
Linear algebra

Inner product . Outer product .

Tensor / Kronecker product .

.

Hadamard / Element-wise product .

.

Eigenvalues  / (normalised) eigenvectors , for unitary matrix .

For diagonalisable matrix, spectral decomposition .

Unitary  Hermitian:  (self-inverse), e.g. .

 Hermitian  (self-adjoint) Unitary  (unique inverse).

 normal matrices .

Postulates of quantum mechanics

Superposition, interference

Entanglement: non-separability

Concepts in quantum mechanics

Measurement and the Helstrom-Holevo bound , where .

The no-signalling principle: after measurement, the entanglement is collapsed, thus not possible to

transmit information.

The no-cloning principle: impossible to copy an unknown quantum state. .

The no-deleting principle: impossible to delete one of the unknown quantum state copies.

.

Quantum circuits
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Universal gate set: . Pauli gates , .

• proof for  (L8. quantum search)

◦ either by matrix multiplication.

◦ or geometric interpretation ( : rotate 180 degree about x/z-axis, : swap x and z axis).

Rotation , . , , , , ... .

, ignoring the global phase.

[  are not self-invertible and  is self-inverse].

, by self-inverse of .

SWAP can be decomposed into 3 CNOTs.

Entanglement circuits via Hadamard-CNOT combination 

Quantum information applications

Teleportation

send a qubit via two bits.

Super_dense coding

send two bits via one qubit.

sender:  Bell state  Bell states.

receiver: Bell states  two bits.

Deutsch-Jozsa algorithm

, which is either constant or balanced.
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Proof: as , where  and

, and the power of the function is , we are done.

Quantum Search

Grover's algorithm

QFT & QPE

Quantum Fourier Transform (QFT)

: , where  and .

In the matrix form, we have the following transformation,

The dimension of Hilbert space for n qubits . The sinusoid's frequency , i.e.,  cycles per

 samples.

inverse QFT (iQFT)

: , where  and .

Note that the normalizing terms should be a product of , where the above satisfies unitary. The

exponential term is negated in one of the two.
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Quantum Phase Estimation (QPE)

If given the eigenvector  of  and eigenvalue  with phase , we have ,

we can estimate the phase  via QPE with  bits of precision.

• preparation

◦  register:  (superposition)

◦  register: the (superposition of) given eigenvector(s)  with eigenvalue ,

• oracle  on the  register (Entanglement)

◦ 

◦ 

◦  register: respective  with eigenvalue  and phase .

• iQFT (Interference)

• measurement

◦  register: t bits approximation of 

◦  register:  with phase .

Application: factoring

order finding: for coprime  and , find , where  is the least positive integer.

 For eigenstates  we have eigenvectors 

 with phase .

Use QPE,  register prepared with equal superposition of unknown eigenvectors 

(shallow-depth quantum circuit ).

factoring: for composite integer , , where  and  are prime numbers.

Shor's algorithm

Application: quantum chemistry

Trotter formula: , where  and  don't commute.

Projective measurement with (normalized) eigenvectors

Ground state energy estimation  of a  with eigenvalue .

Use QPE,  register should be prepared as close to the eigenvector such that it's sufficiently

dominated by the ground state  (L15. adiabatic state preparation).

Fault tolerance

bit-flip, phase-flip, Shor code, Steane code

Fault tolerance threshold , for suppressed error rate . Per-gate error rate
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