- Algorithm, Software, Examples
 - [Which] Name
 - [Input] assumptions/conditions/constraints
 - foundation of reasoning / fill incomplete info/gap
 - exclude potential limitations
 - [Output] requirements
 - [How] methods, description, main steps
 - [Why] Motivation / Intention / Purposes
 - [Extension] comparison (pros and cons), speedup, application, complexity.

Lecture 1: Genetics

Reference online resource: Teaching

Youtube @bioinfalgorithms accompanying the textbook "Bioinformatics Algorithms: An Active Learning Approach".

features	DNA	RNA	
strand structure	double helix	single-stranded	
nitrogenous base A, T, C, G		A, U, C, G	
base pairs	A-T, C-G	A-U, C-G	
sugar Deoxyribose Ribose		Ribose	
function long-term storage of genetic info		protein synthesis and gene regulation	
stability more stable (-H) stable of		stable due to hydroxyl group (-OH)	

nitrogenous bases: Adenine (A), Thymine (T), Cytosine (C), Guanine (G), Uracil (U).

- The total number of codons is $4^3 = 64$.
- The total number of amino acids is 20.
- Codon degeneracy: multiple codons can are mapped toP the same amino acid, for redundancy if codon are mutated.

concept	gene	genome
definition	specific DNA segment for proteins or RNA encoding	complete set of genetic material
functionality	heredity, gene code for proteins	all genes and non-coding sequences
size	various sizes	entire DNA content of the organism

region and feature	DNA genes	programming functions	
start marker	promoter region	function declaration (e.g.,def func())	
coding region	exons (encode protein information)	function body	
non-coding region	introns (sequences)	comments or placeholder code	
end marker	termination signal (of transcription)	closing brace or return statement	
purpose	defines the structure and expression of a gene	defines the structure and behavior of funcs	
execution	transcription and translation to produce proteins	execution of the function when called	

DNA -- *transcription* \rightarrow messenger RNA (mRNA) -- *translation* \rightarrow protein, codon, amino acid.

Firstly, transcription happens, where a specific segment of DNA is copied into messenger RNA (mRNA). Secondly, translation occurs, where the mRNA is used to synthesize a protein, by attaching to a ribosome.

- The ribosome (composed of ribosomal RNA (rRNA) and proteins) reads the **codons** (three nucleotides of mRNA specifying a particular amino acid) until the ending signal appears.
- *Transfer RNA (tRNA)* molecules bring amino acids to the ribosome. Each tRNA has an anticodon that is complementary to the mRNA codon.
- The ribosome facilitates the formation of peptide bonds between amino acids, linking them together to form a *growing polypeptide chain*.

Gene network [extensions]

• Wagner algorithm

Lecture 2: Sequence alignment

Distance metrics

Hamming distance vs edit distance

Dynamic programming

- very similar DNA sequences
 - $\circ\,$ banded dp, for the aligned x_i,y_j with $|i-j|\leq k.$
 - \circ For $j\in [\max(1,i-k),\min(|w|,i+k)].$
 - \circ complexity: O(|v| imes k) < O(|v| imes |w|), where k is the band width.

• Point Accepted Mutation (PAM) matrix.

Gaps

- non-linear: dp with time $O(|v|^2 \cdot |w|)$, due to the loop over $k \in [0,i) \lor [0,j)$.
 - $\circ\,$ compromise: affine $\gamma(n)=d+e imes(n-1)$,
 - where d is the gap opening penalty,
 - and *e* is the gap extension penalty.
 - $F_{middle}, G_{in-del} \in \mathbb{Z}^{(|v|+1) \times (|w|+1)}.$
- mismatch and gap extension penalty
 - $\circ\,$ If decrease gap penalty, more gaps (fewer sequence homologous regions), vice versa.
 - $\,\circ\,$ If decrease mismatch penalty / gap extension penalty, less gaps (more regions of similarity).

Algorithms

Longest Common Subsequence (LCS)

• edit graph $M \in \mathbb{Z}^{(m+1) imes (n+1)}$, where v and w are two strings with lengths m = |v| and n = |w|.

- edit distance $= m + n 2 imes ext{LCS}(ext{m, n}).$
- LCS is equivalent to global alignment with a scoring scheme of (match=1, mismatch=0, gap=0).

General alignment (global vs. local)

- Input: strings v and w as well as a matrix score.
- Output: optimal alignment score, with alignment(s) of v and w via traceback.
- Complexity: $O(|v|\cdot|w|)$ time, $O(|v|\cdot|w|)$ space.
- local alignment= global alignment in a sub-rectangle.
- difference: initialization, termination.

