: affine ,

▪ where  is the gap opening penalty,

▪ and  is the gap extension penalty.

▪ .

• mismatch and gap extension penalty

◦ If decrease gap penalty, more gaps (fewer sequence homologous regions), vice versa.

◦ If decrease mismatch penalty / gap extension penalty, less gaps (more regions of similarity).

Algorithms

Longest Common Subsequence (LCS)

• edit graph , where  and  are two strings with lengths  and .

M[0, 0]
  ...
    M[i, j]    M[i, j+1]
          \      |
        s(i, j)  d
            \    |
    M[i,j+1]-d- M[i,j+1]

    where s(i, j) = 5, if match; -3, otherwise,
    d = 2, gap penalty.

• edit distance .

• LCS is equivalent to global alignment with a scoring scheme of (match=1, mismatch=0, gap=0).

General alignment (global vs. local)

• Input: strings  and  as well as a matrix score.

• Output: optimal alignment score, with alignment(s) of  and  via traceback.

• Complexity:  time,  space.

• local alignment= global alignment in a sub-rectangle.

• difference: initialization, termination.

Global alignment (Needleman-Wunsch)

Local alignment (Smith-Waterman)

• internal sequence duplications (self-alignment)

• inverted repeats (orthogonal to the main diagonal)

Speedup extension (Four Russians)

O(∣v∣ ⋅2 ∣w∣) k ∈ [0, i) ∨ [0, j)
γ(n) = d + e × (n − 1)

d

e

F , G ∈middle in−del Z(∣v∣+1)×(∣w∣+1)

M ∈ Z(m+1)×(n+1) v w m = ∣v∣ n = ∣w∣

= m + n − 2 × LCS(m, n)

v w

v w

O(∣v∣ ⋅ ∣w∣) O(∣v∣ ⋅ ∣w∣)

http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Needleman-Wunsch
http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Needleman-Wunsch
http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Smith-Waterman
http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Smith-Waterman


Linear space extension (Hirshberg, divide and conquer)

general: complexity summary

general: long DNA sequences

RNA secondary structure prediction (Nussinov-Jacobson folding)

• dp: .

• initialization: , .

• 

• complexity:  time,  space.

• limitations: identify pseudo-knot and branched loops is difficult because the same interact with

different segments.

Lecture 3: Phylogeny

Phylogenetic trees infer evolutionary relationships among biological species/entities based on their

physical or genetic (DNA or amino acid sequences) characteristics similarities and differences.

Reference online resource: Hierarchical/Agglomerative clustering

Phylogeny distance-based parsimony-based

input pairwise additive distance matrix character tables

assumption distances are additive principle of minimal changes

good for additive changes, faster detailed and character-based

weakness no information at internal node homoplasy vs. shared traits

over-simplification slower for large scale

examples UPGMA, neighbor-joining small (or large) parsimony

Distance-based methods

Distance matrix

The additive tree condition meant that for any two leaves, the distance between them is the sum of edge

weights of the path between them.

The ultra-metric tree condition: distance from root to any leaf is the same (i.e., age of root).

• Branch lengths represent evolutionary change, allowing for direct comparison of divergence

γ ∈ Zn×n

γ(i, i − 1) = 0 γ(i, i) = 0

γ(i, j) = max

⎩
⎨
⎧γ(i + 1, j)

γ(i, j − 1)
γ(i + 1, j − 1) + δ(i, j)
max γ(i, k) + γ(k + 1, j)i<k<j

O(n )3 O(n )2

http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Hirschberg
http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Hirschberg
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http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Nussinov
http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Agglomerative%20Clustering
http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Agglomerative%20Clustering


among taxa.

• Molecular Clock Hypothesis: genetic change accumulates at a constant rate across lineages over

time.

◦ Thus, the rate of mutation or evolutionary change is uniform, allowing for the use of branch

lengths as measures of time.

• Relationship: ultra-metric  additive.

Four-point condition between four taxa: for any four elements, define ,

i \       / k
    --a--
j /       \ l

distance-based UPGMA Neighbor-Joining (NJ)

input additive distance matrix additive distance matrix

output rooted ultra-metric tree un-rooted additive tree

evolution rate constant varying

complexity
opt. , 

Parsimony-based methods

Small parsimony problem (Sankoff)

• given a rooted tree  with each leaf labeled by one of the  sequences,

• dp, assigning label  to each internal node  in the subtree , for

• , where 

.

