[17] M.A.AwanandS.M.Petters,“Enhancedrace-to-halt:Aleakage-aware energy management approach for dynamic priority systems,” in 23rd Euromicro Conference on Real-Time Systems, Jul. 2011, pp. 92–101.
SMP-AM-2006-Taiwan-Chen-Leakage Leakage-aware energy-efficient scheduling of real-time tasks in multiprocessor systems, J.-J. Chen, H.-R. Hsu, T.-W. Kuo, Proceedings of IEEE Real- Time and Embedded Technology and Applications Symposium (RTAS), 2006, pp. 408–417.
Dynamic Speed Scaling with Sleep state (DSS-S) --- The first to combine DVFS + DRS
SCP-AM-2007-California_Irani-Sleep
S. Irani, S. Shukla, R. Gupta, Algorithms for power savings, ACM Trans. Algorithms 3 (4) (2007).
SCP-AM-2012-France-Bampis-Hibernate
E. Bampis, C. Dürr, F. Kacem, I. Milis, Speed scaling with power down scheduling for agreeable deadlines, Sustain. Comput., Inform. Syst. 2 (4) (2012) 184–189.
Race to idle: New algorithms for speed scaling with a sleep state S. Albers and A. Antoniadis, ACM Trans. Algorithms, vol. 10, no. 2, pp. 9:1–9:31, Feb. 2014.
SCP-AM-2019-Germany_Antoniadis-sleep
A. Antoniadis, C. Huang, S. Ott, A fully polynomial-time approximation scheme for speed scaling with a sleep state, Algorithmica 81 (9) (2019) 3725–3745.
SCP-2006-Unit_Tasks_Min_IdlePeriodsNum_Offline Scheduling unit tasks to minimize the number of idle periods: a polynomial time algorithm for offline dynamic power management,P. Baptiste, Proceedings of the 17th Annual ACM-SIAM (SODA), 2006, pp. 364–367.
SMP-2013-Minimize_Gaps Scheduling to minimize gaps and power consumption, E.D. Demaine, M. Ghodsi, M. Hajiaghayi, A.S. Sayedi-Roshkhar, M. Zadimoghaddam, J. Sched. 16 (2) (2013) 151–160.
[15] P. Baptiste, M. Chrobak, C. Dürr, Polynomial-time algorithms for minimum energy scheduling, ACM Trans. Algorithms 8 (3) (2012) 26:1–26:29.
[16] E. Angel, E. Bampis, V. Chau, Low complexity scheduling algorithms minimizing the energy for tasks with agreeable deadlines, Discrete Appl. Math. 175 (2014) 1–10.
Advantage of machine-learning
Two closest related areas of modern power management related to our work are QoSM middleware and machine learning-based power managers.
HMP-SArch-2021-ETH_Giardino-Q-Learner_QoS_Manager
2QoSM: A Q-Learner QoS Manager for Application-Guided Power-Aware Systems
----- Appendix : List of related literature ----
Reinforcement Learning[25] A. Das, M. J. Walker, A. Hansson, B. M. Al-Hashimi, and G. V. Merrett, “Hardware-software interaction for run-time power optimization: A case study of embedded linux on multicore smartphones,” in 2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED). IEEE, Jul. 2015, pp. 165–170.
[26] J. F. Martinez and E. Ipek, “Dynamic multicore resource management: A machine learning approach,” IEEE Micro, vol. 29, no. 5, pp. 8–17, Sep. 2009.
[27] R. Ye and Q. Xu, “Learning-based power management for multicore pro- cessors via idle period manipulation,” IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, vol. 33, no. 7, pp. 1043–1055, Jul. 2014.
[28] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, “Achieving autonomous power management using reinforcement learning,” ACM Trans. Des. Autom. Electron. Syst., vol. 18, no. 2, pp. 24:1–24:32, Apr. 2013.
[29] Y. Ge and Q. Qiu, “Dynamic thermal management for multimedia applications using machine learning,” in Proceedings of the 48th Design Automation Conference, ser. DAC ’11. New York, NY, USA: ACM, Jun. 2011, pp. 95–100.
[30] A. Das, B. M. Al-Hashimi, and G. V. Merrett, “Adaptive and hierarchical runtime manager for energy-aware thermal management of embedded systems,” ACM Trans. Embed. Comput. Syst., vol. 15, no. 2, pp. 24:1– 24:25, Jan. 2016.
[31] U. Gupta, S. K. Mandal, M. Mao, C. Chakrabarti, and U. Y. Ogras, “A deep q-learning approach for dynamic management of heterogeneous processors,” IEEE Computer Architecture Letters, vol. 18, no. 1, pp. 14–17, Jan. 2019.
Deep Q-Learning (DQL) was used on a similar big.LITTLE single-board computer to obtain near- optimal performance per watt
----- Appendix : List of related literature ----