Global alignment (Needleman-Wunsch)

Local alignment (Smith-Waterman)

- internal sequence duplications (self-alignment)
- inverted repeats (orthogonal to the main diagonal)

Speedup extension (Four Russians)

Linear space extension (Hirshberg, divide and conquer)

general: complexity summary

general: long DNA sequences

RNA secondary structure prediction (Nussinov-Jacobson folding)

• dp: $\gamma \in \mathbb{Z}^{n imes n}$.

٠

• initialization: $\gamma(i,i-1)=0$, $\gamma(i,i)=0$.

$$\gamma(i,j) = \max egin{cases} \gamma(i+1,j) \ \gamma(i,j-1) \ \gamma(i+1,j-1) + \delta(i,j) \ \max_{i < k < j} \gamma(i,k) + \gamma(k+1,j) \end{cases}$$

- complexity: $O(n^3)$ time, $O(n^2)$ space.
- limitations: identify pseudo-knot and branched loops is difficult because the same interact with different segments.

Lecture 3: Phylogeny

Phylogenetic trees infer evolutionary relationships among biological species/entities based on their physical or genetic (DNA or amino acid sequences) characteristics similarities and differences.

Reference online resource: Hierarchical/Agglomerative clustering

Phylogeny	distance-based	parsimony-based	
input	pairwise additive distance matrix	character tables	
assumption	distances are additive	principle of minimal changes	
good for	additive changes, faster	detailed and character-based	
weakness	no information at internal node	homoplasy vs. shared traits	
	over-simplification	slower for large scale	
examples	UPGMA, neighbor-joining	small (or large) parsimony	

Distance-based methods

Distance matrix

The *additive* tree condition meant that for any two leaves, the distance between them is the sum of edge weights of the path between them.

The ultra-metric tree condition: distance from root to any leaf is the same (i.e., age of root).

• Branch lengths represent evolutionary change, allowing for direct comparison of divergence

among taxa.

- Molecular Clock Hypothesis: genetic change accumulates at a constant rate across lineages over time.
 - Thus, the rate of mutation or evolutionary change is uniform, allowing for the use of branch lengths as measures of time.
- Relationship: ultra-metric \subseteq additive.

Four-point condition between four taxa: for any four elements, define $d_{ij} + d_{kl} = T$,

$$d_{ij} + d_{kl} < d_{il} + d_{jk} = d_{ik} + d_{jl} = T + 2a.$$

i \ / k --a-j / \ l

distance-based	UPGMA	Neighbor-Joining (NJ)	
input	additive distance matrix	additive distance matrix	
output	rooted ultra-metric tree	un-rooted additive tree	
evolution rate	constant	varying	
complexity	$O(n^3)$ opt. $O(n^2\log n)$, $O(n^2)$	$O(n^3)$	

Parsimony-based methods

Small parsimony problem (Sankoff)

- given a rooted tree T with each leaf labeled by one of the N sequences,
- dp, assigning label k to each internal node v in the subtree T_v , for
- $\min_k s_k(v)$, where $s_k(v) = \min_{\text{all symbols i}} \{s_i(\text{LeftNode}) + \delta_{i,k}\} + \min_{\text{all symbols i}} \{s_i(\text{RightNode}) + \delta_{i,k}\}.$

Large parsimony tree problem

- NP-complete, use greedy heuristics
 - Nearest Neighbor Interchange, NNI to find a local minimum.

Bootstrap validation

Multiple alignments

For a k-way alignment, where each sequence length is n,

- there are n^k nodes in the alignment graph,
- each node has 2^k-1 incoming edges,
- Hirshberg algorithm can get rid of one O(n) in space complexity.

iterative refinement CLUSTAL algorithm

- given N sequences, align each sequence against each other.
- use the score of the pairwise alignments to compute a distance matrix.

 $\circ~O(k^2\cdot n^2)$ time, with $O(n+k^2)$ space.

