
Information and Entropy

When we resolve disorder, we gain information.

Shannon Information: measure of surprise / uncertainty for an event  with probability ,

(continuous, additive and symmetric),

Entropy: measure of average level of disorder / information for a random variable. Given 

, with probability distribution ,

Discussions,

• For a Bernoulli RV.  with , the binary entropy is defined as,

• The entropy is 0 if the distribution is deterministic, i.e. taking a single value with probability 1.

• The entropy is higher for equiprobable distributions since they are more unpredictable.

• Maximal Entropy achieved when , i.e., .

◦ For a general case, differentiate the Lagrange function  from  and set

, with constraint , to find the maximum entropy.

Noiseless channels

The Source Coding Theorem

 i.i.d. random variables each with Entropy  can be compressed into more than  bits

with a negligible risk of loss as  tends to infinity. Conversely, if you compress to fewer than 

bits, you are almost guaranteed to lose information.

Symbol codes 

Binary symbol code  for an ensemble  is . The extended code

 is .

The symbol code expected (encoded character) length for an ensemble  is,
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Symbol code source coding theorem for an ensemble ,

there exists an encoding  such that the expected encoded character length  satisfies,

The minimal expected length only if the the code lengths are equal to the Shannon information contents

.

Unique decodability (Prefix codes)

The uniquely decodable codeword, with length , over the binary alphabet  must satisfy

the Kraft inequality,
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Huffman coding

Build a binary tree from the leaves to the root,

1. Take the two least probable symbols in the alphabet. They will be given the longest codewords,

which will have equal length, and differ only in the last digit.

2. Combine these two symbols into a single symbol, and repeat.

Limitations: assume a const data distribution, thus fixed coding; the extra bit is problematic when

.

Stream codes

Live data stream, adaptive coding.

Arithmetic coding

Output a single floating point number with a high precision in the range , which represents the

entire message.
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Lempel-Ziv coding

Given a string of symbols , Lempel-Ziv complexity  is the number of longest consecutive

substrings that are not repeated from the beginning, e.g. .

Normalized compression distance is a measure of the similarity between two strings  and  based on

their Lempel-Ziv complexity.

Noisy discrete channels

Error Correcting Codes (ECCs)

Repetition code , where  is the number of bits to repeat.

Block Codes , where .

Hamming Codes , detecting and correcting 1-bit errors efficiently.

The 7-bit code-word  for 4-bit data word  is defined by the generator matrix ,

The relationship is,

The parity check matrix  is defined by the generator matrix , and  is valid if all bits in  are 0.

The relationship is,
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Bayes' rule

Bayes' rule for conditional probability,

for conditional entropy states,

Conditional entropy

measure of uncertainty in random variable  given event ,

conditional entropy:  given , i.e, weighted averaging  over all values  of .

Discussions,

• when , iff. , i.e.  is completely determined by  and .

• when , , i.e. , iff.  and  are

independent RVs.

•  is conditionally independent of  given : , 

.

Joint entropy

measure of uncertainty in two random variables  and .
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Symmetric property of joint entropy: .

Chain rule for multiple RVs probability distribution,

Joint entropy extended for multiple random variables ,

Mutual information

measure the common information between two RVs, i.e., how much information one RV conveys about

(propagates to) another. The information gained about  when we know .

Channel capacity: maximum mutual information achievable between input and output random variables

of a channel.

(Symmetric) Channel capacity  with additive noise independent of the input , i.e. ,

Correlation coefficient: measure of the linear relationship strength between two random variables.
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Continuous entropy for signals

Differential entropy  of a continuous random variable  with probability density function  is

defined as,

The differential entropy itself has no fundamental physical meaning, but it occurs often enough to have a

name. The differential entropy is not the limiting case of the entropy; the entropy of a continuous

distribution is infinite. It is not invariant under coordinate transformations.

Continuous mutual information  is defined as,

Maximum entropy via Lagrange multipliers and normal distribution,

where variance  is a constraint. For a communication channel, the power of the

signal . We assume that the transmitter is usually power-limited, i.e., the average

power of the signal is limited to .

[The standard electrical power .]
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Discussions,

• What  gives the  we want?

• What  makes  maximum?

• Answer: Gaussian distributions.

The Gaussian channel , modelling the relationship between transmitted signal  and

received signal  with additive white noise , which has equal intensity at all frequencies. Usage:

satellite, deep-space communication links and radio transmission.

The differential entropy of a Gaussian distribution  is given by

. Proof,

The per-symbol capacity of the Gaussian channel is given by,

where  is the noise power spectral density, and  is the signal-to-noise ratio (dB).

Bandwidth  (Hz, Hertz) of the channel is the difference between the upper and lower frequencies in a

continuous band of frequencies, i.e. the frequency range available is  Hz.

The Nyquist theorem states the Nyquist rate  is the minimum sampling rate required to

reconstruct signals, which is twice the maximum frequency of the signal.
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The Shannon-Hartley theorem, for bandwidth-limited channels, states that the theoretical tightest

upper bound on the information rate of data (per second) that can be communicated at an arbitrarily low

error rate using an average received signal power  through an analog communication channel subject

to additive white Gaussian noise (AWGN) of power ,

Limitations:

• Larger bandwidths brings more noise . The spectrum available is limited, and higher

bandwidths require larger physical infrastructure.

• Diminishing returns as SNR increases.

Ultra-WideBand (UWB) communications system (bandwidths ~ GHz) can avoid interference with other

non-UWB users of the same radio spectrum part, by using a different range of frequencies / transmitting

below the ambient noise floor.

Prob. distributions comparison and ML

Entropy of distributions , i.e., the average number of bits needed to encode data with distribution

 using a code optimised for .

Cross entropy of  and  measures the average number of bits needed if a code optimised for

distribution  is used to encode data with distribution . It is defined as,

Kullback-Leibler divergence / relative entropy of  from  tells how many average additional

number of bits needed if a code optimised for distribution  is used to encode instead for data with

distribution . It is defined as,

Its minimal is achieved when , i.e., .

They both measure the divergence / inefficiency of using a predicted/approximated distribution 

instead of the true distribution . In machine learning, they are used as loss functions to measure the

difference between the predicted and true distributions or in the variational inference.

They are both asymmetric and thus not a distance. Instead, the entropy distance is defined as,
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Relationship between cross entropy and KL divergence:

Applications

(a) Classical thermodynamics (“entropy”, developed by Clausius, etc.)

express the direction or outcome of spontaneous changes in the system, with an increase representing

energy that becomes unavailable for work.

 is the uniform temperature of the system, and  is the heat energy transferred to the system. The

entropy  change of the system is given by .

(b) Statistical mechanics (“statistical entropy”, developed by Boltzmann, etc.)

The macroscopic state of a system is described by the Gibbs probability distribution over its 

microscopic states.  is the probability of the system being in state , and  is the entropy of the

system,

When states are equiprobable, , the entropy is maximized at , and the system is

in a state of maximum disorder. It expresses entropy as the logarithm of the number of accessible

microstates.

(c) Information theory (“information entropy”, developed by Shannon)

measure of disorder in random variable , with probability distribution . When we resolve

disorder, we gain information.
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