
Grammar

Ambiguity

Precedence and associativity

Phrase Structure / Constituent Grammar

Equivalent

How to prove ?

Simplify

Chomsky normal form

Push down automata

undecidable in general

Parsing

(Terminal) Left to right

Leftmost Rightmost Derivation

Order Top-down Bottom-up

Example
Recursive Descent,

LL(1)
LR(0), SLR(1), LR(1)

Strategy Predict-match
Shift-reduce

[deterministic]

LL(1)

Why M?

First Set, Follow Set

And how to write the above formally?

Why it has non-determinism for some Grammar?

Left recursion

Add EOF to S

Add extra D = then C | epsilon

LR(0)

Why it has non-determinism for some Grammar?

shift-reduce conflict

L(G1) = L(G2)

A⇒+ Aα



both shift  and reduce , 

and no matter whether  in an NFA state set.

reduce-reduce conflicts

see below

NFA

SLR(1)

LR(0) table structure

same parser operation (shift/ reduce)

one token of lookahead

to arbitrate among shift-reduce conflicts

DFA (less non-determinism allowed)

How to construct a Full DFA?

Do it directly with epsilon closure. ✓

Power set / subset construction for converting NFAs to DFAs. (Time consuming)

Why it has non-determinism for some Grammar?

shift-reduce

both shift  and reduce , 

and  in an NFA state set.

reduce-reduce

both reduce  and reduce  , 

and  and  in an NFA state.

In particular, hold if .

LR(1)

shift  and reduce

reduce only if the next token is exactly terminal  as  rather than

any of those in  in SLR(1) parsing.

but causing more complex DFA

Formal Model of Language

A→ α•aβ B → β• A,B ∈ N
a ∈ FOLLOW (B)

S → L• := R

R→ L•

A→ α•aβ B → β• A,B ∈ N
a ∈ FOLLOW (B)

S → L• := R

R→ L•, (:=) ∈ FOLLOW (R)

A→ α• B → β• A,B ∈ N
∃a.a ∈ FOLLOW (A) a ∈ FOLLOW (B)

A = B

A→ α•aβ, b B → β•, b

b b ∈ first(B)
Follow(B)

R→ L•, b

S → L• := R, b



Earley Parser <=> All CFG

Chart Parsing

Dependency Grammar/Parsing

only 

Tree Adjoining Grammar <=> Mildly CSL

initial trees (nouns/verbs)

auxiliary trees (modifiers)

used for recursion

Categorical Grammar

type 

T

X