- $\circ k^2$ pairs, where each pairwise alignment takes $O(n^2)$ time, with O(n) space.
- build a guide tree, showing the best order of progressive alignment.
 - \circ e.g. UPGMA, $O(k^3)$ or opt. $O(k^2\log k)$ or $O(k^2)$ time, with $O(k^2)$ space.
- progressive alignment guided by the tree, by merging sub-alignments.
 - O(k) merge, where single merge takes max $O(k \cdot n^2)$ time, with $O(k \cdot n)$ space.
- Total: $O(k^2 \cdot n^2 + k^3)$ or $O(k^2 \cdot n^2)$ time, with $O(k \cdot n + k^2)$ space.

	dp	greedy	progressive (CLUSTAL)
time	$O(n^k\cdot 2^k)$	$O(k\cdot n^2)$	$O(k^2 \cdot n^2)$
space	$O(n^k)$	$O(k \cdot n)$	$O(k\cdot n+k^2)$
pros	global optimal	faster and less memory	balances both
		scales better with large k	good for moderate k
cons	high costs	suboptimal solution	guide tree accuracy
	for larger k	greedy alignment order	suboptimal solution

Evaluation

- entropy of a multi-alignment is calculated as a column score as the sum of the negative logarithm
 of this probability of each symbol.
- a completely conserved column would score 0, since $-[\log(1) + 3\log(0)] = 0$.

Approximate search

Lecture 4: Clustering

gene expression microarray data

- · compare expression levels in different conditions
- explore temporal expression levels evolution
- which algo for gene expression data?
- see below.

K-center, K-means, Hierarchical, Markov clustering

- given *n* data points **x**, find *k* clusters.
- UPGMA is a hierarchical clustering algo.
- Good clustering principle (or evaluation),
 - $\circ\,$ distance between elements in the same cluster is $<\Delta$ (intra-cluster distance),
 - $\,\circ\,$ distance between elements in different clusters is $>\Delta$ (inter-cluster distance).

${\rm Cluster} \; {\rm Quality} =$		$\mathrm{ty} = rac{\mathrm{inter-clu}}{\mathrm{intra-clu}}$	$\frac{\text{ster dist.}}{\text{ster dist.}} = \frac{D}{2}$	$\frac{\text{Distance to Nearest Cluster}}{\text{Cluster Diameter}} >$	
clustering	type	input	supervised?	T complexity	
K-center	MaxDist.	\mathbf{x},k	\checkmark		
K-means	VarDist.	\mathbf{x},k	\checkmark	$O(n \cdot k \cdot t)$	
Hierarchical	tree	$\mathbf{x}, k, M_{dist.}$	\checkmark	$O(n^3)$	
MCL	Graph	$\mathbf{x}, G/M_{sim.}$	×	$M^e:O(n^3)$ inflate $m^r_{ij}:O(n^2)$	

Soft clustering

- each data point is assigned to a cluster with a probability.
- input: the joint distribution of unlabeled data $x \in \mathbb{R}^N$, parameterized by heta.
- hidden vector (or label z_{ij}): $z \in \mathbb{R}^{N imes K}$, where K is the number of labels,
 - \circ which cluster with label $j\in [1,K]$ is assigned to each data point x_i , and K is the total number of clusters.
 - \circ is the coin with probability of head x_i faked or not, i.e. 1: fake; 0: real. $z_{ij} \in \{0,1\}$.
- output θ_j : the MLE of the parameters $\theta = [\theta_1, \dots, \theta_j, \dots, \theta_k]$, that maximizes the joint prob.: $Pr(x_i, z_{ij} | \theta_j)$.
 - \circ the center coordinates of each cluster j.
 - \circ the probability of heads for coin type of j (1: fake; 0: real).

Expectation-Maximization (EM) algo.,

- Gibbs sampling: iteratively update the parameters heta and the hidden matrix $z_{ heta}$
 - by sampling from conditional distributions until convergence, than to marginalize by integrating over a joint distribution.
- E step: optimize $Pr(x_i, z_{ij}|\theta_j)$ wrt. the hidden vector z_{ij} while holding the parameters θ_j fixed,
 - $\circ\,$ given the parameters $heta^t$, derive the hidden matrix $Pr(z_{ij}|x_i, heta_j)$,
 - e.g. the responsibility of cluster j with center $heta_j=center_j$ for data point $x_i.$

$$Pr(z_{ij}|x_i, heta_j) = rac{Pr(x_i,z_{ij}| heta_j)}{Pr(x_i| heta_j)} = rac{Pr(x_i,z_{ij}| heta_j)}{\sum_{j=1}^K Pr(x_i,z_{ij}| heta_j)} \quad ext{by Bayes' rule}.$$

 $\circ\,$ Note that the denominator is the normalization factor, ensuring the probabilities sum to 1,

