Concepts in Programming Languages Past Paper

o Adapted from Revision Guide (revised 2017)

I. Introduction and motivation

design, methods, paradigms; Foundations; Standardisation.
y2006p6q7 (a)
o motivating application domains, abstract machines, theoretical understanding

y2012p3qg6 (a)
o Execution models (abstract machines)
o Storage allocation and deallocation

y2015p39g5 (a, b)
o Programming-language concepts, innovations, influences

y2007p6q7 (b,c)
o Parameter passing, value, reference, valuefresult, name
o Aliasing

Il. FORTRAN: Sequential procedural language

FORTRAN 77; Data types; Control structures; Syntax; Storage; Aliasing; Parameters.
y2010p395 (a)
o FORTRAN vs Pascal

y2009p39g2 (a)
o LISP vs FORTRAN

y2006p6q7 (b)
o Types, advantages and disadvantage

y2007p5q7 (a)
o Execution model (or abstract machine)
o Compilation

lll. LISP: Declarative, Functions, recursion, and lists

e Programming-Language phrases; S-expressions; quote; Abstract machine; Recursion;
Programs as data; Reflection
e y2009p392 (a)
o LISP vs FORTRAN

o y2011p3q96 (a.ii)
o LISP vs Smalltalk

e y2022p791 (a, b)
e y2006p6q7 (C)
e y2008p6q7 (a)
e y2014p396 (a)

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/t-ConceptsinProgrammingLanguages.html
https://www.cl.cam.ac.uk/teaching/2223/ConceptsPL/RG.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p3q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p5q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p3q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2022p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p3q6.pdf

o Static (renaming principle, closure) and Dynamic scope
e y2007p6q7 (a)

o Execution model (or abstract machine)

o Compilation

e y2007p5q7 (b)
o Garbage collection

e y2018p791 (b)
o eval

IV. Algol, Pascal: Block-structured procedural languages

e Block structure; Algol 60; Recursion; Stack; Type system; Algol 68; BNF syntax; Heap;
Garbage collection; Quasi-strong typing;
e y201p3q96 (a.i)
o Algol and SIMULA

e y2013p306 (a.i)
o Algol and Pascal

e y2010p39g5 (a)
o FORTRAN vs Pascal
e y2006p6q7 (b)
o Types, advantages and disadvantage
e y2008p5q7 (a), y2013p3g6 (b)
o Parameter-passing: pass-by-reference, pass-by-valuefresult
e y2009p392 (c)
o call-by-value vs call-by-reference
e y2012p3qg6 (c)
e y2007p59g7 (c)
o Algol 60 primitive static type system, Parameter-passing
e y2019p791 (a, b)
o Algol 60, Parameter-passing

e y2015p39g5 (c), y2008p6q7 (b)
o Pascal variant records vs ML vs subclass

V. SIMULA, Smalltalk: Object-oriented languages

e Subtyping vs. inheritance; SIMULA; Classes, objects and activation records;
Subclasses and inheritance; Smalltalk; Dynabook; Syntax; Abstraction; Messages;
Methods; Instance variables; Interfaces as types; Subtyping.

e y2010p39g5 (b), y2013p3g6 (a.ii)

o SIMULA vs Smalltalk

e y201p3q96 (a.i)
o Algol and SIMULA, LISP and Smalltalk

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p5q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p5q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p3q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p5q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2019p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p3q6.pdf

y2008p5q7 (c)
o Objects in SML (see SML module)

y2006p6q7 (d)
o Dynamic lookup; Abstraction; Subtyping; Inheritance

y2007p6q7 (d)
o SIMULA, Type checking and subtyping

y2012p3qg6 (f)
o Abstraction, private weakened by pointer / reflection

VI. Types

e Type checking in SML; Type equality; Type declarations; let-polymorphism;
e y2020p791 (a,b)
o Type soundness

e y2009p39g2 (b)
o weakness of type system in any languages

e y2012p396 (b)

e y2015p39g5 (d,e)

e y2008p5q7 (b)
o static vs dynamic scoping, early LISP
o static vs dynamic type checking
o type-safe and counterexample

e y2020p791 (b.i, c)
o Type checking, static vs dynamic, Java

e y2010p395 (c)
o Type checking vs Type inference

e y201p3q96 (b), y2013p396 (c)
o Type inference in SML, constraint

e y2012p396 (e)
o Type safety and counterexample
o Polymorphism in ML

e y2022p791 (c)
e y2018p791 (b)
e y2014p3q96 (c)
o Polymorphic Exception

e y2021p791 (a)
e y2016p395 (d, €)
e y2019p791 (c)
o Java covariant arrays, invariant Generics

e y2015p39g5 (e, f)
o downcast

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p5q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2020p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p3q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p5q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2020p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2022p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2021p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2019p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p3q5.pdf

VII. Scripting Languages — JavaScript

e Browser integration

e eg,
o "Scripting languages and dynamically typed languages are identical; discuss”
o "Discuss the notion of ‘class’ in relation to JavaScript”

e y2022p791 (d)
o JavaScript; Prototypal inheritance;

VIIl. Data abstraction and modularity — SML Modules

¢ Signature inclusion; Subtyping; Information hiding;

e y2018p791 (d)

e y2007p5g7 (d)
o SML module system, Signatures; Structures; ADT of stacks
o Functional [Imperative

e y2010p395 (d)
o SML Signature matching

e y2011p3g6 (c), y2009p39g2 (d)
o SML Signature, Functors

e y2013p3q6 (d)

e y2014p3g6 (d)

o concrete signatures sig type t = int and opaque signature sig type t
o constraint :, :>

IX. Concurrency, parallelism

e Theoretical models ; Programming-language support for parallelism and distribution.
Internal and external iteration.
e y2014p396 (b)
o Threads, shared memory, message passing; Distributed memory, multi-core,
cloud computing

X. Functional-style meets OOP

Scala and Java 8; Procedural programming; Declarative programming; Mutable state;
Blocks; Functions; Classes and objects; abstract classes; traits; Pattern matching;
o [No longer explicitly lectured:] Type parameter bounds; View bounds; Implicit
parameters; Implicit conversions; Mixin-class composition.
y2012p3q6 (d)
o Generic types and methods; Variance annotations

y2011p396 (d)
o Scala, parameter-passing

y2013p396 (e)
o Scala innovations

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2022p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p5q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p3q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p3q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p3q6.pdf

e y2008p6q7 (C)
o Scala, function types ; Functions as objects

e y2009p39g2 (d)
o Scala, variance

e y2010p39g5 (e)
o Scala, Case classes

e y2022p7q1 (e)
e y2018p791 (c)
o Value type, Java

XI. Miscellaneous concepts

GADTs, Reified continuations, Dependent typing.
y2021p791 (b)
y2020p7q1 (d)
y2016p395 (3, b, c)
o Monads, unit/return, >>= / bind

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p6q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p3q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p3q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2022p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2021p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2020p7q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p3q5.pdf

