Linear algebra

Inner product $\langle \psi | \times | \phi \rangle = \langle \psi | \phi \rangle = \sum_{i=1}^{n} \psi_{i}^{*} \phi_{i}$. Outer product $|\psi \rangle \langle \phi | = \sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{i} \phi_{j}^{*} | i \rangle \langle j |$. Tensor / Kronecker product $|\psi \rangle \otimes |\phi \rangle = |\psi_{1}\phi, \psi_{2}\phi, ..., \psi_{n}\phi \rangle$.

$$A\otimes B=egin{bmatrix} a_{11}B&\cdots&a_{1n}B\dots&\ddots&dots\ a_{m1}B&\cdots&a_{mn}B \end{bmatrix}.$$

Hadamard / Element-wise product $|\psi\rangle \circ |\phi\rangle = |\psi\rangle \odot |\phi\rangle = |\psi\phi\rangle = |\psi_1\phi_1, \psi_1\phi_2, ..., \psi_n\phi_n\rangle$.

$$A\circ B=A\odot B=egin{bmatrix}a_{11}b_{11}&\cdots&a_{1n}b_{1n}\dots&\ddots&dots\a_{m1}b_{m1}&\cdots&a_{mn}b_{mn}\end{bmatrix}.$$

Eigenvalues λ_i / (normalised) eigenvectors $|v_i
angle \overline{U|v_i
angle} = \lambda_i |v_i
angle$, for unitary matrix U.

For diagonalisable matrix, spectral decomposition $U=\sum_{i=1}^n\lambda_i|v_i
angle\;\langle v_i|.$

- Unitary \cap Hermitian: $A^2 = I$ (self-inverse), e.g. X,Y,Z,H.
- \subseteq Hermitian $A = A^{\dagger}$ (self-adjoint) \lor **Unitary** $A^{\dagger}A = I \implies A^{-1} = A^{\dagger}$ (unique inverse).
- \subseteq normal matrices $A^{\dagger}A = AA^{\dagger}.$

Postulates of quantum mechanics

Superposition, interference

Entanglement: non-separability

Concepts in quantum mechanics

Measurement and the Helstrom-Holevo bound $p \leq rac{1+\sin heta}{2}$, where $|\langle\psi_a|\psi_b
angle| = \cos heta.$

The no-signalling principle: after measurement, the entanglement is collapsed, thus not possible to transmit information.

The no-cloning principle: impossible to copy an unknown quantum state. $\nexists U.U(|\psi\rangle|0\rangle) = |\psi\rangle|\psi\rangle$.

The no-deleting principle: impossible to delete one of the unknown quantum state copies. $\nexists \tilde{U}.\tilde{U}(|\psi\rangle|\psi\rangle) = |\psi\rangle|0\rangle.$

Quantum circuits

Universal gate set: $\{H, T, CNOT\}$. Pauli gates X = HZH, Y = iXZ = SXSZ.

- proof for Z = HXH (L8. quantum search)
 - either by matrix multiplication.
 - \circ or geometric interpretation (X/Z: rotate 180 degree about x/z-axis, H: swap x and z axis).

Rotation $R_k= ext{diag}(1,e^{irac{2\pi}{2^k}})$, $R_k^\dagger= ext{diag}(1,e^{-irac{2\pi}{2^k}})$. $R_0=I$, $R_1=Z$, $R_2=S$, $R_3=T$, \dots .

 $R_z(heta)= ext{diag}(e^{-irac{ heta}{2}},e^{irac{ heta}{2}})$, ignoring the global phase.

