Grammar

- Ambiguity
- Precedence and associativity
- Phrase Structure / Constituent Grammar

Equivalent

How to prove L(G1) = L(G2)?

- Simplify
- Chomsky normal form
- Push down automata
- undecidable in general

Parsing

(Terminal) Left to right

	Leftmost	Rightmost Derivation
Order	Top-down	Bottom-up
Example	Recursive Descent, LL(1)	LR(0), SLR(1), LR(1)
Strategy	Predict-match	Shift-reduce [deterministic]

LL(1)

- Why M?
 - First Set, Follow Set
- And how to write the above formally?
- Why it has non-determinism for some Grammar?
 - Left recursion

$$A \Rightarrow^+ A lpha$$

- Add EOF to S
- Add extra D = then C I epsilon

LR(0)

- Why it has non-determinism for some Grammar?
 - shift-reduce conflict

- lacksquare both shift A o lpha ullet alacksquare aeta and reduce B o eta ullet , $A,B \in N$
- and no matter whether $a \in FOLLOW(B)$ in an NFA state set.

$$S \to L^{\bullet} := R$$

$$R o L^{ullet}$$

- reduce-reduce conflicts
 - see below

• NFA

SLR(1)

- LR(0) table structure
 - same parser operation (shift/ reduce)
 - one token of lookahead
 - to arbitrate among shift-reduce conflicts

• DFA (less non-determinism allowed)

- How to construct a Full DFA?
 - $\circ~$ Do it directly with epsilon closure. $\checkmark~$
 - Power set / subset construction for converting NFAs to DFAs. (Time consuming)
- Why it has non-determinism for some Grammar?
 - shift-reduce
 - lacksquare both shift A o lpha ullet aeta and reduce B o eta ullet , $A,B \in N$
 - and $a \in FOLLOW(B)$ in an NFA state set.

$$S o L^{ullet} := R$$

$$R o L^ullet, (:=) \in FOLLOW(R)$$

• reduce-reduce

- both reduce $A
 ightarrow lpha {ullet}$ and reduce $B
 ightarrow eta {ullet}$, $A,B \in N$
- and $\exists a.a \in FOLLOW(A)$ and $a \in FOLLOW(B)$ in an NFA state.
- In particular, hold if A = B.

LR(1)

- shift A o lpha ullet a eta, b and reduce B o eta ullet, b
 - **reduce** only if the next token is exactly terminal b as $b \in first(B)$ rather than any of those in Follow(B) in SLR(1) parsing.

$$R o L^ullet, b$$
 $S o L^ullet := R, b$

• but causing more complex DFA

Formal Model of Language

- Earley Parser <=> All CFG
 - Chart Parsing
- Dependency Grammar/Parsing
- $\bullet \ \, {\rm only}\,T$
- Tree Adjoining Grammar <=> Mildly CSL
 - initial trees (nouns/verbs)
 - auxiliary trees (modifiers)
 - used for recursion
- Categorical Grammar
 - $\circ \ {\rm type} \ X$