Large parsimony tree problem

• NP-complete, use greedy heuristics

◦ Nearest Neighbor Interchange, NNI to find a local minimum.

Bootstrap validation

Multiple alignments

For a -way alignment, where each sequence length is ,

• there are  nodes in the alignment graph,

• each node has  incoming edges,

• Hirshberg algorithm can get rid of one  in space complexity.

⊆

d +ij d =kl T

d +ij d <kl d +il d =jk d +ik d =jl T + 2a.

O(n )3

O(n log n)2 O(n )2 O(n )3

T N

k v Tv

min s (v)k k s (v) =k min {s (LeftNode) +all symbols i i δ } +i,k

min {s (RightNode) +all symbols j j δ }j,k

k n

nk

2 −k 1
O(n)



iterative refinement CLUSTAL algorithm

• given  sequences, align each sequence against each other.

• use the score of the pairwise alignments to compute a distance matrix.

◦  time, with  space.

◦  pairs, where each pairwise alignment takes  time, with  space.

• build a guide tree, showing the best order of progressive alignment.

◦ e.g. UPGMA,  or opt.  or  time, with  space.

• progressive alignment guided by the tree, by merging sub-alignments.

◦  merge, where single merge takes max  time, with  space.

• Total:  or  time, with  space.

dp greedy progressive (CLUSTAL)

time

space

pros global optimal faster and less memory balances both

scales better with large k good for moderate k

cons high costs suboptimal solution guide tree accuracy

for larger k greedy alignment order suboptimal solution

Evaluation

• entropy of a multi-alignment is calculated as a column score as the sum of the negative logarithm

of this probability of each symbol.

• a completely conserved column would score 0, since .

Approximate search

Lecture 4: Clustering

gene expression microarray data

• compare expression levels in different conditions

• explore temporal expression levels evolution

• which algo for gene expression data?

• see below.

K-center, K-means, Hierarchical, Markov clustering

• given  data points , find  clusters.

• UPGMA is a hierarchical clustering algo.

• Good clustering principle (or evaluation),

◦ distance between elements in the same cluster is  (intra-cluster distance),

◦ distance between elements in different clusters is  (inter-cluster distance).

N

O(k ⋅2 n )2 O(n + k )2

k2 O(n )2 O(n)

O(k )3 O(k log k)2 O(k )2 O(k )2

O(k) O(k ⋅ n )2 O(k ⋅ n)
O(k ⋅2 n +2 k )3 O(k ⋅2 n )2 O(k ⋅ n + k )2

O(n ⋅k 2 )k O(k ⋅ n )2 O(k ⋅2 n )2

O(n )k O(k ⋅ n) O(k ⋅ n + k )2

−[log(1) + 3 log(0)] = 0

n x k

< Δ
> Δ

http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Iterative%20Refinement
http://rna.informatik.uni-freiburg.de/Teaching/index.jsp?toolName=Iterative%20Refinement
http://micans.org/mcl/
http://micans.org/mcl/


clustering type input supervised? T complexity

K-center MaxDist. ✓ --

K-means VarDist. ✓

Hierarchical tree ✓

MCL Graph ✗
inflate 

Soft clustering

• each data point is assigned to a cluster with a probability.

• input: the joint distribution of unlabeled data , parameterized by .

• hidden vector (or label ): , where  is the number of labels,

◦ which cluster with label  is assigned to each data point , and  is the total

number of clusters.

◦ is the coin with probability of head  faked or not, i.e. 1: fake; 0: real. .

• output : the MLE of the parameters , that maximizes the joint prob.:

.

◦ the center coordinates of each cluster .

◦ the probability of heads for coin type of  (1: fake; 0: real).

Expectation-Maximization (EM) algo.,

• Gibbs sampling: iteratively update the parameters  and the hidden matrix ,

◦ by sampling from conditional distributions until convergence, than to marginalize by

integrating over a joint distribution.

• E step: optimize  wrt. the hidden vector  while holding the parameters  fixed,

◦ given the parameters , derive the hidden matrix ,

▪ e.g. the responsibility of cluster  with center  for data point .

◦ Note that the denominator is the normalization factor, ensuring the probabilities sum to 1,

◦ the key is to compute the joint probability ,

▪ ,

▪  for hard clustering,

▪  for extreme soft clustering.

▪ , ,

▪ where  is the number of heads, and  is the total number of tosses.

▪  is the probability of heads for coin type of  (1: fake; 0: real).

◦ here, pick the  that maximizes the joint prob..

