
Concepts in Programming Languages Past Paper

Adapted from Revision Guide (revised 2017)

I. Introduction and motivation

design, methods, paradigms; Foundations; Standardisation.

y2006p6q7 (a)

motivating application domains, abstract machines, theoretical understanding

y2012p3q6 (a)

Execution models (abstract machines)

Storage allocation and deallocation

y2015p3q5 (a, b)

Programming-language concepts, innovations, influences

y2007p6q7 (b,c)

Parameter passing, value, reference, value/result, name

Aliasing

II. FORTRAN: Sequential procedural language

FORTRAN 77; Data types; Control structures; Syntax; Storage; Aliasing; Parameters.

y2010p3q5 (a)

FORTRAN vs Pascal

y2009p3q2 (a)

LISP vs FORTRAN

y2006p6q7 (b)

Types, advantages and disadvantage

y2007p5q7 (a)

Execution model (or abstract machine)

Compilation

III. LISP: Declarative, Functions, recursion, and lists

Programming-Language phrases; S-expressions; quote; Abstract machine; Recursion;

Programs as data; Reflection

y2009p3q2 (a)

LISP vs FORTRAN

y2011p3q6 (a.ii)

LISP vs Smalltalk

y2022p7q1 (a, b)

y2006p6q7 (c)

y2008p6q7 (a)

y2014p3q6 (a)

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/t-ConceptsinProgrammingLanguages.html
https://www.cl.cam.ac.uk/teaching/2223/ConceptsPL/RG.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p3q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p5q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p3q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2022p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p3q6.pdf


Static (renaming principle, closure) and Dynamic scope

y2007p6q7 (a)

Execution model (or abstract machine)

Compilation

y2007p5q7 (b)

Garbage collection

y2018p7q1 (b)

eval

IV. Algol, Pascal: Block-structured procedural languages

Block structure; Algol 60; Recursion; Stack; Type system; Algol 68; BNF syntax; Heap;

Garbage collection; Quasi-strong typing;

y2011p3q6 (a.i)

Algol and SIMULA

y2013p3q6 (a.i)

Algol and Pascal

y2010p3q5 (a)

FORTRAN vs Pascal

y2006p6q7 (b)

Types, advantages and disadvantage

y2008p5q7 (a), y2013p3q6 (b)

Parameter-passing: pass-by-reference, pass-by-value/result

y2009p3q2 (c)

call-by-value vs call-by-reference

y2012p3q6 (c)

y2007p5q7 (c)

Algol 60 primitive static type system, Parameter-passing

y2019p7q1 (a, b)

Algol 60, Parameter-passing

y2015p3q5 (c), y2008p6q7 (b)

Pascal variant records vs ML vs subclass

V. SIMULA, Smalltalk: Object-oriented languages

Subtyping vs. inheritance; SIMULA; Classes, objects and activation records;

Subclasses and inheritance; Smalltalk; Dynabook; Syntax; Abstraction; Messages;

Methods; Instance variables; Interfaces as types; Subtyping.

y2010p3q5 (b), y2013p3q6 (a.ii)

SIMULA vs Smalltalk

y2011p3q6 (a.i)

Algol and SIMULA, LISP and Smalltalk

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p5q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p5q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p3q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p5q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2019p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p3q6.pdf


y2008p5q7 (c)

Objects in SML (see SML module)

y2006p6q7 (d)

Dynamic lookup; Abstraction; Subtyping; Inheritance

y2007p6q7 (d)

SIMULA, Type checking and subtyping

y2012p3q6 (f)

Abstraction, private weakened by pointer / reflection

VI. Types

Type checking in SML; Type equality; Type declarations; let-polymorphism;

y2020p7q1 (a,b)

Type soundness

y2009p3q2 (b)

weakness of type system in any languages

y2012p3q6 (b)

y2015p3q5 (d,e)

y2008p5q7 (b)

static vs dynamic scoping, early LISP

static vs dynamic type checking

type-safe and counterexample

y2020p7q1 (b.i, c)

Type checking, static vs dynamic, Java

y2010p3q5 (c)

Type checking vs Type inference

y2011p3q6 (b), y2013p3q6 (c)

Type inference in SML, constraint

y2012p3q6 (e)

Type safety and counterexample

Polymorphism in ML

y2022p7q1 (c)

y2018p7q1 (b)

y2014p3q6 (c)

Polymorphic Exception

y2021p7q1 (a)

y2016p3q5 (d, e)

y2019p7q1 (c)

Java covariant arrays, invariant Generics

y2015p3q5 (e, f)

downcast

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p5q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2020p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p3q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p5q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2020p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2022p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2021p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2019p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p3q5.pdf


VII. Scripting Languages – JavaScript

Browser integration

e.g.,

“Scripting languages and dynamically typed languages are identical; discuss”

“Discuss the notion of ‘classʼ in relation to JavaScript”

y2022p7q1 (d)

JavaScript; Prototypal inheritance;

VIII. Data abstraction and modularity – SML Modules

Signature inclusion; Subtyping; Information hiding;

y2018p7q1 (d)

y2007p5q7 (d)

SML module system, Signatures; Structures; ADT of stacks

Functional / Imperative

y2010p3q5 (d)

SML Signature matching

y2011p3q6 (c), y2009p3q2 (d)

SML Signature, Functors

y2013p3q6 (d)

y2014p3q6 (d)

concrete signatures sig type t = int and opaque signature sig type t
constraint 

IX. Concurrency, parallelism

Theoretical models ; Programming-language support for parallelism and distribution.

Internal and external iteration.

y2014p3q6 (b)

Threads, shared memory, message passing; Distributed memory, multi-core,

cloud computing

X. Functional-style meets OOP

Scala and Java 8; Procedural programming; Declarative programming; Mutable state;

Blocks; Functions; Classes and objects; abstract classes; traits; Pattern matching;

[No longer explicitly lectured:] Type parameter bounds; View bounds; Implicit

parameters; Implicit conversions; Mixin-class composition.

y2012p3q6 (d)

Generic types and methods; Variance annotations

y2011p3q6 (d)

Scala, parameter-passing

y2013p3q6 (e)

Scala innovations

:, :>

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2022p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p5q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p3q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p3q6.pdf


y2008p6q7 (c)

Scala, function types ; Functions as objects

y2009p3q2 (d)

Scala, variance

y2010p3q5 (e)

Scala, Case classes

y2022p7q1 (e)

y2018p7q1 (c)

Value type, Java

XI. Miscellaneous concepts

GADTs, Reified continuations, Dependent typing.

y2021p7q1 (b)

y2020p7q1 (d)

y2016p3q5 (a, b, c)

Monads, unit/return, >>= / bind

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p3q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2022p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2021p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2020p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p3q5.pdf

