Artificial Intelligence Past Paper

- Adapted from the Lecturer's materials
- Al-I, Al-II

Part 1: Introduction and Search

- y2007p3q8
 - Search, Tree (priority queue / open list) vs Graph (+closed list, s.t. dedup)
 - $\circ~$ Recursive Best First Search vs A^{\star}
- y2008p3q7
 - $\circ~$ Recursive Best First Search vs A^{\star}
- y2009p4q3
 - $\circ~A^{\star}$, IDA
- y2016p4q2
 - IDA
- y2019p6q2 (d)
 - $\circ~$ design admissible heuristic (\leq)
- y2012p4q1
 - heuristics
- y2013p4q1
 - local search

Part 2: Games and Constraint Satisfaction Problems

Games

- y2001p9q8
 - alpha-beta
- y2006p3q3
 - minimax algorithm

CSPs

$V\!i \in D_i = \{l_0, l_1, l_2, l_3\}$, $\{constraints\}$, complete / consistent assignment

constraint propagation, back-jumping

- y2005p3q3
 - $\circ ~ \operatorname{CSP} \operatorname{vs} A^\star$
 - backtracking
 - minimum remaining values, the degree, the least constraining value heuristic
- y2010p4q1
 - forward checking

- arc consistency
- y2012p4q2
 - Gaschnig's algorithm, graph-based backjumping vs forward checking
- y2013p4q1 (c)
 - local search extension
- y2014p4q2
 - arc consistency
 - AC-3 algorithm, 3-consistency
- y2015p4q2
 - backjumping (Gaschnig's algorithm vs graph-based backjumping)
- y2017p4q1 (a,b)
 - add row number and transfer to binary constraints
 - later used in Planning
- y2020p6q2
 - forward checking, AC-3, Constraint propagation
- y2021p6q2
 - forward checking

Part 3: Knowledge Representation and Reasoning

Situation Calculus

- y2003p9q8
 - ontological vs epistemological commitment
 - representational vs inferential frame problem
 - the qualification (pre), the ramification problem (effect)
- y2010p4q2
- y2014p4q1
 - unique names axiom, unique actions axiom
- y2006p4q4

Part 4: Planning

	situation space	plan space
Plan Representation	Sequence of actions / vars	Partial plans with flexible seqs / vars
Variable Commitment	Fixed before search	Least-commitment (delayed)
Search Space	Finite (states)	Infinite (plans)
Efficiency	Potentially faster when it works	Adaptive, potentially efficient

	situation space	plan space
Application	Smaller, well-defined problems	Complex, dynamic problems

For state-variable, given ground instances X, Domain, \mathcal{D}_i^a

	situation / plan	{(state-variable=c), $v\in X$ } / CSP
States	s0 ightarrow [s1=result(grab,s)] (ad hoc from 1 and onwards)	all states $RR:\mathcal{D}^a_i imes\mathcal{D}^a$ functions $f:\mathcal{D}^a_i imes S o \mathcal{D}^a$
Logic	propositional	first-order logic
Action axioms	Probability (precondition) successor state Effect (for monetary action) Frame (for objects, persistent action□)	$egin{aligned} \{at(x,s)=c,v_2=c'\} ext{ in s}\ \gamma(s,a)=\{(v=c) v\in X\}\ c_{effect}\ c_{frame} \end{aligned}$
Goal	conjunction literals at timestamp T $at_T(v,row_{id},col_{id})$	a set of state variable assignments $g\in \gamma(s_n,a_n)$
Sols	same	a sequence of actions from start state (a_0,a_1,a_n)

• y2003p8q8

- STRIPS, States, Goals, Operators(Action, Pre, Effect)
- $\circ \,$ plan, consistent, complete [all causal links / protection intervals $S' o^c S$, precondition $c \in Effects(S')$]
- $\circ~$ initial plan with ordering constraint Start < Finish, no v = x
- $\circ \;$ threat, S' < S'' < S and $c \notin Effect(S'')$
 - promotion (after the threatened connection)
 - demotion (before the threatened connection)
- y2008p4q6
- y2009p4q4
 - situation space vs plan space
- y2011p4q2
- y2016p4q1

Propositional Logic

- y2018p6q1
 - sliding blocks puzzle, SAT
 - start state, goal state, axioms
 - action-exclusion (usually totally-order) vs state-constraint axioms (mutex link)

Planning Graph

• y2019p6q1

- inconsistent effects, interfering actions, competing for preconditions mutex
- $\circ\;$ the initial state level S_0 , the first action level A_1 , and the state level S_1 resulting from A_1
- partial order planner, multiple actions can occur simultaneously
- y2022p6q1
 - GraphPlan
 - plan extraction as heuristic search

State-variable

- y2017p4q1 (c-e)
- y2023p7q1
 - translation to CSP (for each timestamp t)
 - CSP variables
 - $action^t, D^{action^t} = \{a\}$, where a is the ground instance of an action.
 - $sv_i^t(v_1, ...v_n), D^{sv_i^t} = range(sv_i^t) = \mathcal{D}^{sv_i^t}$, where a is the ground instance of an action.
 - CSP constraints
 - precondition, using binary constraint $(a^t = a, s^t_i = v)$
 - effect using binary constraint $(a^t = a, s_i^{t+1} = v)$
 - frame axioms using ternary constraint $(a^t = a, s^t_i = v, s^{t+1}_i = v)$
- y2019p6q2
 - State-variable (rigid relation, action, state, goals/solutions)
 - Heuristic search vs CSP

Part 5: Learning

Find a weight vector minimizing E(w)

Reuse δ_j from output layers, $y=\sigma(a_j), \delta_j=rac{\partial E(ec w)}{\partial a_j}=rac{\partial E(ec w)}{\partial y}\sigma'(a)$

- y2007p4q7
- y2011p4q1
 - gradient descent
- y2013p4q2
- y2015p4q1

 \circ application on A^{\star}

- y2017p4q2
 - MSE, cross-entropy loss
- y2018p6q2
 - $\circ ~ E(w)$ in 2D, convolution
- y2020p6q1
- y2021p6q1
 - heuristic search

- y2022p6q2
- y2023p7q2
 - n-class cross-entropy