Cluster Quality = =
intra-cluster dist.
inter-cluster dist.

>
Cluster Diameter

Distance to Nearest Cluster
1.

x, k

x, k O(n ⋅ k ⋅ t)

x, k, Mdist. O(n )3

x, G/Msim.
M :e O(n )3

m :ij
r O(n )2

x ∈ RN θ

zij z ∈ RN×K K

j ∈ [1, K] xi K

xi z ∈ij {0, 1}

θj θ = [θ , … , θ , … , θ ]1 j k

P r(x , z ∣θ )i ij j

j

j

θ z

P r(x , z ∣θ )i ij j zij θj

θt P r(z ∣x , θ )ij i j

j θ =j centerj xi

P r(z ∣x , θ ) =ij i j =
P r(x ∣θ )i j

P r(x , z ∣θ )i ij j by Bayes’ rule.
P r(x , z ∣θ )∑j=1

K
i ij j

P r(x , z ∣θ )i ij j

P r(x , z ∣θ )i ij j

Force(x , z ) =i ij e−β⋅distance(x , θ =center )i j j

β → ∞
β → 0

X ∼ Binomial(n, i) P r(x , z ∣θ ) =i ij j (θ ) ⋅j
i (1 − θ )j

n−i

i n

θj j

z =i arg max P r(z ∣x , θ )j ij i j



▪ in center-based clustering, set center label; in unknown coin tossing, set is faked or

not.

• M step: optimize  wrt. the parameters  while holding the hidden matrix  fixed,

◦ given the hidden matrix, update the parameters  via MLE,

◦ .

▪  are updated as the coordinate average of the data points assigned to cluster .

▪ in unknown coin tossing, .

▪ , the MLE of positive outcome ,

▪ where  is the number of heads, and  is the total number of tosses.

Louvain: modularity, Leiden algorithm

Lecture 5: Genome sequencing

Reconstruct the original genome, given a set of overlapping short reads from machines.

Hamiltonian graph -- Hamiltonian path (every node, NP-complete)

• Bellman–Held–Karp algorithm

◦ boolean dp[j][S_i], denoting a valid node subset  ending at node .

◦ for all neighbors  of , extend dp[j][S_i] by dp[k][S_i \ {j}] and .

◦ , NP-complete.

De Bruijn graph -- Eulerian path (every edge, easier)

• Balanced node: in-degree = out-degree

• Semi-balanced node: in-degree = out-degree  (differs at most 1)

• Connected Graph: each node is reachable from some other node

• Strongly connected Graph: each node is reachable from every other node

• Eulerian Graph (a Eulerian cycle)

◦ algorithm: Hierholzer's algorithm (ant) with .

• Euler's theorem

◦ a connected graph is Eulerian if and only if every vertex has even degree.

◦ a graph is Eulerian if and only if it is a balanced connected graph. (semi-)

Bubbles explosion and solutions

Lecture 6: Genome assembly

Use an additional reference genome to augment sequencing or match (read) patterns.

Suffix trees

Compression

Burrows-Wheeler Transform (BWT)

P r(x , z ∣θ )i ij j θj zij

θ

θ =t+1 arg max E [log P r(x, z∣θ)]θ z∼P r(z∣x,θ)

θj j

θ =j
t+1

1×1z =ji

x×1z =ji

X ∼ Binomial(n, i) θ =
n
i

i n

Si j

k j k − j

O(n 2 )2 n

±1

O(∣E∣)

https://en.wikipedia.org/wiki/Modularity_(networks)
https://en.wikipedia.org/wiki/Modularity_(networks)


Read / Exact pattern matching

• Sequencing De Bruijn graph construction takes a lot of memory and time.

• Fitting via alignment: .

• Joint traversal (match or backtrack) via two trie pointers in parallel.

◦ patterns prefix trie: .

◦ genome suffix trie: .

▪ construction: char nodes , ; substr nodes , .

▪ (invert) BWT + suffix array: .

Inexact pattern matching, with at most  mismatches.

• potential candidates: at least one of the seeds is error-free. Check the entire pattern

against the Genome.

• (invert) BWT with extended mismatch + suffix array.

Lecture 7: Hidden Markov models

Application: Identify parts; Exons, Introns prediction; Protein secondary structure prediction; CG islands

Evaluation: TP, FP, TN, FN, sensitivity, specificity, precision, F1 score

Denote HMM:

• transition matrix , emission matrix ,

•  states 

•  training sequences, with a total of  observations  each.

