Linear algebra
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Eigenvalues \; / (normalised) eigenvectors |v;) | Ulv;) = A;|v;) |, for unitary matrix U.

For diagonalisable matrix, spectral decomposition U = Y | A;|v;) (vs].
Unitary N Hermitian: A% = I (self-inverse), e.9. X,Y, Z, H.
C Hermitian A = AT (self-adjoint) \V Unitary ATA =T — A~! = A (unique inverse).

C normal matrices ATA = AAT.

Postulates of quantum mechanics

Superposition, interference

Entanglement: non-separability

Concepts in quantum mechanics

14sin0
Measurement and the Helstrom-Holevo bound p < 52 where |(1hq|15)| = cos 6.

The no-signalling principle: after measurement, the entanglement is collapsed, thus not possible to
transmit information.

The no-cloning principle: impossible to copy an unknown quantum state. AU.U (|1)[0)) = [)|4).

The no-deleting principle: impossible to delete one of the unknown quantum state copies.

BUU(|9)l)) = [4)10).

Quantum circuits



Universal gate set: {H, T, CNOT}. Pauligates X = HZH,Y =iXZ = SXSZ.

e proof for Z = HX H (L8. quantum search)
o either by matrix multiplication.
o or geometric interpretation (X/Z: rotate 180 degree about x/z-axis, H: swap x and z axis).

Rotation Ry, = diag(l,e's ), R = diag(1,e "#). Ry =I Ry =2, Ry =S, R3 =T, ....

R.(6) = diag(e "%, €'?), ignoring the global phase.

T = diag(1, ei%) = R3 = Rz(%) = ei%diag(e_ig,ei%).
§=T?=diag(l,e' =i) =Ry= Rz(g) = e'idiag(e 7, €'%).
Z = §* = diag(1,€™ = —1) = R; = R.(7) = ¢'*diag(e ', €'?).

[T, S are not self-invertible and Z is self-inverse].
CNOT =CX =(I® H) x CZ x (I ® H), by self-inverse of X, Z.

SWAP can be decomposed into 3 CNOTSs.

1
Entanglement circuits via Hadamard-CNOT combination| CNOT(H ® I)|00) = —2(\00> +(11))

Quantum information applications

Teleportation

send a qubit via two bits.

Super_dense coding

send two bits via one qubit.

1,X,2,XZ
HOITONOT o)) spate 11X 2X2) gy tates.

sender: ’OO> _>supeTposition two bits
CNOT+H®I

inter ference two bits.

receiver: Bell states —

Deutsch-Jozsa algorithm

f:4{0,1}" — {0,1} | which is either constant or balanced.

1
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Proof: as |z) = |x1...x,), where z; € {0,1} and
Hlz;) = (|0> (=D)%1))

(121 = 0)+ (~1)"
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H®"|z;...z,) = ®;(H|z;)), and the power of the functionis ). ; X z; = - 2, we are done.

Quantum Search

Grover's algorithm

QFT & QPE

Quantum Fourier Transform (QFT)

N-1
1 , . com
|z) — |y): E o {L’J|j> — Zk 0 yk|k) where |y, = —\/N wjk:zzj and wi* = ' ¥k,
§j=0
In the matrix form, we have the following transformation
_yo_ [1 1 1 ... 1 1 [ao]
Y1 1 w w? .. whV-t T1 -
vy | =1 W? w? w?(N-1) .| 25 | , where w = €'~ .
Ly | 1 WVl 2Dy NDWN-D | gy
The dimension of Hilbert space for n qubits N = 2™. The sinusoid's frequency f = %, i.e., k cycles per
N samples.
inverse QFT (iQFT)
1 N-1
— |z yr|k) — Lz, j), where |x; = —— w_Jkyk and wI* = e~ i¥ Ik,
k 0 j= 0 J J /
N k=0

where the above satisfies unitary. The

=~

Note that the normalizing terms should be a product of
exponential term is negated in one of the two.



Quantum Phase Estimation (QPE)

If given the eigenvector |u) of U and eigenvalue €?>™® with phase ¢ < [0, 1), we have Ul|u) = €™ |u),
we can estimate the phase ¢ via QPE with ¢ bits of precision.

e preparation

o 1% register: H®'|0)® = % > zc{o,1) |) (superposition)

o 2 register: the (superposition of) given eigenvector(s) |u) with eigenvalue ei?

« oracle U7 on the 1% register (Entanglement)
o 1(10) + 1)) = L(10) + (¢2)T]1))
21 21, ; il
© ﬁ > a0 |T) = \/% ijo (€Y 5)
o 2™ register: respective |u) with eigenvalue €??™ and phase ¢.

¢ iQFT (Interference)

e measurement
o 1%t register: t bits approximation of |<£>
o 2" register: |u) with phase ¢.

Application: factoring
order finding: for coprime  and NV, find " =1 mod N, where 7 is the least positive integer.

Ulr) = |[(z-7r) mod N) = For eigenstates s € [0, — 1], we have eigenvectors |us) =
% Z;é e " jlz/ mod N) with phase ¢ = -

Use QPE, 2" register prepared with equal superposition of unknown eigenvectors % Z;;é luj) = 1)

(shallow-depth quantum circuit X).
factoring: for composite integer N, N = p - g, where p and q are prime numbers.

Shor's algorithm

Application: quantum chemistry

Trotter formula: U = e *HitH)t — 1,1, = e~#ite=iH:t 4 O(¢2), where Uy and Us don't commute.
Projective measurement with (normalized) eigenvectors

Ground state energy estimation |ey) of a H with eigenvalue Ay = E.

Use QPE, ond register should be prepared as close to the eigenvector such that it's sufficiently
dominated by the ground state |€()> (L15. adiabatic state preparation).

Fault tolerance

bit-flip, phase-flip, Shor code, Steane code

Fault tolerance threshold p;;, = %, for suppressed error rate p = cpg + O(pg). Per-gate error rate
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after k concatenation.