- $\circ\,$ the key is to compute the joint probability $Pr(x_i,z_{ij}| heta_j)$,
 - Force $(x_i, z_{ij}) = e^{-\beta \cdot distance(x_i, \theta_j = center_j)}$,
 - $eta
 ightarrow \infty$ for hard clustering,
 - $\beta
 ightarrow 0$ for extreme soft clustering.
 - $X \sim \mathrm{Binomial}(n,i)$, $Pr(x_i,z_{ij}| heta_j) = (heta_j)^i \cdot (1- heta_j)^{n-i}$,
 - where i is the number of heads, and n is the total number of tosses.
 - θ_j is the probability of heads for coin type of j (1: fake; 0: real).
- \circ here, pick the $z_i = rg\max_j Pr(z_{ij}|x_i, heta_j)$ that maximizes the joint prob..

- in center-based clustering, set center label; in unknown coin tossing, set is faked or not.
- M step: optimize $Pr(x_i, z_{ij}|\theta_j)$ wrt. the parameters θ_j while holding the hidden matrix z_{ij} fixed, \circ given the hidden matrix, update the parameters θ via MLE,
 - $\circ \; heta^{t+1} = rg\max_{ heta} \mathbb{E}_{z \sim Pr(z|x, heta)}[\log Pr(x,z| heta)].$
 - θ_j are updated as the coordinate average of the data points assigned to cluster j.
 - in unknown coin tossing, $\theta_j^{t+1} = rac{x imes \mathbf{1}_{z_i=j}}{1 imes \mathbf{1}_{z_i=j}}.$
 - $X \sim \operatorname{Binomial}(n,i)$, the MLE of positive outcome $heta = rac{i}{n}$,
 - where i is the number of heads, and n is the total number of tosses.

Louvain: modularity, Leiden algorithm

Lecture 5: Genome sequencing

Reconstruct the original genome, given a set of overlapping short reads from machines.

Hamiltonian graph -- Hamiltonian path (every node, NP-complete)

- Bellman–Held–Karp algorithm
 - boolean dp[j][S_i], denoting a valid node subset S_i ending at node j.
 - for all neighbors k of j, extend dp[j][S_i] by dp[k][S_i $\{j\}$] and k j.
 - $\circ~O(n^22^n)$, NP-complete.

De Bruijn graph -- Eulerian path (every edge, easier)

- Balanced node: in-degree = out-degree
- Semi-balanced node: in-degree = out-degree ± 1 (differs at most 1)
- Connected Graph: each node is reachable from some other node
- Strongly connected Graph: each node is reachable from every other node
- Eulerian Graph (a Eulerian cycle)
 - \circ algorithm: Hierholzer's algorithm (ant) with O(|E|).
- Euler's theorem
 - \circ a connected graph is Eulerian if and only if every vertex has even degree.
 - \circ a graph is Eulerian if and only if it is a balanced connected graph. (semi-)

Bubbles explosion and solutions

Lecture 6: Genome assembly

Use an additional reference genome to augment sequencing or match (read) patterns.

Suffix trees

Compression

Burrows-Wheeler Transform (BWT)

Read / Exact pattern matching

- Sequencing De Bruijn graph construction takes a lot of memory and time.
- Fitting via alignment: $O(|\text{Patterns}| \times |\text{Genome}|)$.
- Joint traversal (match or backtrack) via two trie pointers in parallel.
 - \circ patterns prefix trie: $O(|\text{LongestPattern}| \times |\text{Genome}|)$.
 - \circ genome suffix trie: O(|Patterns| + |Genome|).
 - construction: char nodes $T(|G|^2)$, $S(|G|^2)$; substr nodes T(|G|), $S(\sim 20 imes |G|)$.
 - (invert) BWT + suffix array: $S(\sim 4 imes |G|)$.

Inexact pattern matching, with at most d mismatches.

- potential candidates: at least one of the d+1 **seeds** is error-free. Check the entire pattern against the Genome.
- (invert) BWT with extended mismatch + suffix array.

Lecture 7: Hidden Markov models

Application: Identify parts; Exons, Introns prediction; Protein secondary structure prediction; CG islands

Evaluation: TP, FP, TN, FN, sensitivity, specificity, precision, F1 score

Denote HMM:

- transition matrix P, emission matrix Q,
- k states $\pi = \{q_1,...,q_k\}$
- M training sequences, with a total of N observations $X = \{x_1, x_2, \ldots, x_N\}$ each.

