Artificial Intelligence Past Paper

Part 2: Games and Constraint Satisfaction Problems

Games

CSPs

ViDi={l0,l1,l2,l3}Vi \in D_i= \{ l_0, l_1, l_2, l_3\}, {constraints}\{constraints\}, complete / consistent assignment

constraint propagation, back-jumping

Part 3: Knowledge Representation and Reasoning

Situation Calculus

Part 4: Planning

situation space plan space
Plan Representation Sequence of actions / vars Partial plans with flexible seqs / vars
Variable Commitment Fixed before search Least-commitment (delayed)
Search Space Finite (states) Infinite (plans)
Efficiency Potentially faster when it works Adaptive, potentially efficient
Application Smaller, well-defined problems Complex, dynamic problems

For state-variable, given ground instances X, Domain, Dia\mathcal{D_i^{a}}

situation / plan {(state-variable=c),vXv \in X } / CSP
States s0[s1=result(grab,s)]...s0 \rightarrow [s1 = result (grab, s)]...
(ad hoc from 1 and onwards)
all states
RR:Dia×DaRR: \mathcal{D_i^{a}} \times \mathcal{D^{a}}
functions f:Dia×SDaf:\mathcal{D_i^{a}} \times S \rightarrow \mathcal{D^{a}}
Logic propositional first-order logic
Action
axioms
Probability (precondition)
--- successor state
Effect (for monetary action)
Frame (for objects, persistent action□)
{at(x,s)=c,v2=c}\{at(x,s)=c, v_2=c'\} in s
γ(s,a)={(v=c)vX}\gamma(s,a)= \{(v=c)| v\in X\}
ceffectc_{effect}
cframec_{frame}
Goal conjunction literals at timestamp T
atT(v,rowid,colid)at_T(v,row_{id}, col_{id})
a set of state variable assignments
gγ(sn,an)g \in \gamma (s_n, a_n)
Sols same a sequence of actions from start state
(a0,a1,...an)(a_0, a_1, ...a_n)

Propositional Logic

Planning Graph

State-variable

Part 5: Learning

Find a weight vector minimizing E(w)E(w)

Reuse δj\delta_j from output layers, y=σ(aj),δj=E(w)aj=E(w)yσ(a)y=\sigma (a_j), \delta_j = \frac{\partial E(\vec{w})}{\partial a_j}=\frac{\partial E(\vec{w})}{\partial y} \sigma'(a)