Algorithm Inputs Outputs Time Space

Likelihood of a

parse

Viterbi / decode

Forward / eval

Backward / eval

Viterbi train

/ learning

Baum-Welch

/ learning

O(∣Patterns∣ × ∣Genome∣)

O(∣LongestPattern∣ × ∣Genome∣)
O(∣Patterns∣ + ∣Genome∣)

T (∣G∣ )2 S(∣G∣ )2 T (∣G∣) S(∼ 20 × ∣G∣)
S(∼ 4 × ∣G∣)

d

d + 1

P Q

k π = {q , ..., q }1 k

M N X = {x , x , … , x }1 2 N

HMM , X, π P r(x, π) O(1) O(1)

HMM , X
V (i) =k

max P (x, π∣π =π i k)
O(N ⋅ k )2 O(N ⋅ k)

HMM , X
f (i) =k P r(x , ..., x ∣π =1 i i

k)
O(N ⋅ k )2 O(N ⋅ k)

HMM , X

P r(π =i k∣x) = f (i) ⋅k

b (i)k

b (i) =k P r(x , ...x ∣π )i+1 n i

O(N ⋅ k )2 O(N ⋅ k)

X , ..., X1 M P , Q
O(M ⋅ N ⋅
k )2

O(M ⋅ N ⋅
k)

X , ..., X1 M P , Q
O(M ⋅ N ⋅
k )2

O(M ⋅ N ⋅
k)



Lecture 8: Computing and storage

DNA for Computing

Hamiltonian path problem (also knowns as the Traveling Salesman Problem) is NP-complete.

• to find a path in a graph  that visits each vertex exactly once.

Leonard Adleman's DNA computing algorithm (1994) via generate and test.

• Generate all possible Hamiltonian paths in a graph .

◦ Step 1: encode the city names and routes as DNA sequences.

• Test each path to check if it is Hamiltonian,

◦ total length of the path,

▪ Step 2: sort by length in an electronic gel (field).

▪ Step 3: filter by length via cutting out the band of interest.

◦ start vertex, end vertex,

▪ Step 4: amplify via PCR (Polymerase Chain Reaction) test.

◦ each vertex once,

▪ Step 5: affinity purification (hybridization) test of the complimentary strand.

• Output the Hamiltonian path.

vs. computational methods

• Advantages: synthesizing short single stranded DNA is now a routine process,

◦ so the initial step is straightforward and cheap.

◦ In a test tube the “algorithm” runs in parallel.

• However, the complexity still increases exponentially.

◦ For Adleman’s method, what scales exponentially is not the computing time, but rather the

amount of DNA.

• Another limitation is the error rate for each operation.

Random access in DNA storage

Organick et al. (2018) stored and retrieved more than 200 megabytes of data.

• encoding: ID | Addr | Payload | Error correction code, append distinct primers, synthesis.

◦ attach distinct primers to each DNA molecules set, to carry the file information.

◦ redundant information for increased robustness.

• decoding: sequencing, cluster reads and consensus algorithm, error correction.

◦ retrieve the file by selectively amplifying and sequencing the molecules with the primer

marking the desired file.

• test their scheme via a primer library that allowed them to uniquely tag data stored in DNA.

◦ encoded 35 digital files into 13M DNA sequences, each 150-nucleotides long.

• opportunities (or advantages): longevity (durable), power usage and information density.

• challenges (or disadvantages): cost and read/write speed (DNA synthesis and sequencing).

G = (V , E)

G



Lecture 9: Stochastic Simulation Algorithm (SSA)

Dobb-Gillespie algorithm (1976)

• to simulate coupled biochemical reactions in a well stirred container, where the mean and variance

from multiple runs are reported for statistical stability.

• assumption: the time steps  so small that only one reaction has occurred.

• algorithm: given a set of  reactions, and  species in the system, with  molecules of species

.

◦ , .

◦ while  do:

▪ , complexity .

▪ , where .

▪ 

▪ , where  and .

▪ , complexity .

◦ end while

◦ output  and .

• utility: a better representation of cell metabolism and genetic networks.

τ

M N Xi

i

t = 0 X = [X , … , X ]1 N

t < T

α =0 α∑i=1
M

i O(M)
τ = Exp(α ) =0 − ln(r )

α0

1
1 r ∼1 Uniform(0, 1)

t =′ t + τ

P (j-th reaction) =
α0

αj j = 1, … , M r ∼2 Uniform(0, 1)
X =′ X + νj O(N)

X′ t′


