Grammar

e Ambiguity

e Precedence and associativity

e Phrase Structure / Constituent Grammar
Equivalent

How to prove L(G1) = L(G2)?

e Simplify

e Chomsky normal form
e Push down automata
¢ undecidable in general

Parsing

(Terminal) Left to right

Leftmost Rightmost Derivation
Order Top-down Bottom-up

Recursive Descent,
Example LL(1) LR(0), SLR(1), LR(1)

Shift-reduce

Strategy Predict-match L
[deterministic]

LL(1)
e Why M?
o First Set, Follow Set
¢ And how to write the above formally?
e Why it has non-determinism for some Grammar?

o Left recursion
A=" Ao

o AddEOFto S
o AddextraD = then C | epsilon

LR(O)

e Why it has non-determinism for some Grammar?

o shift-reduce conflict

= both shift A — a*af and reduce B — B+, A,B € N
= and no matter whether a € FOLLOW (B) in an NFA state set.

S—Le:=R

R — Le
o reduce-reduce conflicts

= see below

o NFA

SLR(1)

e LR(0) table structure
o same parser operation (shift/ reduce)
o one token of lookahead
m to arbitrate among shift-reduce conflicts

o DFA (less non-determinism allowed)
e How to construct a Full DFA?

o Do it directly with epsilon closure. v

o Power set [subset construction for converting NFAs to DFAs. (Time consuming)
e Why it has non-determinism for some Grammar?

o shift-reduce

= both shift A — a*af and reduce B — B+, A,B € N
» anda € FOLLOW ((B) in an NFA state set.

S —Le:=R
R — L+, (:=) € FOLLOW (R)
o reduce-reduce

= both reduce A — a*andreduce B — 8¢, A,B € N
» and Jda.a € FOLLOW (A) and a € FOLLOW (B) in an NFA state.
= |n particular, hold if A = B.

LR(1)
e shift A — acaf,band reduce B — 3¢,b

o reduce only if the next token is exactly terminal bas b € first(B) rather than
any of those in F'ollow(B) in SLR(1) parsing.

R — Leb
S—Ls:=R,b

¢ but causing more complex DFA

Formal Model of Language

Earley Parser <=> All CFG
o Chart Parsing
Dependency Grammar/Parsing
only T'
Tree Adjoining Grammar <=> Mildly CSL
o initial trees (nouns/verbs)
o auxiliary trees (modifiers)
= used for recursion
Categorical Grammar
o type X