Algorithm	Inputs	Outputs	Time	Space
Likelihood of a parse	HMM, X, π	$Pr(x,\pi)$	O(1)	O(1)
Viterbi / decode	HMM, X	$V_k(i) = \ \max_{\pi} P(x,\pi \pi_i=k)$	$O(N\cdot k^2)$	$O(N \cdot k)$
Forward / eval	HMM, X	$egin{aligned} f_k(i) &= Pr(x_1,,x_i \pi_i = k) \end{aligned}$	$O(N\cdot k^2)$	$O(N \cdot k)$
Backward / eval	HMM, X	$egin{aligned} & Pr(\pi_i = k x) = f_k(i) \cdot \ & b_k(i) \ & b_k(i) = Pr(x_{i+1}, x_n \pi_i) \end{aligned}$	$O(N\cdot k^2)$	$O(N \cdot k)$
Viterbi train / learning	$X_1,,X_M$	P,Q	$O(M\cdot N \cdot k^2)$	$O(M \cdot N \cdot k)$
Baum-Welch / learning	$X_1,,X_M$	P,Q	$O(M\cdot N\cdot k^2)$	$O(M \cdot N \cdot k)$

DNA for Computing

Hamiltonian path problem (also knowns as the Traveling Salesman Problem) is NP-complete.

• to find a path in a graph G = (V, E) that visits each vertex exactly once.

Leonard Adleman's DNA computing algorithm (1994) via generate and test.

- Generate all possible Hamiltonian paths in a graph G.
 - $\circ\,$ Step 1: encode the city names and routes as DNA sequences.
- Test each path to check if it is Hamiltonian,
 - total length of the path,
 - Step 2: sort by length in an electronic gel (field).
 - Step 3: filter by length via cutting out the band of interest.
 - start vertex, end vertex,
 - Step 4: amplify via PCR (Polymerase Chain Reaction) test.
 - each vertex once,
 - Step 5: affinity purification (hybridization) test of the complimentary strand.
- Output the Hamiltonian path.
- vs. computational methods
 - Advantages: synthesizing short single stranded DNA is now a routine process,
 - $\circ\,$ so the initial step is straightforward and cheap.
 - In a test tube the "algorithm" runs in parallel.
 - However, the complexity still increases exponentially.
 - For Adleman's method, what scales exponentially is not the computing time, but rather the amount of DNA.
 - Another limitation is the error rate for each operation.

Random access in DNA storage

Organick et al. (2018) stored and retrieved more than 200 megabytes of data.

- encoding: ID | Addr | Payload | Error correction code, append distinct primers, synthesis.
 - $\,\circ\,$ attach distinct primers to each DNA molecules set, to carry the file information.
 - redundant information for increased robustness.
- decoding: sequencing, cluster reads and consensus algorithm, error correction.
 - retrieve the file by selectively amplifying and sequencing the molecules with the primer marking the desired file.
- test their scheme via a primer library that allowed them to uniquely tag data stored in DNA.
 - encoded 35 digital files into 13M DNA sequences, each 150-nucleotides long.
- opportunities (or advantages): longevity (durable), power usage and information density.
- challenges (or disadvantages): cost and read/write speed (DNA synthesis and sequencing).

Dobb-Gillespie algorithm (1976)

- to simulate coupled biochemical reactions in a *well stirred* container, where the mean and variance from multiple runs are reported for statistical stability.
- assumption: the time steps au so small that only one reaction has occurred.
- algorithm: given a set of M reactions, and N species in the system, with X_i molecules of species i.

$$\begin{array}{l} \circ \ t = 0, \, \mathbf{X} = [X_1, \dots, X_N]. \\ \circ \ \text{while} \ t < T \ \text{do:} \\ \bullet \ \alpha_0 = \sum_{i=1}^M \alpha_i & \text{, complexity } O(M). \\ \bullet \ \tau = \operatorname{Exp}(\alpha_0) = -\frac{1}{\alpha_0} \ln(r_1), \text{ where } r_1 \sim \operatorname{Uniform}(0, 1). \\ \bullet \ t' = t + \tau \\ \bullet \ P(j\text{-th reaction}) = \frac{\alpha_j}{\alpha_0}, \text{ where } j = 1, \dots, M \text{ and } r_2 \sim \operatorname{Uniform}(0, 1). \\ \bullet \ \mathbf{X}' = \mathbf{X} + \nu_j & \text{, complexity } O(N). \\ \circ \ \text{end while} \end{array}$$

- \circ output **X'** and t'.
- utility: a better representation of cell metabolism and genetic networks.