$$egin{aligned} T &= ext{diag}(1, e^{irac{\pi}{4}}) &= R_3 = R_z(rac{\pi}{4}) = e^{irac{\pi}{8}} ext{diag}(e^{-irac{\pi}{8}}, e^{irac{\pi}{8}}). \ S &= T^2 = ext{diag}(1, e^{irac{\pi}{2}} = i) &= R_2 = R_z(rac{\pi}{2}) = e^{irac{\pi}{4}} ext{diag}(e^{-irac{\pi}{4}}, e^{irac{\pi}{4}}). \ Z &= S^2 = ext{diag}(1, e^{i\pi} = -1) &= R_1 = R_z(\pi) = e^{irac{\pi}{2}} ext{diag}(e^{-irac{\pi}{2}}, e^{irac{\pi}{2}}). \ I &= Z^2 = ext{diag}(1, 1) &= R_0 = R_z(0). \end{aligned}$$

[T, S are not self-invertible and Z is self-inverse].

$$CNOT = CX = (I \otimes H) imes CZ imes (I \otimes H)$$
, by self-inverse of $X, Z.$

SWAP can be decomposed into 3 CNOTs.

Entanglement circuits via Hadamard-CNOT combination

$$\ln \left[\mathrm{CNOT}(H \otimes I) | 00
angle = rac{1}{\sqrt{2}} (| 00
angle + | 11
angle)
ight)$$

Quantum information applications

Teleportation

send a qubit via two bits.

Super_dense coding

send two bits via one qubit.

sender: $|00\rangle \rightarrow^{H\otimes I+\text{CNOT}}_{superposition}$ Bell state $\rightarrow^{\{I,X,Z,XZ\}}_{\text{two bits}}$ Bell states.

receiver: Bell states $\rightarrow_{interference}^{\text{CNOT}+H\otimes I}$ two bits.

Deutsch-Jozsa algorithm

 $f:\{0,1\}^{\overline{n}} o \{\overline{0,1}\}$, which is either constant or balanced.

$$|H^{\otimes n}|x
angle=rac{1}{\sqrt{2^n}}\sum_{z\in\{0,1\}^n}(-1)^{x\cdot z}|z
angle$$

Proof: as $|x
angle=|x_1...x_n
angle$, where $x_i\in\{0,1\}$ and

$$egin{aligned} H|x_i
angle &=rac{1}{\sqrt{2}}(|0
angle+(-1)^{x_i}|1
angle)\ &=rac{1}{\sqrt{2}}(|z_1=0
angle+(-1)^{x_i}|z_j=1
angle)\ &=rac{1}{\sqrt{2}}((-1)^{x_i imes 0}|z_1=0
angle+(-1)^{x_i imes 1}|z_2=1
angle)\ &=rac{1}{\sqrt{2}}((-1)^{x_i imes z_1}|z_1=0
angle+(-1)^{x_i imes z_2}|z_2=1
angle)\ &=rac{1}{\sqrt{2}}\sum_{z_i\in\{0,1\}}(-1)^{x_i imes z_j}|z_j
angle \end{aligned}$$

 $H^{\otimes n}|x_1...x_n
angle=\otimes_i(H|x_i
angle)$, and the power of the function is $\sum_i x_i imes z_i=x\cdot z$, we are done.

Quantum Search

Grover's algorithm

QFT & QPE

Quantum Fourier Transform (QFT)

$$|x
angle o |y
angle : \sum_{j=0}^{N-1} x_j |j
angle o \sum_{k=0}^{N-1} y_k |k
angle$$
, where $egin{matrix} y_k = rac{1}{\sqrt{N}} \sum_{j=0}^{N-1} w^{jk} x_j \end{bmatrix}$ and $w^{jk} = e^{irac{2\pi}{N}jk}$.

In the matrix form, we have the following transformation,

$$egin{bmatrix} y_0 \ y_1 \ y_2 \ \dots \ y_N \end{bmatrix} = egin{bmatrix} 1 & 1 & 1 & \dots & 1 \ 1 & \omega & \omega^2 & \dots & \omega^{N-1} \ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(N-1)} \ 1 & \dots & \dots & \dots & \dots \ 1 & \omega^{N-1} & \omega^{2(N-1)} & \dots & \omega^{(N-1)(N-1)} \end{bmatrix} \cdot egin{bmatrix} x_0 \ x_1 \ x_2 \ \dots \ x_N \end{bmatrix}, ext{where} \ \omega = e^{irac{2\pi}{N}}.$$

The dimension of Hilbert space for n qubits $N = 2^n$. The sinusoid's frequency $f = \frac{k}{N}$, i.e., k cycles per N samples.

inverse QFT (iQFT)

$$|y
angle o |x
angle \colon \sum_{k=0}^{N-1} y_k |k
angle o \sum_{j=0}^{N-1} x_j |j
angle$$
, where $\left|x_j = rac{1}{\sqrt{N}} \sum_{k=0}^{N-1} w^{-jk} y_k
ight|$ and $w^{-jk} = e^{-irac{2\pi}{N}jk}$.

Note that the normalizing terms should be a product of $\frac{1}{N}$, where the above satisfies unitary. The exponential term is negated in one of the two.

Quantum Phase Estimation (QPE)

If given the eigenvector $|u\rangle$ of U and eigenvalue $e^{i2\pi\phi}$ with **phase** $\phi \in [0, 1)$, we have $U|u\rangle = e^{i2\pi\phi}|u\rangle$, we can estimate the phase ϕ via QPE with t bits of precision.

- preparation
 - $\circ~1^{st}$ register: $H^{\otimes t}|0
 angle^{\otimes t}=rac{1}{\sqrt{2^t}}\sum_{x\in\{0,1\}^t}|x
 angle$ (superposition)
 - $\circ~2^{nd}$ register: the (superposition of) given eigenvector(s) \ket{u} with eigenvalue $e^{i2\pi\phi}$,
- oracle U^j on the 1^{st} register (Entanglement)

$$\circ rac{1}{\sqrt{2}}(|0
angle+|1
angle)
ightarrow rac{1}{\sqrt{2}}(|0
angle+(e^{i2\pi\phi})^j|1
angle) \ \circ rac{1}{\sqrt{2^t}}\sum_{x=0}^{2^t-1}|x
angle
ightarrow rac{1}{\sqrt{2^t}}\sum_{j=0}^{2^t-1}(e^{i2\pi\phi})^j|j
angle$$

- $\circ~2^{nd}$ register: respective |u
 angle with eigenvalue $e^{i2\pi\phi}$ and phase $\phi.$
- iQFT (Interference)
- measurement
 - $\circ~1^{st}$ register: t bits approximation of $| ilde{\phi}
 angle$
 - $\circ~2^{nd}$ register: |u
 angle with phase $\phi.$

Application: factoring

order finding: for coprime x and N, find $x^r \equiv 1 \mod N$, where r is the least positive integer.

 $U|r
angle = |(x \cdot r) \mod N
angle \implies$ For eigenstates $s \in [0, r-1]$, we have eigenvectors $|u_s
angle = rac{1}{\sqrt{r}}\sum_{j=0}^{r-1}e^{-i2\pirac{s}{r}}j|x^j \mod N
angle$ with **phase** $\phi = rac{s}{r}$.

Use QPE, 2^{nd} register prepared with equal superposition of unknown eigenvectors $\frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} |u_j\rangle = |1\rangle$ (shallow-depth quantum circuit X).

factoring: for composite integer N, $N = p \cdot q$, where p and q are prime numbers.

Shor's algorithm

Application: quantum chemistry

Trotter formula: $U = e^{-i(H_1+H_2)t} = U_1U_2 = e^{-iH_1t}e^{-iH_2t} + O(t^2)$, where U_1 and U_2 don't commute.

Projective measurement with (normalized) eigenvectors

Ground state energy estimation $|e_0
angle$ of a H with eigenvalue $\lambda_0 = E_0$.

Use QPE, 2^{nd} register should be prepared as close to the eigenvector such that it's sufficiently dominated by the ground state $|e_0\rangle$ (L15. adiabatic state preparation).

Fault tolerance

bit-flip, phase-flip, Shor code, Steane code

Fault tolerance threshold $p_{th}=rac{1}{c}$, for suppressed error rate $p=cp_e^2+O(p_e^3).$ Per-gate error rate

